The various aspects of theoretical and applied researches are represented in proceedings of conference reports. Problems of adequate mathematical model of studied processes are considered. Problems of control synthesis and stability investigation of movements are separately allocated. Significant numbers of papers are devoted to modeling of economic problems, biological and social phenomena. Big quantity of reports presented at the conference is devoted to the problems of applied mechanics. Logic-mathematical methods of modeling are considered.

Prepared by **C.Sc., Docent** A.V. Shatyko

Recommended for printing by Scientific Council of Computer Science and Cybernetics faculty of Taras Shevchenko National University of Kyiv.

Scientific Editor: Dr.Sc., Prof. Khusainov D.Ya.
Reviewer: Dr.Sc., Prof. Boychuk A.A.

В материалах конференции представлены различные аспекты теоретических и прикладных исследований. Рассмотрены вопросы создания математических моделей, адекватно описывающих исследуемые объекты. Отдельно рассмотрены проблемы синтеза управления и исследования устойчивости движения. Значительное количество работ связано с моделированием экономических, биологических и социальных процессов. Большое количество работ посвящено проблемам теоретической и прикладной механики. Рассмотрены логико-математические методы моделирования.

Подготовлено **канд. ф.-м.н., доц.** А.В. Шатырко

Рекомендовано к печати Ученым Советом факультета компьютерных наук и кибернетики Киевского национального университета имени Тараса Шевченко

Научный редактор: доктор физ.-мат. наук, профессор Хусаинов Д.Я.
Рецензент: доктор физ.-мат. наук, профессор Бойчук А.А.

В материалах конференции представлено різні аспекти теоретичних та прикладних досліджень. Розглянуто питання створення математичних моделей, що адекватно описують об’єкти. Окремо розглянуто проблему синтезу керування та дослідження стійкості руху. Значна кількість праць пов’язана із моделюванням економічних, біологічних та соціальних процесів. Велика кількість праць присвячена проблемам теоретичної та прикладної механіки. Розглянуті логіко-математичні методи моделювання.

Підготовлено **канд. ф.-м.н., доц.** А.В.Шатирко

Рекомендовано до друку Вченою Радою факультету комп’ютерних наук та кибернетики Київського національного університету імені Тараса Шевченка

Вчений редактор: доктор фіз.-мат. наук, професор Хусаінов Д.Я.
Рецензент: доктор фіз.-мат. наук, професор Бойчук А.А.
During the period May 22-24, 2019 the traditional International Conference “Dynamical Systems Modeling and Stability Investigation” was held.

Conference was dedicated to

50TH ANNIVERSARY

FACULTY OF COMPUTER SCIENCE AND CYBERNETICS

AND

DEPARTMENT OF COMPLEX SYSTEMS MODELING
The members of committees were

SCIENTIFIC COMMITTEE
Aliev F. (Baku, Azerbaidzhan),
Andreev A.S. (Ulyanovsk, Russia),
Amirgalieva S. (Almaty, Kazakhstan),
Bastinec J. (Brno, Czech Republic),
Boychuk A.A. (Kyiv, Ukraine),
Cherevko I.V. (Chernitsi, Ukraine),
Chikrii A.O. (Kyiv, Ukraine),
Chuyko S.M. (Kyiv, Ukraine),
Dosla Z. (Brno, Czech Republic),
Dimitrov G. (Sofia, Bulgaria),
Demidenko G.V. (Novosibirsk, Russia),
Domoshnitsky A. (Ariel, Israel),
Ivanov A.F. (Penn State, U.S.A.),
Kalitin B.S. (Minsk, Belorussia),
Karandzhulov L.I. (Sofia, Bulgaria),
Kalimoldaev M. (Almaty, Kazakhstan),
Krack Yu.V. (Kyiv, Ukraine),
Maistrenko A.L. (Kyiv, Ukraine),
Maslov B.P. (Kyiv, Ukraine),
Martynyuk A.A. (Kyiv, Ukraine),
Pokojoy M. (El Paso, USA),
Puza B. (Brno, Czech Republic),
Ruzickova M. (Byalystok, Poland),
Sadyrbaev F. (Riga, Latvia),
Vasiliev S.N. (Moscow, Russia)

ORGANIZING COMMITTEE
Bychkov O. (Kyiv, Ukraine),
Chernii D.I (Kyiv, Ukraine),
DzhalladovaI.A.(Kyiv,Ukraine)
Kapustyan O.I. (Kyiv, Ukraine),
Khusainov D.Ya. (Kyiv, Ukraine, Chairman),
Liashenko O. I. (Kyiv, Ukraine),
Limarchenko O.S. (Kyiv, Ukraine)
Mazko A.G. (Kyiv, Ukraine),
Nikitchenko N.S. (Kyiv, Ukraine),
Onyshchenko S.M. (Kyiv, Ukraine),
Podchasov N.P. (Kyiv, Ukraine),
Shatyrko A.V (Kyiv, Ukraine, Vice Chairman),
Shkilniak S.S. (Kyiv, Ukraine),
Stadnik O.I. (Kyiv, Ukraine, Secretary)
Zhuk Ya. A. (Kyiv, Ukraine).
The Conference covers the following topics:

1. **Mathematical methods of system investigation.**
 - Investigation of differential, functional-differential and difference systems.
 - Investigation of system stability, controllability and optimization.
 - Bifurcations and chaos in dynamical systems.
 - Lyapunov's methods in system investigation.

2. **Methods and technologies of computer modeling.**
 - Numerical Methods of Mathematical Physics.
 - Method and Technology computer calculations.
 - Specialized software and systems.
 - Software and Systems Modeling

3. **Modeling and investigation of processes in mechanics.**
 - Mathematical modeling in composite materials of mechanics.
 - Modeling and investigation of dynamical processes in elastic and hydroelastic systems.
 - Mathematical modeling in connected fields of mechanics.

4. **Method of control and complex systems research**
 - Methods of control and optimization.
 - The continuous-discrete systems
 - Methods of differential games.
 - Fuzzy modeling and systems with uncertainty.
 - Modelling in economy and ecology.

5. **Logic-mathematical methods of modeling.**
 - Methods and tools of subject domains specifications.
 - Methods and tools of software systems description.
 - Modal and temporal formalisms of systems modeling
CONTENTS

1. Mathematical methods of system investigation ... 27

equations ... 29

Batyuk L.V., Berest V.P. – Mathematical modelling of the system dna-water: the role of hydration
.. 31

Borysenko O.D., Borysenko D.O. – Limit behavior of solutions to stochastic logistic differential
equations of population dynamics .. 33

Borysenko O.V. – On the averaging principle for the fourth order stochastic oscillating systems ... 35

Chvalina J., Smetana B. – Artificial neuron group and hypergroup actions 38

Denysiuk V.P. – Generalized trigonometric functions and their applications 41

Dogru Akgol S., Ozbekler A. – De la vallée poussin inequality for impulsive differential equations ... 44

Dudyk M. – Approximate method of solution of system of a functional wienerhopf equations 46

Dzhalladova, I., Ruzickova, M. - New approach to a weakly nonlinear system normalization 48

Gichan O.I. – Concentration distribution in a model electrocatalytic process 51

Hentosh O.Ye., Prykarpatsky Ya.A. – The lax-sato integrable multi-dimensional general monge,
plebanski type and husain heavenly equations and their lie-algebraic structure 52

Kayar Z., Zafer A. – A novel lyapunov type inequality for linear discrete hamiltonian systems ... 55

Klevchuk I.I., Hryutchuk M.V. – Existence and stability of traveling waves in parabolic systems of
differential equations with weak diffusion ... 57

set-valued differential equations .. 60

Luchko A.V., Parasyuk I.O. – On asymptotic phase of dynamical system hyperbolic along attracting
invariant manifold .. 63

Martsenyuk V.P., Sverstiuk A.S., Milyan N.V. – On stability investigation of population dynamics
model based on lattice differential equations .. 65

Mukhigulashvili S., Manjikashvili M. – Dirichlet bvp for the second order nonlinear ordinary
differential equations at resonance ... 68
2. Methods and technologies of computer modeling

Anikushyn A. – Well-posedness of viscoelastic wave equation with strong delay

Bobalova M., Novotna V. – Optimal replenishment policy

Dorosh A., Haiuk I. – Boundary value problem for linear integro-differential equations with many delays

Gorodetskyi V., Osadchuk M. – Numerical-analytical method for alternative models search

Kondratiuk S.S. – Cross-platform software for dactyl language modeling and recognition

Petrivskyi Y., Tymchuk M., Petrivskyi V. – Mathematical model of the crack fracture in an array of rocks

Petrovich V.M., Trebina N.M. – System for identification of movement parameters of special type multidimensional systems

Poryev G.V. – Using public tracks data to augment srtm model in estimating ground levels for trip planning applications

Shatyrko A.V. – Lanchester’s direct fire combat models with time delay
Бичков О.С. – Програмні і математичні технології розроблення операційних систем реального часу ..167
Гладка Ю.А. – Про стійкість двокрокової схеми розщеплення для параболічного рівняння .. 168
Гончар М.С., Довжик О.П. – Про критерій сталого економічного розвитку .. 170
Гуляницький А.І., Токар К.С – Збіжність різницевої апроксимації рівняння субдифузії змінного порядку .. 173
Єфремов М.С – Моделювання жестів для візуалізації дактильної мови ... 175
Жук П.Ф., Карахім С.О., Костерін С.О. – Новий кінетичний підхід до моделювання доннанівської рівноваги ... 176
Юзб В. Ю., Гоменюк С.І – Використання гібридних паралельних технологій ... 179
Кудін Г.І. – Оптимізація обчислень в алгоритмі лінійної класифікації сигналів засобами севдо обернення матриць .. 181
Махорт А.П. – Про стані рівноваги економічної системи за наявності монополістів та алгоритми визначення їх характеристик ... 183
Новіков О.О., Ровенська О .Г. – Наближення аналітичних періодичних функцій неповними операторами Фейєра .. 185
Петрівський В.Я., Шевченко В.Л. – Застосування інтегрального числення при оцінці шуму у зоні метрополітену... 187
Пономаренко С.О., Захарін Ф.М. – Особливості моделювання процесу комплексної обробки навігаційної інформації в бортових комплексах безпілотних літальних апаратів .. 189
Семёнов В.В. – Экстраградиентные алгоритмы с дивергенцией Брэгмана .. 192
Стоцько З.А., Ребот Д.П., Топільницький В.Г., Кусній Я.М. – Математичне моделювання руху сипкого середовища в процесі вібраційної сепарації ... 194
Уалханова А.Т., Крак Ю.В., Денисова Н.Ф. – Интеграция элементов трехмерной визуализации и геоинформационной системы ... 196
Яременко С.В. – Модернізація тренажерного комплексу: projektuvannja тренажерної системи керування вогнем відділення ... 198
3. Modeling and investigation of processes in mechanics .. 201
Ara S. Avetisyan and Asatur Zh. Khurshudyan – Physical and mathematical modeling of wave propagation in electro-elastic composites with the rough surfaces junctions ... 203
Kiosak V.A., Lesechko O.V. – Mappings of spaces with affine connection preserving the weyl tensor ... 205
Maslov B.P. – Quazilinear model of multicomponent materials creep and strentgh ... 208
Onizhuk A.O., Mikhlin Yu.V. – Dynamics of the system with limited power supply having mises girder in vicinity of resonance ... 211

Rushchitsky J. – On three first approximations in studying the plane longitudinal solitary wave

Rushchitsky J., Sinchilo S., Symchuk Ya., Yurchuk V. – On comparative analysis of evolution of cylindrical harmonic and solitary waves

Smetankina N.V., Malyhina A.I., Merkulov D.O. – Modeling of non-stationary vibrations of laminated composite shells at impact loading

Smetankina N.V., Postnyi O.V. – Calculation of thermal fields in laminated glazing of airplanes

Бернакевич І.Є., Вагін П.П., Козій І.Я. – Скінченно-елементний аналіз задач теорії тонких оболонок, податливих до зсувів та стиснення

Богданов Л.В., Назаренко В.М., Кипнис А.Л. – К исследованию разрушения кусочно-однородного тела при сжатии вдоль межфазной приповерхностной трещины

Воропаев Г.А., Загуменный Я.В., Баскова А.А – Численный анализ переходных процессов в пограничных слоях внутренних и внешних течений

Дмитришин И.С. – Определение характеристик асинхронного двигателя в случае неполноты информации о работе ротора

Жоголева Н.В. – Энергетические характеристики локализованных волн сдвига и их вторых гармоник в составном волноводе при неидеальном механическом контакте материалов

Зуев А.Л. , Васильева И.Г. – Устойчивость инвариантных множеств систем нелинейных дифференциальных уравнений со случайными воздействиями

Козуб Ю. Г., Козуб Г.О. – Розрахунок еластомірних конструкцій з початковими напруженнями

Кононов Ю.Н., Василенко В.Ю. – Об устойчивости вращения в сопротивляющейся среде волчка Лагранжа с идеальной жидкостью под действием постоянного момента

Куценко О.Г., Харитонов О.М. – Втрата стійкості плоскої форми тонких кілець при їх осесиметричному нагріванні

Лещенко Д.Д., Акуленко Л.Д., Палий Е.С. – Эволюция вращательных движений близкого к динамически сфере твердого тела с полостью, заполненной вязкой жидкостью

Лимарченко О.С. – Особливості формування хвильових резонансних процесів в задачах динаміки рідини з вільною поверхнею

Лютий О.І – Рух гіроскопа з неаксіальним ротором на нерухомій основі

Назаренко В.М., Довжик М.В. – Численно аналитическая методика решения задач на сжатие композитных и высоко эластичных материалов вдоль приповерхностной трещины

Нефьодов О.О., Семенович К.О. – Особливості розвитку резонансних процесів в системі резервуар – рідина на маятниковому підвісі
Овчаренко О.В. – Дія дробових операторів Сайго на узагальнену гіпергеометричну функцію .. 256

Паранькіна О.Ю. – Поведінка системи гіперболоїдальний резервуар–рідина при силовому резонансному збудженні руху ... 258

Подчасов Н.П. – Резонансне колебання циліндрическої оболонки, розташованої в жесткому циліндре і взаємодіючої з внутрішнім и внутрішнім потоками рідини, при різних колових збуджениях давлення на внутрішнім потоке .. 261

Потапенко І.В – Канонічні деформації метрик псевдоріманового простору .. 263

Савельєва К.В., Дашко О.Г., Симчук Я.В. – Моделювання поширення плоских хвиль в нанокомпозитних матеріалах ... 265

Сапон М.М. – Динаміка трубопроводу з рідиною, що здійснює обертальний рух при різних частотах обертання ... 268

Сенченков И.К., Червинко О.П., Доля Е.В. – Исследование динамических процессов в подкрепленном оболочке вязкоупругом циліндре при импульсном нагружении ... 271

Сенченков И.К., Червинко О.П., Якименко С.Н. – Численное моделирование термических процессов наращивания тонкостенных призматических тел .. 274

Слюсарчук Ю.А. – Динамічна поведінка вільної поверхні рідини в резервуарах сферичної форми при силовому збудженні руху .. 277

Сокіл Б.І., Сокіл М.Б., Сокульська Н.Б. – Принцип одночастотності коливань у нелінійних системах та хвильова теорія руху у дослідженні динамічних систем, які характеризуються сталою складовою швидкості руху .. 279

Ткаченко Н. Є – Рух дисперсної суміші біля шершавої поверхні .. 282

Улітко І.А., Борисейко О.В. – Сенсорний сигнал вібраційного п’єзогіроскопу камертонного типу .. 284

Усов А.В., Сикираш Ю.Е. – Математическое моделирование термомеханических процессов в упругих объектах, подверженных тепловому воздействию .. 287

Чупринин А. А., Кузнецов А. Н., Скурихин В. И., Зубенко Д. Ю. – Моделирование механического комплекса провод – опора воздушных линий электропередач при динамических воздействиях .. 290

Шпачук В.П., Рубаненко О.Л. – Особливості спектра частот і власних форм поперечних коливань стрижня з пружно приєднаною масою .. 293

Шпачук В.П., Чупринін О.О., Супрун Т.О. – Моделювання динамічної взаємодії проходження вагоном рейкового транспорту стикової нерівності .. 295

Яковенко Н. Д. – Чисельне моделювання напружено-деформованого стану циліндра при термомеханічному навантаженні .. 297

4. Method of control and complex systems research .. 301

Chikrii G.Ts. – Time stretching in differenrial games with impulse controls .. 303
Mokhonko E.Z. – Problem of observation in some repeated game ..305
Skobelev V.G. – Continuous mode monitoring of cyber-physical systems ..308
Yatsenko V.A. – Dynamical models for space weather prediction: a comparative study311

Andruschenko Я.В. – Розробка та застосування методів прийняття рішень, оптимізації та керування в системних медичних дослідженнях ...312
Бабинюк О.І. – Моделювання впливу процесів відтворення робочої сили на економічну безпеку держави ...314
Батечко Н.Г. – Моделювання системи рівнів інформаційної культури в кіберпросторі317
Громік Н.В. – Моделювання динамічних процесів функціонування та розвитку ринку праці України ...320

Зінченко М.О., Святовець І.Ф. – Стабілізація лінійних стаціонарних систем за допомогою статичного зворотного зв'язку по виходу ...323
Коломійчук О. П., Новицький В. В. – Відновлення стану майже консервативних динамічних систем ...325

Константинов О.В. – Побудова керування системою “резервуар – рідина з вільною поверхнею” на основі розв’язку оберненої задачі мінімізації квадратичного функціоналу якості ...328
Ляшенко О.І. – Дослідження динаміки цін на криптовалюти методами фрактального аналізу ..331

Мазко А.Г., Котов Т.А. – Оцінка взвешенного подавлення возмущений в дескрипторних системах управления ..334
Мамонова Г.В., Дерев’яною В.М – Побудова стратегічної моделі розвитку інтелектуального капіталу як необхідна умова забезпечення конкурентоспроможності країни ...337

Матвієнко В.Т., Філімонов М.Б. – Оптимізація модальних регуляторів з обмеженнями на траекторії ..340

Неклюдов В.Ю., Чечко А.С., Пилипчук О.А. – Захищеність ОС BBOS та ОС WINDOWS342

Нікітін А.В., Самойленко І.В. – Асимптотична дисипативність укрупнених стохастичних еволюційних систем з марковськими переключеннями та імпульсними збуреннями у некласичних схемах апроксимації ..345

Олійник А. П., Незамай Б. С. – Комплексна математична модель аварійної ситуації на трубопроводах та оцінка її впливів на довкілля ..348

Орто В. В., Шворак К. В. – Модель зміни технологічного укладу в кіберпросторі ..350

Стоян В.А. – Про результати дослідження динаміки лінійних просторово розподілених систем ..352
Утеулиев Н.У., Кожаметов А.Т., Кутлымуратов Ю.К. – Об одном алгоритме нахождение эффективных решений двухкритериальной эколого-экономической задачи размещение и специализации сельскохозяйственного производства .. 353

Ходневич Я.В., Стефанишин Д.В., Корбутяк В.М. – Про моделирования параметров экологических попусков воды на антропогенно-переделенных речках ... 355

Шишканова Г.А., Плинокос Д.Д. – Оптимальные стратегии продаж в системе электронной коммерции ... 358

5. Logic-mathematical methods of modeling 361

Skobelev V.V. – On-line monitoring of switching between dynamics in cyber-physical systems .. 363

Крак Ю.В., Бармак О.В., Мазурец О.В. – Информационная модель семантической структуры навчального курса для генерации тестовых заданий .. 365

Марголин О.Г. – Автоматизирована система формирования наборов великих тестовых данных ... 368

Нікітенко М.С., Шкільняк О.С., Шкільняк С.С. – Чисті першопорядкові логіки квазіарних предикатів з композицією предикатного доповнення ... 371

Німченко Т.В., Рябова Л.В., Самойленко М.Є. – Задача управління доступом в системах обробки інформації ... 374

Поперешняк С.В. – Розробка схеми роботи статистичних тестів для перевірки випадковості послідовності, використовуючи основи програмної інженерії ... 376

Шишацька О.В. – Побудова п'ятизначних EU-логік ... 379

Гаркуша І.В., Риженко А.І., Черній Д.І. - Технології численного моделювання складних систем ... 381
ФАКУЛЬТЕТУ КОМП'ЮТЕРНИХ НАУК ТА КІБЕРНЕТИКИ
50 РОКІВ!

У 60-ті роки XX століття Київ став центром із розробки та випуску обчислювальної техніки. Розвитку технічних наук, які б сприяли національній безпеці, приділялася особлива увага. Були створені нові наукові академічні інститути: автоматики, кібернетики, матеріалознавства, радіоелектроніки, ядерної фізики та ряд інших спеціалізованих конструкторських бюро. Це вимагало запрошення до Києва провідних вчених та спеціалістів і, головне, виховання молодих наукових кадрів. Різко зросла потреба в спеціалістах – розробниках програмного забезпечення, фахівцях з чисельних методів оптимізації, баз даних, інформаційних систем та їхнього застосування. Саме тому у Київському університеті було відкрито факультет кібернетики – перший факультет відповідного профілю в колишньому СРСР.

Факультет займає окремий корпус, побудований у 1979 році. Сьогодні факультет комп’ютерних наук та кібернетики є одним з найбільших факультетів Київського національно університету імені Тараса Шевченка і є провідним центром з підготовки фахівців за освітньо-кваліфікаційними рівнями «бакалавр», «магістр» та «доктор філософії».

кибернетики», «Проблем системного аналізу», де працюють 50 науковців (12 докторів наук, 29 кандидатів наук).

Зараз на факультеті навчається понад 1300 студентів та 35 аспірантів та докторантів. Факультет готує фахівців за спеціальностями «Прикладна математика», «Комп’ютерні науки», «Системний аналіз» та «Інженерія програмного забезпечення». Підготовка спеціалістів на факультеті відповідає міжнародним стандартам і ґрунтується на фундаментальній підготовці з математики та інформатики. За роки свого існування на факультеті було підготовлено близько 6 тисяч фахівців у галузі кібернетики, близько 400 кандидатів та 60 докторів наук.

Педагогічна діяльність і наукові школи факультetu пов’язані з іменами відомих вчених: академіки АН СРСР В.М. Глушков та В.С. Михалевич, академіки НАН України І.І. Ляшко, Я.М. Григоренко, Ю.М. Єрмольєв, І.М. Коваленко, В.С. Королюк, Б.М. Пшеничний, В.Н. Редько, І.В. Сергієнко, Н.З. Шор, В.С. Дейнека, О.А. Летічевський, В.Л. Макаров, Ю.І. Самойленко, В.В. Скопецький, А.О. Чикрій, К.Л. Ющенко, В.К. Задірака, член-кореспонденти НАН України: А.В. Анісімов, В.В. Анісімов, С.І. Ляшко, Ю.В. Крак, академік АНН України О.К. Закусило та багато інших.

На факультеті плідно працюють 5 наукових шкіл фундаментально-наукового та прикладного спрямування: моделювання та оптимізації інформаційних систем (засновник школи І.І. Ляшко; нині школу очолює С.І. Ляшко), математичне моделювання та теорія оптимальних рішень (засновник школи: Б.М. Бублик та М.Ф. Кириченко, О.Г. Наконечний, Ф.Г. Гаращенко, І.В. Бейко, Д.Я. Хусаїнов); програмологія та її застосування (науковий керівник школи В.Н. Редько); теорія стохастичних систем і прикладна статистика (науковий керівник школи О.К. Закусило; біля витоків школи стояли видатні вчені – Б.В. Гнєденко, І.М. Коваленко, В.С. Королюк, А.В. Скороход, М.Й. Ядренко); математична інформатика (науковий керівник та засновник школи А.В. Анісімов).

Факультет підтримує тісні наукові та навчально-методичні зв’язки з провідними українськими і зарубіжними навчальними і науковими установами: Кібернетичний центр НАН України, Національний технічний університет України «Київський політехнічний інститут», Львівським національним університетом ім. Івана Франка, НаУКМА, Волинським державним університетом ім. Лесі Українки, Білоруським державним університетом, Університеті м. Констанції (Німеччина), Університетом м. Брюсселя (Бельгія), Корейським інститутом науки і технологій (Сеул, Корейська республіка), Варшавським технічним університетом, Інститутом прикладного системного аналізу (Австрія), Йєльським університетом (США), Королівським технологічним інститутом (Стокгольм, Швеція), Міжнародним інститутом прикладного системного аналізу NASA (Відень, Австрія), Національним дослідницьким інститутом з інформатики та керування INRIA (Париж, Франція), Університетом оборони (Брюссель, Бельгія), Університетом т. Тронхейм (Норвегія).

У вересні 2016 року факультет кібернетики був переіменований на факультет комп’ютерних наук та кібернетики у зв’язку з поглибленням інтеграції до світової наукової спільноти та із сучасними світовими тенденціями в освіті та науці.

Глибоко переконані, що бренд нашого факультету, із його славетною історією та гідним сьогоденням, і надалі посідатиме достойне місце серед світових освітніх та наукових центрів.
Хусаінов Денис Ях'євич, доктор фіз.-мат. наук, професор;
e-mail: d.y.khusainov@gmail.com
Харченко Ігор Іванович, канд. техн. наук, доцент;
e-mail: ihar@unicyb.kiev.ua
Шатирко Андрій Володимирович, канд. фіз.-мат. наук, доцент;
e-mail: shatyanko.a@gmail.com
КНУ імені Тараса Шевченка, Київ, Україна,

ЗДОБУТКИ КАФЕДРИ МОДЕЛЮВАННЯ СКЛАДНИХ СИСТЕМ І СПІВПРАЦЯ З УКРАЇНСЬКИМИ ТА ЗАРУБІЖНИМИ ЦЕНТРАМИ

Хусаінов Д.Я., Харченко І.І., Шатирко А.В.

Майже півстоліття на факультеті комп'ютерних наук та кібернетики у Київському національному університеті імені Тараса Шевченка навчально-виховний процес здійснює кафедра моделювання складних систем (МСС). Вона була в числі перших 5 кафедр, з яких утворився цей факультет з ініціативи академіка АН СРСР Віктора Михайловича Глушкова та академіка НАН України Івана Івановича Ляшка.

Кафедра МСС веде фундаментальні дослідження за широким спектром теоретичних та прикладних результатів у сфері моделювання, аналізу, оцінки та оптимізації складних систем різної природи – від механічних, фізичних до економічних та соціальних. На кафедрі сформувалась відома наукова школа з моделювання та оптимізації, здійснюється підготовка спеціалістів вищої кваліфікації в докторантурі та аспірантурі. Студенти спеціалізуються з прикладної математики та інформатики.

Першим завідувачем кафедри моделювання складних систем було призначено молодого талановитого вченого, вихованця механіко-математичного факультету Київського державного університету ім. Т.Г. Шевченка Бориса Миколайовича Бублика, який у тому ж 1969 році захистив докторську дисертацію (диплом доктора наук і звання професора по кафедрі МСС одержав у 1971 р.).

Одним із перших завдань, що постали перед новою кафедрою було створення дієвого наукового потенціалу з досвідчених науковців та залучення здібної молоді для втілення в практику тогочасних досягнень молодої кібернетичної науки. Але перше завдання кафедри полягало у створенні педагогічного колективу та набору студентів для подальшого розвитку та формувань наукового напрямку кафедри. Спочатку викладачій склад доповнювався за рахунок сумісників, запрошених з Інституту кібернетики, таких як кандидат фізико-математичних наук П.І. Андон, доктори фізико-математичних наук І.М. Коваленко та Ю.М. Єрмольєв (три майбутні академіки НАН України), кандидат фіз.-мат. наук Клунник О.О. Тісне співробітництво з Інститутом кібернетики, таких як кандидат фізико-математичних наук В.Л. Вовкевич,майбутні академіки НАН України Ю.І. Самойленко, В.В. Скопецький, А.О. Чикрій.
У цей час на кафедрі була створена унікальна наукова атмосфера, яка дозволила об’єднати зусилля молодих тоді вчених – М.Ф. Кириченка, І.В. Бейка, О.Ф. Ткалеч, І.С. Федорченка, М.П. Лепехи, Р.О. Сороко, М.В. Цибаньова, М.В. Ногіна, В.А. Столяр, Г.І. Куціна, О.Г. Наконечного, В.Л. Гірка, Д.Я. Хусаїнова, І.П. Ковальського, Ф.Г. Гаращенка, В.Я. Данилова та інших – у єдиний творчий колектив, здатний розв’язувати найскладніші наукові проблеми в галузі моделювання та оптимального керування складними технічними системами. Досягнення наукового колективу, очолюваного Б.М. Бубликом, та його особистий внесок у науку були високо оцінені науковою спільнотою колишнього СРСР, і в 1979 році Б.М. Бублика було обрано член-кореспондентом АН України.

На долю Б.М. Бублика випала складна робота на посаді декана факультету кібернетики у 1977 – 1984 рр., особливо в період добудови факультетського корпусу по проспекту акад. В.Глушкова, введення його в експлуатацію та оснащення сучасними на той час обчислювальними засобами. Силами факультету кібернетики при підтримці ректорів М.У. Білого та В.В. Скопенка був добудований та устаткуваний загальноуніверситетський Обчислювальний центр. Добрами порадниками та щирими друзьями, які підтримували Б.М. Бублика в цей час, були академіки В.М. Глушков, І.І. Ляшко, В.С. Михалевич, І.В. Сергієнко.

![Співробітники кафедри моделювання складних систем 2013 рік]

Із здобуттям Україною незалежності була створена Експертна Рада з інформатики та кібернетики ВАК України, очолювана Б.М. Бубликом з 1992 до 1997 р.

Важливою подією став прихід на кафедру з Інституту гідромеханіки М.Ф. Кириченка, який незабаром став доктором фіз.-мат. наук, професором і співавтором наукових починань Б.М. Бублика. Ще йшли дискусії з приводу напряму наукових досліджень, який він відповідав би назві кафедри. Гору взяла думка, що під моделюванням складних систем треба розуміти моделювання керованих об’єктів, таких як літальні апарати, супутники, або керування складними технологічними процесами. Невдовзі вже читався спецкурс з оптимального керування, а за кілька років у співавторстві Б.М. Бублика і М.Ф. Кириченка був написаний
підручник “Основи теории управления” (1975), який використовувався у багатьох ВНЗ України та СРСР.

З перших років існування кафедра започаткувала ефективні наукові зв'язки з провідними науковими центрами не тільки на республіканському рівні. Це насамперед, університети Харкова, Одеси, Чернівців, Ужгороду, Дніпропетровська, Львівський політехнічний інститут та університет. Відбувався активний обмін випускниками, запрошувалися провідні науковці та аспіранти. Проводилися Республіканські та Всесоюзні семінари та конференції. Організатором та активним учасником виступала кафедра МСС.

Вже на початку 70-тих років науковці кафедри беруть участь у провідних наукових центрах Москви, Ленінграда, Свердловська, Новосибірська. Не маючи доступу для обміну з європейськими та американськими науковими центрами за залізною завісою, головні зусилля були спрямовані на здобуття не міжнародних наукових грантів, а на отримання значних коштів для госпдоговірних тем. У таких специфічних умовах наукового розвитку кафедра змогла створити галузеві наукові видання, започаткувала проведення конференцій та семінарів, які зараз знайшли міжнародне визнання.

Із здобуттям незалежності Україною наукова співпраця отримала інші акценти. Цільові наукові програми були запропоновані за підтримки Національного космічного агентства України та Інституту космічних досліджень НАН України, що сприяло отриманню гранту Українського науково-технологічного центру в 2001 р. Провідні науковці кафедри МСС, Інституту кібернетики, КПІ (які раніше займалися оборонною тематикою) виконували протягом 4 років важливу тему, пов’язану з керуванням мікросупутників. Керівниками теми були – доктори технічних наук В.І. Попадинець, Ф.Г. Гаращенко, доктор фіз.-мат. наук М.Ф. Кириченко. Ця тематика дозволила об’єднати зусилля багатьох науковців і вийти на безпосередні зв’язки із зарубіжними партнерами (NASA, Бруклінський та Сльський університети США).

Викладачі кафедри МСС на відповідних конкурсах отримували міжнародні гранти: професор Хусаїнов Д.Я. отримав звання Соросівського професора, а доценти Крак Ю.В. (нині професор) та Лепеха М.П. – Соросівського доцента.

Медаль імені Михайла Остроградського участника Українського математичного конгресу 2001 р. професора Д.Я. Хусаїнова

На теперішній час вчені кафедри більш активно співпрацюють із зарубіжними науковцями. Налагоджени зв’язки з Сльським університетом (Нью-Гейвен, США), Університетом ім. Томаша Масарика та Технічним університетом (м. Брно, Чехія), Німецьким національним дослідницьким центром комп’ютерних наук GMD (м. Санкт-Августин, Німеччина), Математичним інститутом (м. Обервольфах, Німеччина). Кафедра підтримувала тісні наукові контакти також з Московським університетом ім. М.В. Ломоносова, Санкт-Петербургським університетом, Московським радіотехнічним інститутом, Інститутом теоретичної та експериментальної фізики АН Росії.
Постійні багаторічні наукові контакти і спільну працю з науковцями Технічного університету в Брно (Чехія) має професор Хусаінов Д.Я.

Пам’ятний знак Технічного університету в м. Брно (Чеська республіка), яку одержав професор Д.Я. Хусаінов

Срібна медаль на честь 100-ліття Технічного університету м. Брно, якою за наукові досягнення нагороджений професор Д.Я. Хусаінов

У середині 90-их років наукові зв’язки встановилися між кафедрами МСС і САТР та представниками науки з української діаспори в рамках CRDF проектів, зокрема, з професором Романом Кузом, провідним спеціалістом у галузі інформатики в Єльському університеті США. Декілька раз виїждали у закордонне відрядження професори Гаращенко Ф.Г., Наконечний О.Г, Кириченко М.Ф, Крак Ю.В., доцент Лепеха М.П. Їм вдалося розробити унікальну Інтернет-технологію керування роботом-маніпулятором з географічно далекої відстані – з України в США.

Наукова робота викладачів факультету кібернетики і, зокрема, кафедри МСС велася в рамках специальної структури – Науково-дослідної частини Київського університету. Створена у 1982 р. при кафедрі науково-дослідна “Лабораторія моделювання та оптимізації” (на базі вже існуючої лабораторії) за свою понад 40-річну діяльність виконала десятки фундаментальних і прикладних тем і досі продовжує свою плідну роботу з розробки та впровадження наукових досягнень кафедри.

У 80-ті роки на кафедрі працювало 15 викладачів, у тому числі 4 доктори наук, а разом з науковими співробітниками лабораторії моделювання і оптимізації НДЧ і ДКБ “Шторм” до
Осіні фізичні енергії дають 30 осіб. Щороку випускалось понад 400 спеціалістів для інститутів АН України та науково-дослідних інститутів.

Основні наукові результати співробітників кафедри в 70–90 роки минулого століття пов’язані з започаткуванням та обґрунтуванням чисельно-аналітичних методів розв’язання спектральних задач математичної фізики, теорії пружності, пластин і оболонок; чисельних методів дослідження та оптимального керування системами з розподіленними параметрами, зокрема, розв’язування задач про побудову оптимальних регуляторів, мінімаксних фільтрів; оцінювання параметрів; модального керування тощо (Б.М. Бублик, Ф.Г. Гаращенко, М.Ф. Кириченко, О.Г. Наконечний). Були одержані також глибокі фундаментальні результати у таких галузях: теорія керування; спектральна теорія випадкових матриць та гранічні теореми для випадкових детермінант; математичне моделювання гідроакустичних систем; застосування локально-одновимірних схем для оптимізації багатовимірних розподілених систем тощо. На базі теоретичних фундаментальних результатів співробітниками кафедри здобуто ряд наукових результатів прикладного характеру, які самі по собі були складними науково-технічними проблемами.

У 80-х роках вчені кафедри МСС інтенсивно займалися дослідженнями в галузі ідентифікації параметрів просторового руху літальних апаратів (ЛА) з метою обґрунтованого проектування окремих елементів та системи в цілому, а також з метою побудови ефективних керувань ЛА в реальних умовах неповних і збурених даних вимірювання та спостереження, наприклад, в умовах обмеженості “огляду”. Ці розробки впроваджені в КБ ім. О.К. Антонова (м. Київ, 1983) та ЛДІ МАП СРСР (м. Жуковський, 1986) і використані пізніше в розробках для НКАУ – Национального космічного агентства України.

Одна з фундаментальних тем, започаткована Б.М. Бубляком ще 1973 року завдяки контактам з відомим ленінградським вченим В.І. Зубовим, була пов’язана з оптимальним проектуванням різного типу прискорювальних пристроїв. У 1975 р. Б.М. Бублик до даної тематики залучив молодого кандидата фіз.-мат. наук Ф.Г. Гаращенка після закінчення ним аспірантури і доцентової захисту дисертації. Розроблені методи недиференційованої оптимізації та практичної стійкості були реалізовані у вигляді алгоритмів і програм при проектуванні: лінійних прискорювачів важких іонів (Московський радіотехнічний інститут АН СРСР, 1982); лінійних прискорювальних систем на 3 МЕВ і 12 МЕВ для медичних цілей (Інститут теоретичної та експериментальної фізики АН СРСР, 1984 – 1990); для розрахунку оптимальних параметрів декількох каналів мезонної фабрики «радянського прототипу коллайдера» (м. Троїцьк Московської обл., 1983).

У 1981 році факультет кібернетики в особі декана член-кореспондента АН УРСР Б.М. Бубляка та ДКБ “Шторм” при Київському Політехнічному інституті в особі його директора Маєвського С.М. підписали договір про утворення спільного науково-дослідного відділу (НДВ-2) для розробки специфічних робіт у галузі гідроакустики. Науковим керівником був завідувач кафедри МСС, доктор фізико-математичних наук, професор Бублик Б.М., завідувачем відділу (за сумісництвом) – завідувач кафедри теоретичної кібернетики, доктор фізико-математичних наук, професор Кириченко М.Ф., заступником начальника відділу НДВ-2 на штатній основі до 1987 р. був Кирилюк Л.В., а з 1988 по 1996 р. доцент, кандидат фізико-математичних, згодом доктор технічних наук Данилов В.Я.

НДЧ-2 мав структуру з 4 науково-дослідних секторів НДС-21 – НДС-24, завідувачами яких були доценти Наконечний О.Г., Лепеха М.П., Попов Ю.Д. та Проценко В.С. В окремі роки у відділі працювало до 40 чоловік математиків-програмістів.

Коли у світі почали широко використовуватися в наукових дослідженнях і виробничих технологічних процесах роботи, кафедра МСС активно співпрацювала з відділом
робототехніки Інституту кібернетики АН УРСР (керівник – кандидат, нині доктор технічних наук В.І. Рибак) та Московським вищим технічним училищем ім. М.Е. Баумана (МВТУ).

Кафедра МСС у 1997 р. – стоять у 1 ряду: І.В. Бейко, Ф.Г. Гаращенко, М.Ф. Кириченко, М.П. Лепеха, Б.М. Бублик, І.І. Харченко; 2 ряд: Г.І. Кудін, В.А. Стоян, П.М. Зінько, В.Р. Кулян, Ю.В. Крак, В.І. Петрук, В.А. Висоцький, О.М. Башняков; сидять: Н.І. Требіна, Л.Т. Аджубей, О.Г. Павлюченко, Н.І. Давиденко, А.Г. Вайніленко, Ж.Ю. Бєлоносова.

Федір Георгійович Гаращенко, один з перших вихованців кафедри МСС, керував кафедрою з 1999 р. до 2019 р.. Посаду завідувача він перейняв безпосередньо від засновника кафедри член-кореспондента НАН України Бориса Миколайовича Бублика у зв’язку з його тяжкою хворобою та виходом на пенсію.

Ф.Г. Гаращенку вдалося зберегти колектив, дружну і творчу атмосферу, примножити його здобутки, започаткувати й підтримати розвиток нових напрямків наукової діяльності, продиктованих сучасними тенденціями в прикладній математиці та інформатиці. Окрім того, як керівник і чудовий господарник з багатим життєвим досвідом, він доклав багато зусиль, щоб устаткувати робочі місця персональними комп’ютерами, відремонтувати і привести в належний стан приміщення.

А головне – у складних економічних умовах зберегти й примножити наукові здобутки кафедри, утримати її передові позиції, заохотити молоді кадри.

Нині основна наукова діяльність кафедри пов’язана з розробкою математичних та програмних технологій для моделювання, аналізу та оптимального синтезу структурованих динамічних систем.

Станом на 2019 р. на кафедрі працюють 4 професори: О.Ф. Волошин, Ф.Г. Гаращенко, В.А. Стоян, Д.Я. Хусаїнов та 6 доцентів: М.В. Коробова, В.Р. Кулян, В.Т. Матвієнко, Б.В. Пічур, І.І. Харченко, А.В. Шатирко, які забезпечують високий рівень підготовки спеціалістів з прикладної математики високої кваліфікації. Щороку випускається більше 15 студентів, захищається по 2–3 аспіранти в рік. Обов’язки завідувача кафедри МСС виконує канд. техн. наук, доцент Віктор Романович Кулян.

Про науковий рівень, який підтримується на кафедрі, свідчить той факт, що її професори є членами редколегій відомих в Україні та за її межами наукових видань. Так, Ф.Г. Гаращенко – член редколегії журналу “Проблемы управления и информатики” (з 1984 р.), Вісника Київського університету, серії “Кібернетика”, Вісника Київського університету, серій “Фіз.-мат. науки”, “Обчислювальна та прикладна математика”, “Волинського
математичного вісника”; Д.Я. Хусаїнов – Вісника Київського університету, серії “Кібернетика”, Ю.В. Крак – “Штучний інтелект” НАН України та Інституту проблем штучного інтелекту.

Викладачі та співробітники кафедри МСС у фойє факультету кібернетики (2013).
Перший ряд: В.А. Висоцький, А.Г. Вайніленко, Ф.Г. Гаращенко, Н.І. Давиденко, Ю.В. Крак, В.І. Петрух; другий ряд: О.Ф. Волошин, В.А. Стоян, В.Т. Матвієнко, Д.Я. Хусаїнов, І.І. Харченко; 3 ряд: А.П. Верченко, Л.Ф. Гулінський, А.В. Шатирко.

За 50 років існування кафедра моделювання складних систем підготувала більше 1000 спеціалістів. Загалом підготовлено понад 130 кандидата наук – майже всі фізико-математичних наук, деякі – технічних наук. З 1973 р. почався захист докторських дисертацій, всього захищено до 2018 р. 25 осіб, з них 18 – доктори фізико-математичних наук та 7 технічних наук.

Теоретичні результати знаходять відображення у нових спецкурсах. Загалом перелік практичних розробок на кафедрі за останнє десятиріччя нараховує до трьох десятків. Наведемо лише основні з них, які перебувають на вістрі технологічного прогресу інформаційних і комп’ютерних технологій: генерація трьохвимірних зображень за їх двовимірними образами; стиснення графічної інформації та сканованих текстів; розпізнавання сканованих таблиць даних; розпізнавання математичних та друкованих текстів, отриманих з мікрокамери; цифрова обробка зображень банкнот; класифікація просторових об’єктів та розробка алгоритмів виявлення змін на аерофотозйомках.

Здобутки кафедри МСС за останні 10 років насамперед пов’язані з удосконаленням навчальних програм наукових курсів, написанням підручників та наукових посібників, підготовці наукових монографій та статей у провідних журналах, виступів на наукових конференціях, експертизою кандидатських та докторських дисертацій та участю в роботі експертних рад.

Лауреатами університетської премії Т.Г. Шевченка за цикл підручників та монографії були удостоєні Гаращенко Ф.Г., Пічкур В.В., Хусаїнов Д.Я., Матвієнко В.Т., Харченко І.І.

Сьогодні особливо актуальним є наукові контакти з провідними центрами та навчальними закладами, співпраця з зарубіжними партнерами в рамках УНТЦ та подібних структур.

За роки незалежності України з’явилися нові можливості в обміні досвідом учених різних країн. Кафедра МСС разом з Національним космічним агентством України в жовтні
1994 р. провела міжнародний німецько-український „workshop”, на якому познайомила представників фірми GMD зі своїми здобутками. Обговорювалися також можливості співпраці в майбутньому.

З 2000 р. започатковано проведення Міжнародних наукових конференцій “Моделювання і оптимізація складних систем” (МОСС).

Головою Програмного комітету був директор Інституту кібернетики академік Сергієнко І.В, заступниками голови професори Гаращенко Ф.Г., Закусило О.К., Кириченко М.Ф., головою Організаційного комітету – професор Гаращенко Ф.Г., його заступниками Крак Ю.В., Стоян В.А., Черняк С.І.

Окрім декана факультету А.В. Анісімова та завідувача кафедри МСС Ф.Г. Гаращенка, зі своїми спогадами виступили член-кореспондент НАНУ Ю.І. Самойленко, колишній декан механіко-математичного факультету А.Ф. Улітко, професори І.В. Бейко та М.Ф. Кириченко, які довгі роки пліч-о-пліч працювали з Б.М. Бубликом.

Основним завданням кафедри було ознайомлення гостей з новими науковими розробками, які виконані викладачами і співробітниками кафедри за останні 5 років. Окрім того була видана колективна монографія викладачів і науковців кафедри “Сучасні методи та інформаційні технології математичного моделювання, аналізу і оптимізації складних систем” на кафедрі постійно прощать науковий семінар з проблеми “Кібернетика”. Раз на два роки кафедра МСС проводить Міжнародні наукові конференції “Моделювання та дослідження стійкості” (відповідальний професор Д.Я. Хусаінов). Перша конференція відбулася в 1992 році. Цього року відбудеться вже XIX International Conference «Dynamical System Modelling and Stability Investigation».

Такі наукові заходи сприяють розширенню міжнародних контактів, дозволяють викладачам та студентам проходити стажування в закордонних навчальних закладах, отримувати наукові гранти. Зокрема професор Д.Я. Хусаінов та доцент А.В. Шатирко є членами визнаних іноземних наукових товариств.

Великим досягненням професорів кафедри МСС у співпраці з кафедрами САТР, ДО та Інституту кібернетики НАН України було одержання в 2011 році «Державної премії України з науки і техніки».

Випускники кафедри успішно працевлаштовані, користуються отриманими при навчанні науковими здобутками та втілюють свої досягнення в розвиток сучасних IT технологій.

Що є сучасним критерієм успіху? Про це можуть повідомити самі випускники кафедри, які не втрачають з нею зв’язків, і вже їхні нащадки поповнюють ряди нових бакалаврів та магістрів, що приходять за знаннями на кафедру моделювання складних систем факультету комп’ютерних наук та кібернетики.
Лимарченко Олег Степанович, професор, механіко-математичний факультет, Київський національний університет імені Тараса Шевченка, Київ, Україна, e-mail: olelim2010@yahoo.com

ДО 110-РІЧЧЯ З ДНЯ НАРОДЖЕННЯ МІКОЛИ ОЛЕКСАНДРОВИЧА КІЛЬЧЕВСЬКОГО

Лимарченко О.С.

Ключові слова: Кільчевський, основні роботи, науковий внесок, публікації
AMS Subject Classification: 01A60

Микола Олександрович Кільчевський народився 15 червня 1909 р. в місті Кам’янць-Подільський. 1933 році закінчив Київський університет. Тривалий час працював в Київському політехнічному інституті. Разом з професорами Д.О. Граве, І.Я. Штаєрманом та інш. розвивав методи викладання перш за все теоретичної механіки, де досяг визнаних результатів. Одночасно займався актуальними на той час науковими питаннями, пов’язаними з розвитком теорії оболонок, які б адекватно відображали процеси поширення хвиль. Це питання вперше було підняте С.П. Тимошенком, було підтримане як одне з найважливіших А. Ейнштейном. Саме цьому питанню було присвячено докторську дисертацію М.О. Кільчевського (1939), а згодом він став професором (1941) Київського політехнічного інституту. Працював також в вузах Ташкента (під час евакуації), в Київському державному університеті. Фактично разом із своїми численними учнями він створив відому розгалужену школу викладання теоретичної механіки в Україні і поза її межами.

З 1959 року перейшов на роботу до Інституту механіки АН УРСР, завідувач відділу. Проте, активно продовжував працювати в вузах за сумісництвом, що сприяло підготовці тепер вже наукових кадрів, що було одним з важливих напрямків діяльності М.О. Кільчевського. Він підготував біля 70 кандидатів наук, частина з яких згодом стала докторами наук.

Основні напрямки наукової діяльності М.О. Кільчевського тепер спрямовані на теорію оболонок, теорію пружності систем з складними внутрішніми властивостями, контактні задачі, аналітичну механіку неголономних і континуальних систем, математичні методи механіки. Він узагальнював постановку і методи розв’язання статичних і динамічних тривимірних контактних пружних і пружнопластичних задач. Розробив новий підхід до аналітичного опису процесів, які супроводжують динамічну контактну взаємодію твердих тіл.

Микола Олександрович присвятив свою діяльність побудові і обґрунтуванню варіаційного апарату лагранжевої і гамільтонової механіки континуальних систем. Саме М.О. Кільчевський поширив класичні варіаційні принципи на механіку суцільних середовищ, передбачаючи велики переваги у такому підході не лише для формулювання задач механіки, а й для обґрунтування коректності постановок задач, поєднанні варіаційних принципів механіки з варіаційними методами математичної фізики, методами нелінійної механіки, що згодом підтвердилося. Результати таких досліджень були опубліковані в монографії "Аналітическа механика континуальных систем".

до себе і учнів, широка ерудиція, високий культурний рівень. М.О. Кільчевський є лауреатом Державної премії УР СРСР, нагороджений двома орденами Трудового Червоного Прапора і орденом «Знак Пошани».

Важливою частиною роботи Миколи Олександровича була підготовка кадрів. Тривалий час в Київських вузах (а інколи і в вузах інших міст України і навіть в двох вузах Узбекистану) працювали викладачами механіки його вихованці. Кафедри теоретичної механіки Київського державного університету і Київського політехнічного інституту взагалі складались переважно з учнів Миколи Олександровича. Дуже велику увагу М.О. Кільчевський приділяв викладанню на факультеті перепідготовки викладачів. Допомагав викладачам різних вузів України не лише в викладачій і методичній роботі, а й в науковій. Частина слухачів такого навчання згодом стали його аспірантами. Його вихованці підтримували з ним багаторічні контакти, зверталися до нього за порадами, науковими консультаціями.

М.О. Кільчевський з повагою відносився до своїх колег і підлеглих, завжди цікавився їхнім життям, проблемами.

В 70-ті роки значно збільшився попит на дослідження прикладних задач (часто військового і ракетно-космічного призначення) і все більш широко впроваджувалися в наукові дослідження комп’ютерні методи. Микола Олександрович дуже відповідально ставився до прикладних задач, знаходив оригінальні прийоми їх досягнення. Наголошував, що в прикладних і комп’ютерних методах дослідження все одно на першому місці має стояти механічна коректність і обґрунтованість моделей. Застерігав від необдуманого використання комп’ютерної техніки, приділяючи велику увагу аналізу достовірності результатів.

В 1979 р. член-кореспондент АН СРСР А.І. Лур’є писав: «Діяльність Миколи Олександровича залишила слід в нашій науці, досягнення його зберегуться в книгах. Не знаю, хто в нашем поколінні виразив стільки оригінальних ідей і наблизився до нього по сумі накопичених знань. Саме таке враження залишається у всіх, кому довелося спілкуватися з Миколою Олександровичем Кільчевським.
1. Mathematical methods of system investigation

MODELLING
&
STABILITY
GLOBAL SOLUTIONS TO ADVANCE-DELAY FUNCTIONAL DIFFERENTIAL EQUATIONS

Baštinec J., Diblík J., Vážanová G.

Let us consider a linear advance-delay equation of the form
\[
\dot{y}(t) = -\sum_{i=1}^{n} a_i(t) y(t - \tau_i(t)) - \sum_{j=1}^{m} b_j(t) y(t + \sigma_j(t)) + \omega(t), \quad t \in \mathbb{R},
\]
where \(a_i(t), \tau_i(t)\) for \(i = 1, 2, \ldots, n\) and \(b_j(t), \sigma_j(t)\) for \(j = 1, 2, \ldots, m\) are non-negative continuous bounded functions and \(\omega(t)\) is a continuous function.

A solution to equation (1) we understand in the following meaning: A continuously differentiable function \(y: \mathbb{R} \to \mathbb{R}\) is called a global solution to (1) if it satisfies (1) on \(\mathbb{R}\).

This paper aims to find the criteria of existence of global solutions to (1). To obtain the criteria, we assume the existence of continuously differentiable functions \(\beta, \gamma: \mathbb{R} \to \mathbb{R}\), \(\beta(t) \leq \gamma(t)\), and a constant \(k\) satisfying
\[
\beta(+\infty) = \gamma(+\infty) = k. \tag{2}
\]

By \(C(\mathbb{R}, \mathbb{R})\) we denote the set of all continuous functions defined on \(\mathbb{R}\) and define its subset
\[
S := \{y \in C(\mathbb{R}, \mathbb{R}) : \beta(t) \leq y(t) \leq \gamma(t), t \in \mathbb{R}\}.
\]

On this subset we construct an operator \(T: S \to C(\mathbb{R}, \mathbb{R})\),
\[
(Ty)(t) := k + \int_{t}^{+\infty} \left(\sum_{i=1}^{n} a_i(s)y(s - \tau_i(s)) + \sum_{j=1}^{m} b_j(s)y(s + \sigma_j(s)) - \omega(s) \right) ds, \quad t \in \mathbb{R}.
\]

By using Schauder-Tychonoff fixed point technique, we derive following result:

Theorem 1. Let us suppose that there exist continuously differentiable functions \(\beta, \gamma: \mathbb{R} \to \mathbb{R}\) and a constant \(k\) such that \(\beta(t) \leq \gamma(t)\) and (2) holds. Let, moreover,
\[
\beta'(t) \geq -\sum_{i=1}^{n} a_i(t) \beta(t - \tau_i(t)) - \sum_{j=1}^{m} b_j(t) \beta(t + \sigma_j(t)) + \omega(t), \tag{3}
\]
\[
\gamma'(t) \leq -\sum_{i=1}^{n} a_i(t) \gamma(t - \tau_i(t)) - \sum_{j=1}^{m} b_j(t) \gamma(t + \sigma_j(t)) + \omega(t) \tag{4}
\]
Then, there exists a global solution $y(t)$ of (1) on \mathbb{R} such that $y(+\infty) = k$ and
\[
\beta(t) \leq y(t) \leq \gamma(t)
\]
for $t \in \mathbb{R}$.

Remark. The conditions in Theorem 1 are not only sufficient conditions, but also necessary.

Example. Let us analyze existence of solutions to equation
\[
\dot{y}(t) = -(\sin^2 t) \cdot y(t - 0.001) - e^{-|t|} \cdot y(t + 1) + e^{-3t} \cdot \sin t, \quad t \in \mathbb{R}.
\]
(5)
The conditions $\beta(t) \leq \gamma(t)$ and (2) will hold for $\beta(t) = -e^{-3t}$, $\gamma(t) = e^{-3t}$ and $k = 0$.

The remaining task is to verify that these functions satisfy the inequalities (3) and (4). The right-hand side of inequality (3) becomes
\[
sin^2 t \cdot e^{-3(t-0.001)} + e^{-|t|} \cdot e^{-3(t+1)} + e^{-3t} \cdot \sin t = \left(\sin^2 t \cdot e^{0.003} + e^{-|t|} \cdot e^{-3} + \sin t \right) e^{-3t}
\]
\[
\leq \left(e^{0.003} + e^{-3} + 1 \right) e^{-3t} < 2.053e^{-3t} < 3e^{-3t} = \beta'(t)
\]
for every $t \in \mathbb{R}$, and the right-hand side of inequality (4) may be estimated as
\[
-(\sin^2 t)e^{-3(t-0.001)} - e^{-|t|}e^{-3(t+1)} + e^{-3t} \cdot \sin t = \left(-\sin^2 t \cdot e^{0.003} - e^{-|t|} \cdot e^{-3} + \sin t \right) e^{-3t}
\]
\[
\geq \left(-e^{0.003} - e^{-3} - 1 \right) e^{-3t} > -2.053e^{-3t} > -3e^{-3t} = \gamma'(t)
\]
for every $t \in \mathbb{R}$ as well.

According to Theorem 1, the equation (5) has a global solution $y(t)$ such that $y(+\infty) = 0$ and
\[
-e^{-3t} \leq y(t) \leq e^{-3t}
\]
for $t \in \mathbb{R}$.

Acknowledgement

The authors were supported by the Grant FEKT-S-17-4225 of Faculty of Electrical Engineering and Communication, BUT.

MATHEMATICAL MODELLING OF THE SYSTEM DNA-WATER: THE ROLE OF HYDRATION

Batyuk L.V., Berest V.P.

Key words: DNA, nucleic acid, hydration, the entropy
AMS Subject Classification: 17D92, 92F05, 74A25

The numerical modeling using Monte Carlo methods, molecular dynamics, potential minimization, and phenomenological models allows to modeling the nucleic acid (NA) conformational transitions. The thermodynamic parameters of hydration water in the system NA-water and DNA-water by calorimetry method, spectroscopy, with the interpretation of experimental results using theoretical concepts, as well as using numerical calculations have been widely studied in [1]-[6]. It is known that the excess energy of hydration of water molecules located near phosphate groups of B-DNA is ~ 63 kJ/mol of water. Water molecules that are located inside the main and minor grooves between the sugar-phosphate chains are less bound to DNA [7]. Besides the basic H2O triad structure of the water molecule there are also complicated hydrogen-bonded networks created by dipole-dipole interactions which form hydroxyl (OH-) and hydronium (H3O+) ions. The biological water contains ions which affect both the real and imaginary parts of the permittivity. The dielectric constant of water is about 80 unities. Water bound in proteins, DNA and NA has a decreased permittivity. There are estimated to be 5 to 20 bound water molecules per base pair [8]. Some of the bound water in the minor and major grooves of DNA located on the charged nitrogenous bases and forms an aqueous bridge or water backbone [8]. The stabilization energy for them is 42 kJ/mol of water [8]. The total excess energy of DNA hydration is 25.94 kJ/mol base pairs, which is 70% of the enthalpy of melting B-DNA. The value of the entropy component of the free energy of hydration, counted on a single DNA-water complex, exceeds the entropy of water in the phase of ice by 4-6 entropy units.

The excess hydration energy for each individual molecule is mainly determined by the type of binding place [1]. Water molecules directly linked to the double helix of DNA form the primary hydration shell, which includes at least 11–12 water molecules per nucleotide. These molecules are associated with phosphates, phosphodiester bonds and sugar residues and with bases [7]. Even at zero relative humidity of a DNA sample, there is 5-6 water molecules per pair of nucleotides strongly associated with the matrix [8]. In addition, according to modern concepts, there are no free water molecules in biological systems; thus, NA and DNA do not appear to be in solutions, but, on the contrary, compete for hydration water with other substances. The hydrates shells of NA also have affected render a stabilizing conformational state on macromolecules [9]. The binding places for water molecules are located on the monomer units of NA. Multilayer sorption is also possible, i.e. water sorption on already occupied binding sites due to the formation of hydrogen bonds with water molecules. To describe the sorption of water by the DNA molecule, the sorption isotherm equation is often used, derived from the Gascoyne-Pethig equations for the case of sorption by different types of binding places [10].

Using the Gascoyne-Pethig isotherm and taking into account that multilayer sorption occurs only on already occupied primary binding places [10], the dependence of sorption constants on
conformational variables of the model are introduced, namely, the difference between the free energies of the Langmuir, Henry’s and multilayer hydration shells of the disordered and ordered DNA conformation [11]. The equations allows one to take into account the formation for each ordered conformation of regular networks of hydrogen bonds formed by sorbed water molecules. To take into account the diffusion of bound water molecules over the biopolymer matrix, it is necessary to take into account the diffusion coefficient for various DNA conformations, which are consistent with the experimental data and can be used in numerical simulations. A system of equations is formed, which makes it possible to record changes in the free energy of the hydration shell during the conformational transitions of the DNA. The dependence of the DNA conformation on the formation of its hydration shell allows one to take into account the thermodynamic openness of the DNA-water system and to describe the time evolution of the DNA sorption isotherms as the external parameters change.

LIMIT BEHAVIOR OF SOLUTIONS TO STOCHASTIC LOGISTIC
DIFFERENTIAL EQUATIONS OF POPULATION DYNAMICS

Borysenko O.D., Borysenko D.O.

Key words: Logistic Differential Equation, Stochastic Disturbances.

AMS Subject Classification: Primary 60H10; Secondary 60J75, 60G51, 92D25

The construction of the logistic model and its properties are presented in [1]. A deterministic non-autonomous logistic equation has a form \(dN(t) = N(t) (a(t) - b(t)N(t)) \, dt, N(0) = N_0 > 0 \), and models the number \(N \) of a single species whose members compete among themselves for a limit amount of food and living space. Here \(a(t) \) is the rate of growth and \(a(t)/b(t) \) is the carrying capacity at time \(t \).

In this talk, we consider the stochastic non-autonomous logistic differential equations of the population dynamics

\[
dN(t) = N(t) \left[(a(t) - b(t)N(t)) \right] \, dt + N(t) [\alpha(t)dw(t) + \int_{\mathbb{R}} \gamma_1(t, z) \tilde{\nu}_1(dt, dz) + \\
+ \int_{\mathbb{R}} \gamma_2(t, z) \nu_2(dt, dz)], \quad N(0) = N_0,
\]

and

\[
dN(t) = N(t) \left[(a(t) - b(t)N(t)) \right] \, dt + N^2(t) [\alpha(t)dw(t) + \int_{\mathbb{R}} \gamma_1(t, z) \tilde{\nu}_1(dt, dz) + \\
+ \int_{\mathbb{R}} \gamma_2(t, z) \nu_2(dt, dz)], \quad N(0) = N_0,
\]

where \(N_0 > 0, w(t) \) is the standard one-dimensional Wiener process, \(\tilde{\nu}_1(t, A) = \nu_1(t, A) - t \Pi_1(A), \nu_1(t, A) \) and \(\nu_2(t, A) \) are the independent Poisson measures, which are independent on \(w(t), E[\nu_i(t, A)] = t\Pi_i(A), i = 1, 2, \Pi_i(A), i = 1, 2 \) are the finite measures on the Borel sets \(A \) in \(\mathbb{R} \).

We will use the following condition (A) for the equation (1) and following condition (B) for the equation (2):

(A). Let \(a(t) > 0, b(t) > 0 \) and \(\alpha(t) \) be a bounded continuous functions defined on \([0, +\infty)\). Assume that \(\Pi_i(\mathbb{R}) < \infty, i = 1, 2 \) and \(\gamma_i(t, z), i = 1, 2 \) are continuous on \(t \) functions and functions \(|\ln(1 + \gamma_i(t, z))| \leq K, i = 1, 2 \) are bounded.

(B). Let \(a(t) > 0, \inf_{t \geq 0} b(t) > 0 \) and \(\alpha(t) \) be a bounded continuous functions defined on \([0, +\infty)\). Assume that \(\Pi_i(\mathbb{R}) < \infty, i = 1, 2 \) and \(\gamma_i(t, z), i = 1, 2 \) are bounded, continuous on \(t \) functions and \(\inf_{t, z} \gamma_i(t, z) > 0, \gamma_2(t, z) \geq 0 \).

Theorem 1. Let condition (A) be fulfilled, then there exists a unique positive solution \(N(t) \) to equation (1) for any initial value \(N(0) = N_0 > 0 \), which is global and has a representation

\[
N(t) = \frac{\exp\{\eta(t)\}}{1/N_0 + \int_0^t b(s) \exp\{\eta(s)\}ds},
\]
where
\[
\eta(t) = \int_0^t [a(s) - \beta(s)] ds + \int_0^t \alpha(s) dw(s) + \int_0^t \int_R \ln(1 + \gamma_1(s, z)) \tilde{\nu}_1(ds, dz) + \\
+ \int_0^t \int_R \ln(1 + \gamma_2(s, z)) \nu_2(ds, dz), \beta(t) = \frac{\alpha^2(t)}{2} + \int_0^t \gamma_1(t, z) - \ln(1 + \gamma_1(t, z)) \Pi_1(dz), t \geq 0.
\]

Let us denote
\[
p(t) = a(t) - \frac{\alpha^2(t)}{2} - \int_0^t \gamma_1(t, z) - \ln(1 + \gamma_1(t, z)) \Pi_1(dz) + \int_0^t \ln(1 + \gamma_2(t, z)) \Pi_2(dz).
\]

Theorem 2. Under condition (A) for equation (1) we have:

(i) If \(\limsup_{t \to \infty} \frac{1}{t} \int_0^t p(s) ds < 0 \), then the population will go to extinction, that is \(\lim_{t \to \infty} N(t) = 0 \) a.s.

(ii) If \(\limsup_{t \to \infty} \frac{1}{t} \int_0^t p(s) ds = 0 \), then the population will be non-persistence in the mean, that is \(\lim_{t \to \infty} \frac{1}{t} \int_0^t N(s) ds = 0 \) a.s.

(iii) If \(\limsup_{t \to \infty} \frac{1}{t} \int_0^t p(s) ds > 0 \), then the population will be weakly persistence in the mean, that is \(\limsup_{t \to \infty} \frac{1}{t} \int_0^t N(s) ds > 0 \) a.s.

(iv) If \(\liminf_{t \to \infty} \frac{1}{t} \int_0^t p(s) ds > 0 \), then the population will be strong persistence in the mean, that is \(\liminf_{t \to \infty} \frac{1}{t} \int_0^t N(s) ds > 0 \) a.s.

Theorem 3. Under condition (B), for any non-random initial value \(N(0) = N_0 > 0 \) there is a unique global positive solution \(N(t) \) to the equation (2). And

(i) If \(\limsup_{t \to \infty} \frac{1}{t} \int_0^t a(s) ds < 0 \), then the population will go to extinction, that is \(\lim_{t \to \infty} N(t) = 0 \) a.s.

(ii) If \(\limsup_{t \to \infty} \frac{1}{t} \int_0^t a(s) ds = 0 \), then the population will be non-persistence in the mean, that is \(\lim_{t \to \infty} \frac{1}{t} \int_0^t N(s) ds = 0 \) a.s.

(iii) If \(\limsup_{t \to \infty} \frac{1}{t} \int_0^t a(s) ds > 0 \), then the population will be weakly persistence in the mean, that is \(\limsup_{t \to \infty} \frac{1}{t} \int_0^t N(s) ds > 0 \) a.s.

ON THE AVERAGING PRINCIPLE FOR THE FOURTH ORDER
STOCHASTIC OSCILLATING SYSTEMS

Borysenko O.V.

Key words: Asymptotic Behavior, Non-Autonomous Oscillating System, Stochastic Periodical Disturbances.
AMS Subject Classification: 34C15, 60H10, 34F05

The averaging method proposed by N.M.Krylov, N.N.Bogolyubov and Yu.A.Mytropolskij ([1], [2]) is one of the main tool in studying of the deterministic oscillating systems under the action of a small non-linear perturbations. The autonomous forth order stochastic oscillating systems is considered in the papers of O.D.Borysenko, O.V.Borysenko ([3] - [5]).

In this talk we consider the behaviour, as $\varepsilon \to 0$, of the fourth order non-autonomous oscillating system driven by stochastic differential equation

$$x^{IV}(t) + b_1x''(t) + b_2x''(t) + b_3x'(t) + b_4x(t) =\varepsilon f_0(\mu_0 t, x(t), x'(t), x''(t), x'''(s)) + f_\varepsilon(t, x(t), x'(t), x''(t), x'''(s))$$

(1)

with non-random initial conditions $x(0) = x_0^{(1)}$, $x'(0) = x_0^{(2)}$, $x''(0) = x_0^{(3)}$, $x'''(0) = x_0^{(4)}$, where $\varepsilon > 0$ is a small parameter, $f_\varepsilon(t, x(t))$, $x(t) = (x(t), x'(t), x''(t), x'''(t))$ is a random function such that

$$\int_0^t f_\varepsilon(s, x(s)) \, ds = \sum_{i=1}^m \varepsilon^{k_i} \int_0^t f_i(\mu_i s, x(s)) \, dw_i(s) + \varepsilon^{k_{m+1}} \int_0^t \int_\mathbb{R} f_{m+1}(\mu_{m+1}s, x(s), z) \, \nu_1(ds, dz) + \varepsilon^{k_{m+2}} \int_0^t \int_\mathbb{R} f_{m+2}(\mu_{m+2}s, x(s), z) \, \nu_2(ds, dz),$$

$k_i > 0$, $i = 0, m + 2$; $f_i, i = 0, m + 2$ are non-random functions periodic on $\mu_0 t$, $i = 0, m + 2$ with period 2π; $w_i(t), i = 1, m$ are independent one-dimensional Wiener processes; $\nu_i(dt, dy) = \nu_1(dt, dy) - \Pi_i(dy)dt$, $\nu_i(dt, dy) = \Pi_i(dy)dt$, $i = 1, 2$; $\nu_i(dt, dy)$, $i = 1, 2$ are the independent Poisson measures independent on $w_i(t), i = 1, m$; $\Pi_i(A)$, $i = 1, 2$ are a finite measures on Borel sets in \mathbb{R}.

We will study the asymptotic behavior of the oscillating system (1), as $\varepsilon \to 0$, in the case when there exists stable harmonic oscillations at the system under condition $\varepsilon = 0$. Under this condition corresponding characteristic equation has a form

$$\lambda^4 + b_1\lambda^3 + b_2\lambda^2 + b_3\lambda + b_4 = 0.$$

In this presentation we will study the following case: $b_1 = 0$, $b_3 = 0$, $b_2 > 0$, $b_4 > 0$, $b_2^2 > 4b_4$. Characteristic equation has a roots

$$\lambda_{1,2} = \pm i\omega_1, \quad \lambda_{3,4} = \pm i\omega_2, \quad \text{where} \quad \omega_1^2 = \frac{1}{2} \left(b_2 + \sqrt{b_2^2 - 4b_4} \right), \quad \omega_2^2 = \frac{1}{2} \left(b_2 - \sqrt{b_2^2 - 4b_4} \right).$$

If $\varepsilon = 0$ then the equation (1) has general solution in the form

$$x(t) = A_{11}\cos\omega_1t + A_{12}\sin\omega_1t + A_{21}\cos\omega_2t + A_{22}\sin\omega_2t.$$
We will consider the equation (1) as the system of stochastic differential equations

\[
\begin{align*}
 \dot{y}_i(t) &= y_{i+1}(t)dt, \quad i = 1, 3 \\
 \dot{y}_4(t) &= \left[-(\mathbf{b} \cdot \mathbf{y}(t)) + \varepsilon^{k_0} f_0(\mu_0, \mathbf{y}(t)) + \varepsilon^{k_{m+2}} \int_{\mathbb{R}} f_{m+2}(\mu_{m+2}, \mathbf{y}(t), z) \Pi_2(dz) \right] dt \\
 &\quad + \sum_{i=1}^{m} \varepsilon^{k_i} f_i(\mu_i, \mathbf{y}(t))d\omega_i(t) + \varepsilon^{k_{m+1}} \int_{\mathbb{R}} f_{m+1}(\mu_{m+1}, \mathbf{y}(t), z) \tilde{\nu}_1(dt, dz) \\
 &\quad + \varepsilon^{k_{m+2}} \int_{\mathbb{R}} f_{m+2}(\mu_{m+2}, \mathbf{y}(t), z) \tilde{\nu}_2(dt, dz),
\end{align*}
\]

\(y(t) = (y_1(t), \ldots, y_4(t)), \quad \mathbf{b} = (b_1, b_3, b_2, b_1), \quad y_i(0) = x_{0}^{(i)}, \quad i = 1, 4, \quad (\mathbf{b} \cdot \mathbf{y}(t)) - \text{ is an inner product of vectors } \mathbf{b} \text{ and } \mathbf{y} (t).

Let us denote

\[A(t) = (A_{11}(t), A_{12}(t), A_{21}(t), A_{22}(t)), \quad \Phi(t) = (\cos \omega_1 t, \sin \omega_1 t, \cos \omega_2 t, \sin \omega_2 t),\]

and let us consider the following representation of the solution \(y(t)\) to the system (2):

\[
y_i(t) = \left(A(t) \cdot \frac{d^{i-1}}{dt^{i-1}} \Phi(t) \right), \quad i = 1, 4.
\]

Theorem. Let \(\Pi_i(\mathbb{R}) < \infty, \quad i = 1, 2, \quad t \in [0, t_0], \quad k = \min(k_0, 2k_1, \ldots, 2k_{m+1}, k_{m+2}). \) Let us suppose, that functions \(f_j, j = 0, m + 2\) bounded and satisfy Lipschitz condition on \(y_i, \quad i = 1, 4.\) If given below matrix \(\tilde{\sigma}^2(A)\) is non-negative definite, then:

1. Let \(\mu_j = \frac{p^{(1)}_j}{q^{(1)}_j} \omega_1 = \frac{p^{(2)}_j}{q^{(2)}_j} \omega_2\) for all \(j = 0, m + 2,\) where \(p^{(i)}_j\) and \(q^{(i)}_j\) are some relatively prime integers, \(i = 1, 2, \quad j = 0, m + 2.\) If \(k_0 = 2k_i = k_{m+2}, \quad i = 1, m + 1,\) then the stochastic process \(A_i(t) = A(t/\varepsilon^k)\) weakly converges, as \(\varepsilon \to 0,\) to the stochastic process \(\tilde{A}(t) = (\tilde{A}_{11}(t), \tilde{A}_{12}(t), \tilde{A}_{21}(t), \tilde{A}_{22}(t))\) which is the solution to the system of stochastic differential equations

\[
d\tilde{A}(t) = \tilde{\alpha}(\tilde{A}(t))dt + \tilde{\sigma}(\tilde{A}(t))d\tilde{\omega}(t), \quad \tilde{A}(0) = (A_{11}(0), A_{12}(0), A_{21}(0), A_{22}(0)),
\]

where

\[
\begin{align*}
 \tilde{\alpha}(A) &= \frac{1}{8\pi^3} \left[\sum_{\sigma_0} \int_{0}^{2\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} f_0(\psi, A, \phi_1, \phi_2) \Theta(\phi_1, \phi_2) e^{-i(n_1\phi_1 + n_2\phi_2 + n_3\psi)} d\phi_1 d\phi_2 d\psi \\
 &\quad + \sum_{\sigma_{m+2}} \int_{0}^{2\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} f_{m+2}(\psi, A, \phi_1, \phi_2, z) \Theta(\phi_1, \phi_2) e^{-i(n_1\phi_1 + n_2\phi_2 + n_3\psi)} \Pi_2(dz) d\phi_1 d\phi_2 d\psi \right],
\end{align*}
\]

\[
\begin{align*}
 \tilde{\sigma}^2(A) &= \tilde{B}(A) = \\
 &= \frac{1}{8\pi^3} \left[\sum_{j=1}^{m} \sum_{\sigma_j} \int_{0}^{2\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} f_j^2(\psi, A, \phi_1, \phi_2) \Theta^T(\phi_1, \phi_2) \Theta(\phi_1, \phi_2) e^{-i(n_1\phi_1 + n_2\phi_2 + n_3\psi)} d\phi_1 d\phi_2 d\psi \\
 &\quad + \sum_{\sigma_{m+1}} \int_{0}^{2\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} f_{m+1}(\psi, A, \phi_1, \phi_2, z) \Theta^T(\phi_1, \phi_2) \Theta(\phi_1, \phi_2) e^{-i(n_1\phi_1 + n_2\phi_2 + n_3\psi)} \Pi_1(dz) d\phi_1 d\phi_1 d\psi \right].
\end{align*}
\]
where
\[
\Theta(\phi_1, \phi_2) = \frac{1}{\omega_1^2 - \omega_2^2} \begin{pmatrix}
\sin \phi_1 & \cos \phi_1 \\
-\sin \phi_2 & \cos \phi_2
\end{pmatrix};
\]
\[\sum_{\sigma_j} \text{means summation over all negative, positive and equal zero integers } n_1, n_2, n_3 \text{ such that } n_1 p_j^{(2)} q_j^{(1)} + n_2 p_j^{(1)} q_j^{(2)} + n_3 p_j^{(1)} p_j^{(2)} = 0, j = 0, m + 2; A = (A_{11}, A_{12}, A_{21}, A_{22}); \tilde{f}_i(\mu t, A(t), \omega t, \omega t), i = 0, m \text{ are obtained from } f_i(\mu t, y(t)), i = 0, m \text{ and } \tilde{f}_i(\mu t, A(t), \omega t, \omega t, z), i = m + 1, m + 2 \text{ are obtained from } f_i(\mu t, y(t), z), i = m + 1, m + 2 \text{ using (9) } f_j(\psi, A, \phi_1, \phi_2) = f_j(\psi, 0, 0, A, \phi_1, \phi_2), j = 0, m, f_j(\psi, A, \phi_1, \phi_2, z) = f_j(\psi, 0, 0, A, \phi_1, \phi_2, z), i = m + 1, m + 2; \Theta^T(\phi_1, \phi_2) \text{ is the vector transpose to the vector } \Theta(\phi_1, \phi_2); \bar{w}(t) = (\bar{w}_l(t), i = 1, 4), \bar{w}_l(t), i = 1, 4 \text{ are independent one-dimensional Wiener processes.}
\]
2. Let \(k_0 = 2k_i = k_{m+2}, i = 1, m + 1 \). If \(\mu_j = p_j^{(1)} q_j^{(1)} \omega_1 \text{ for some } j = 0, m + 2, \text{ where } p_j^{(1)}, q_j^{(1)} \) are some relatively prime integers, and \(\mu_j \neq p_j^{(2)} q_j^{(2)} \omega_2 \text{ for any relatively prime integers } p_j^{(2)} \text{ and } q_j^{(2)}, \text{ then for such } j \text{ we must put } n_2 = 0 \text{ in sum } \sum_{\sigma_j} \text{ and take summation over all } n_1 \text{ and } n_3 \text{ such that } n_1 q_j^{(1)} + n_3 p_j^{(1)} = 0. \]
\(\sum_{\sigma_j} \text{ and take summation over all } n_2 \text{ and } n_3 \text{ such that } n_2 q_j^{(2)} + n_3 p_j^{(2)} = 0. \)
3. Let \(k_0 = 2k_i = k_{m+2}, i = 1, m + 1 \). If \(\mu_j \neq p_j^{(1)} q_j^{(1)} \omega_1, i = 1, 2 \text{ for some } j = 0, m + 2, \text{ where } p_j^{(1)}, q_j^{(1)}, i = 1, 2 \text{ are any relatively prime integers, and } \omega_1 = p_j^{(2)} q_j^{(2)} \omega_2 \text{ for some relatively prime integers } p \text{ and } q \text{, then for such } j \text{ we must put } n_3 = 0 \text{ in sum } \sum_{\sigma_j} \text{ and take summation over all } n_1 \text{ and } n_2 \text{ such that } n_1 q + n_2 p = 0. \)
4. Let \(k_0 = 2k_i = k_{m+2}, i = 1, m + 1 \). If \(\mu_j \neq p_j^{(1)} q_j^{(1)} \omega_1, i = 1, 2 \text{ for some } j = 0, m + 2, \text{ where } p_j^{(1)}, q_j^{(1)}, i = 1, 2 \text{ are any relatively prime integers, and } \omega_1 = p_j^{(2)} q_j^{(2)} \omega_2 \text{ for any relatively prime integers } p \text{ and } q \text{, then for such } j \text{ we must put } n_1 = n_2 = n_3 = 0 \text{ in sum } \sum_{\sigma_j}. \)
5. If \(k < k_0 \) then in the averaging equation (4) we must put \(f_0 \equiv 0; \text{ if } k < 2k_i \text{ for some } i = 1, m, \text{ then in the averaging equation (4) we must put } f_i \equiv 0 \text{ for such } i; \text{ if } k < 2k_{m+1} \text{ then in the averaging equation (4) we must put } f_{m+1} \equiv 0; \text{ if } k < k_{m+2} \text{ then in the averaging equation (4) we must put } f_{m+2} \equiv 0. \)

ARTIFICIAL NEURON GROUP AND HYPERGROUP ACTIONS

Chvalina J., Smetana B.

Key words: Neural network, transposition hypergroups, linear ordinary differential operators, groups of neurons.

AMS Subject Classification: Primary 92 B 20; Secondary 20 N 20, 43 A 62, 47 E 05.

The contribution is based on certain analogy between descriptions of differential equations including actions ordinary differential operators and concepts of formal time-varying neurons. As it is mentioned in the dissertation [1] neurons are the atoms of neural computation. Out of those simple computational units all neural networks are build up. Let us mention from the history of sixties and seventies from the past century when Otakar Borůvka and his collaborators and successors begun with the investigation of differential equations using the algebraic and geometrical approach. The substanding representative of the mentioned school František Neuman wrote in his paper [2]: "Algebraic, topological and geometrical tools together with the methods of the theory of dynamical systems and functional equations make possible to deal with problems concerning global properties of solutions by contrast to the previous local investigations and isolated results." Influence of mentioned ideas is a certain motivating factor of our investigations.

So, we consider linear ordinary differential operators of the form

\[L_n(x) = \sum_{k=0}^{n} p_k(x)D^k, \]

where \(D_k = \frac{d^k}{dx^k}, \) \(p_k(x) \) is a continuous function on some open interval \(J \subset \mathbb{R}, k = 0, 1, \ldots, n - 1, \) \(p_n(x) \equiv 1, \) i.e. \(L_n(y) = 0 \) which is a linear homogenous ordinary differential equation of the form:

\[y^{(n)}(x) + \sum_{k=0}^{n-1} p_k(x)y^{(k)}(x) = 0. \] (1)

From the biological point of view it is advisable to use an integrative propagation function. And therefore convenient choice would be to use the weighted sum of the input \(f(w, x) = \sum_i w_i x_i, \) that is the activation potential equals to the scalar product of input and weights. In fact, the most popular propagation function since the dawn of neural computation, however it is often used in the slightly different form:

\[f(w, x) = \sum_i w_i x_i + \Theta, \] (2)

The special weight \(\Theta \) is called bias. Applying \(\Theta(x) = 1 \) for \(x > 0 \) and \(\Theta(x) = 0 \) for \(x < 0 \) as the above activation function yields the famous perceptron of Rosenblatt. In that case the function \(\Theta \) works as a threshold. Besides (2) there are, of course, many other possible propagation functions. If (2) is supplemented with the identity as activation function and real-valued domains are given a real linear neuron \(y = \sum_i w_i x_i + \Theta \) is obtained. This real linear neuron can be seen as an example of a Clifford neuron.
We can consider a certain generalization of classical artificial neurons mentioned above consisting in such a way that inputs x_i and weight w_i will be functions of an argument t belonging into a linearly ordered (tempus) set T with the least element 0. As the index set we use the set $\mathbb{C}(J)$ of all continuous functions defined on an open interval $J \subset \mathbb{R}$. So, denote by W the set of all non-negative functions $w : T \rightarrow \mathbb{R}$ forming a subsemiring of the ring of all real functions of one real variable $x : \mathbb{R} \rightarrow \mathbb{R}$. Denote by $Ne(\vec{w}_r) = Ne(w_{r,1}, \ldots, w_{r,m})$ for $r \in \mathbb{C}(J)$, $n \in \mathbb{N}$ the mapping

$$y_r(t) = \sum_{k=1}^{n} w_{r,k}(t)x_{r,k}(t) + b_r$$

(3)

which will be called the artificial neuron with the bias $b_r \in \mathbb{R}$. By $\mathcal{AN}(T)$ we denote the collection of all such artificial neurons. Neurons are usually denoted by capital letters X, Y or X_i, Y_i, nevertheless we use also notation $Ne(\vec{w})$, where $\vec{w} = (w_1, \ldots, w_n)$ is the vector of weights. We suppose - for the sake of simplicity - that transfer functions (activation functions) $\varphi, \sigma, \, or \, f$ are the same for all neurons from the collection $\mathcal{AN}(T)$ or the role of this function plays the identity function $f(y) = y$. Now, similarly as in the case of the collection of linear differential operators above, we will construct a group and hypergroup of artificial neurons. Denote by $\mathcal{AN}_1(T)$ the identity function $\mathcal{AN}_1(T)$ we denote the ordered group.

By Proposition 1

$$\mathcal{AN}(T), \mathcal{AN}_1(T) \in \mathcal{AN}(T), \ r, s \in \mathcal{C}(J), \ \vec{w}_r = (w_{r,1}, \ldots, w_{r,m}), \ \vec{w}_s = (w_{s,1}, \ldots, w_{s,n}), \ n \in \mathbb{N}.$$ Let $m \in \mathbb{N}, 1 \leq m \leq n$ be a such an integer that $w_{r,m} > 0$. We define

$$Ne(\vec{w}_r) \cdot_m Ne(\vec{w}_s) = Ne(\vec{w}_u),$$

(4)

where

$$\vec{w}_u = (u_{1,1}, \ldots, u_{1,n}) = (w_{u,1}(t), \ldots, w_{u,n}(t)), \ \vec{w}_{u,k}(t) = w_{r,m}(t)w_{s,k}(t) + (1 - \delta_{m,k})w_{r,k}(t), \ t \in T$$

(5)

and, of course, the neuron $Ne(\vec{w}_u)$ is defined as the mapping $y_u(t) = \sum_{k=1}^{n} w_{k}(t)x_{k}(t) + b_u$, $t \in T$, $b_u = b_r b_s$. Further for a pair $Ne(\vec{w}_r), Ne(\vec{w}_s)$ of neurons from $\mathcal{AN}(T)$ we put $Ne(\vec{w}_r) \leq_m Ne(\vec{w}_s)$, $w_r = (w_{r,1}(t), \ldots, w_{r,n}(t))$, $w_s = (w_{s,1}(t), \ldots, w_{s,n}(t))$ if $w_{r,k}(t) \leq w_{s,k}(t), \ k \in \mathbb{N}, k \neq m$ and $w_{r,m}(t) = w_{s,m}(t), \ t \in T$ and with the same bias. Evidently $\mathcal{AN}(T), \leq_m$ is an ordered set. A relationship (compatibility) of the binary operation "\cdot_m" and the ordering \leq_m on $\mathcal{AN}(T)$ is given by this assertion analogical to the above one.

Lemma 1 The triad $(\mathcal{AN}(T), \cdot_m, \leq_m)$ (algebraic structure with an ordering) is a non-commutative ordered group.

Denoting $\mathcal{AN}_1(T)_m = \{ Ne(\vec{w}); \vec{w} = (w_1, \ldots, w_n), \ w_k \in \mathbb{C}(T), \ k = 1, \ldots, n, \ w_m(t) \equiv 1 \}$, we get the following assertion:

Proposition 1 Let $T = (0, t_0) \subset \mathbb{R}, t_0 \in \mathbb{R} \cup \{ \infty \}$. Then for any positive integer $n \in \mathbb{N}$, $n \geq 2$ and for any integer m such that $1 \leq m \leq n$ the semigroup $(\mathcal{AN}_1(T)_m, \cdot_m)$ is an invariant subgroup of the group $(\mathcal{AN}(T)_m, \cdot_m)$.

If $m, n \in \mathbb{N}, 1 \leq m \leq n - 1$, then a certain relationship between groups $(\mathcal{AN}_r(T)_m, \cdot_m), (\mathcal{LA}(T)_{m+1}, \circ_{m+1})$ is contained in the following proposition:

Proposition 2 Let $t_0 \in \mathbb{R}, t_0 > 0, T = (0, t_0) \subset \mathbb{R}$ and $m, \ n \in \mathbb{N}$ are integers such that $1 \leq m \leq n - 1$. Define a mapping $F : \mathcal{AN}_n(T)_m \rightarrow \mathcal{LA}_n(T)_{m+1}$ by this rule: For an arbitrary
neural network $Ne(\vec{w}_r) \in \mathbb{AN}_n(T)_m$, where $\vec{w}_r = (w_{r,1}(t), \ldots, w_{r,n}(t)) \in [\mathbb{C}(T)]^n$ we put $F(Ne(\vec{w}_r)) = L(w_{r,1}, \ldots, w_{r,n}) \in \mathbb{L}\mathbb{AN}_n(T)_{m+1}$ with the action:

$$L(w_{r,1}, \ldots, w_{r,n})y(t) = \frac{d^n y(t)}{dt^n} + \sum_{k=1}^{n} w_{r,k}(t) \frac{d^{k-1}y(t)}{dt^{k-1}}, \ y \in \mathbb{C}^n(T). \quad (6)$$

Then the mapping $F : \mathbb{AN}_n(T)_m \rightarrow \mathbb{L}\mathbb{AN}_n(T)_{m+1}$ is a homomorphism of the group $(\mathbb{AN}_n(T)_m, \cdot_m)$ into the group $(\mathbb{L}\mathbb{AN}_n(T)_{m+1}, \circ_{m+1})$ (concerning this group see [4]).

Now, using the construction described in the above Lemma we obtain the final transposition hypergroup (called also non-commutative join space). Denote by $\mathbb{P}(\mathbb{AN}(T)_m)^*$ the power set of $\mathbb{AN}(T)_m$ consisting of all nonempty subsets of the last set and define a binary hyperoperation $\cdot_m : \mathbb{AN}(T)_m \times \mathbb{AN}(T)_m \rightarrow \mathbb{P}(\mathbb{AN}(T)_m)^*$ by the rule

$$Ne(\vec{w}_r) \cdot_m Ne(\vec{w}_s) = \{Ne(\vec{w}_u) ; \ Ne(\vec{w}_r) \cdot_m Ne(\vec{w}_s) \leq_m Ne(\vec{w}_u)\} \quad (7)$$

for all pairs $Ne(\vec{w}_r), Ne(\vec{w}_s) \in \mathbb{AN}(T)_m$. More in detail if $\vec{w}(u) = (w_{u,1}, \ldots, w_{u,n}), \vec{w}(r) = (w_{r,1}, \ldots, w_{r,n}), \vec{w}(s) = (w_{s,1}, \ldots, w_{s,n})$, then $w_{r,m}(t)w_{s,m}(t) = w_{u,m}(t)$, $w_{r,m}(t)w_{s,k}(t)+w_{r,k}(t) \leq w_{u,k}(t)$, if $k \neq m$, $t \in T$. Then we have that $(\mathbb{AN}(T)_m, \cdot_m)$ is a non-commutative hypergroup.

The above defined invariant (termed also normal) subgroup $(\mathbb{AN}_1(T)_m, \cdot_m)$ of the group $(\mathbb{AN}(T)_m, \cdot_m)$ is the carried set of a subhypergroup of the hypergroup $(\mathbb{AN}(T)_m, \cdot_m)$ and it has certain significant properties. Using certain generalization of methods from [3] we obtain after investigation of constructed structures this result:

Let $T = \langle 0, t_0 \rangle \subset \mathbb{R}, t_0 \in \mathbb{R} \cup \{\infty\}$. Then for any positive integer $n \in \mathbb{N}, n \geq 2$ and for any integer m such that $1 \leq m \leq n$ the hypergroup $(\mathbb{AN}(T)_m, \cdot_m)$, where $\mathbb{AN}(T)_m = \{Ne(\vec{w}_r) ; \vec{w}_r = (w_{r,1}(t), \ldots, w_{r,n}(t)) \in [\mathbb{C}(T)]^n, w_{r,m}(t) > 0, t \in T\}$ is a transposition hypergroup (i.e. a non-commutative join space) such that $(\mathbb{AN}(T)_m, \cdot_m)$ is its subhypergroup. A certain generalization of the formal (artificial) neuron can be obtained from expression of linear differential operator of the n-th order. Consider function $u : J \rightarrow \mathbb{R}$, where $J \subset \mathbb{R}$ is an open interval; input are derived from the function $u \in \mathbb{C}^n(J)$ as it follows: Inputs $x_1(t) = u(t), x_2 = \frac{du(t)}{dt}, \ldots, x_n(t) = \frac{d^{n-1}u(t)}{dt^{n-1}}, n \in \mathbb{N}$. Further the bias $b = b_0 \frac{d^n u(t)}{dt^n}$. As weights we use the continuous function $w_k : J \rightarrow \mathbb{R}, k = 1, \ldots, n - 1$.

Then formula

$$y(t) = \sigma\left(\sum_{k=1}^{n} w_k(t) \frac{d^{k-1}u(t)}{dt^{k-1}} + b_0 \frac{d^n u(t)}{dt^n}\right) \quad (8)$$

is a description of the action of the neuron Dn which will be called a formal (artificial) differential neuron. This approach allows to use solution spaces of corresponding linear differential equations. Used terms and proofs of auxiliary assertions can be found in literature [4,5].

GENERALIZED TRIGONOMETRIC FUNCTIONS
AND THEIR APPLICATIONS

Denysiuk V.P.

Key words: Generalized trigonometric functions, test functions, divergent trigonometric series.
AMS Subject Classification: 30Gxx - Generalized function theory

Let’s consider class $G(\rho)$ divergent trigonometric series of order ρ ($0 \leq \rho < \infty$),
\begin{equation}
\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k(\rho) \cos kt + b_k(\rho) \sin kt
\end{equation}

Where coefficients $a_k(\rho), b_k(\rho), (k=1,2,\ldots)$ are satisfied the conditions
\begin{equation}
|a_k(\rho)|, |b_k(\rho)| \leq C k^\rho, \quad 0 < C < \infty.
\end{equation}

Of course, coefficients $a_k(0), b_k(0)$ of functions of class $G(0)$ are limited numerical sequences.

For such classes of trigonometric series was preposed by Schwartz [3] the approach, at which this divergent series defines a generalized periodic function (distribution) $\varphi(\rho,t)$, so
\begin{equation}
\varphi(\rho,t) := \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k(\rho) \cos kt + b_k(\rho) \sin kt.
\end{equation}

Let the class of infinitely differentiated principal pairwise periodic functions, which can be represented by Fourier series
\begin{equation}
\lambda(t) = \frac{1}{2} + \sum_{k=1}^{\infty} \nu_k \cos kt,
\end{equation}

Then, according to [3], the result of the generalized periodic function (distribution) φ, λ on the main function $\lambda(t) \in K$ can be considered like
\begin{equation}
(\varphi, \lambda) = \int_{-\pi}^{\pi} \varphi(\rho,t) \lambda(t) dt = \frac{a_0}{2} + \sum_{k=1}^{\infty} \nu_k [a_k(\rho) + b_k(\rho)],
\end{equation}

and convolution $\varphi(\rho,t) * \lambda(t)$ - like
\begin{equation}
\varphi(\rho,t) * \lambda(t) = \int_{-\pi}^{\pi} \varphi(\rho,t-\tau) \lambda(\tau) d\tau = \frac{a_0}{2} + \sum_{k=1}^{\infty} \nu_k [a_k(\rho) \cos kt + b_k(\rho) \sin kt].
\end{equation}

As we have said earlier, the requirement of infinite differentiation of the main functions $\lambda(t) \in K$ limits the use of the apparatus of generalized periodic functions. We have proposed another approach to constructing generalized periodic functions, in which the class of functions having a finite number of derivatives is selected as the basic functions. This approach, which receives generalized trigonometric functions, is a certain analogue of the approach of Schwartz. Let’s consider this approach in more detail.

As before, we are considering functions $\varphi(\rho,t)$ of class $G(\rho)$. However, now as functions of the main functions we will consider functions $\mu(\alpha,r,t)$, which can be presented as Fourier series.
\[
\mu(\alpha, r, t) = \frac{1}{2} + \sum_{k=1}^{N} v_k(\alpha, r) \cos kt, \quad (r > 1),
\]

Where Fourier \(v_k(\alpha, r), (k = 1, 2, \ldots) \), have a decreasing order \(O(k^{-(r+2)}), (0 \leq r < \infty) \), and depends the parameter \(\alpha \). It is clear that such basic functions are pairwise periodic functions, which have a continuous derivative \(r \) of order \((0,1,\ldots, r) \); the class of such functions is denoted \(P(\alpha, r) \).

Every function \(\varphi(\rho, t) \in G(\rho) \) we put the generalized trigonometric function of the form into conformity

\[
(\varphi, \mu) = \int_{-\pi}^{\pi} \varphi(\rho, t) \mu(\alpha, r, t) \, dt
\]

assuming, of course, that this functional exists.

If function \(\varphi(\rho, t) \in G(\rho) \) looks like (3), and function \(\mu(\alpha, r, t) \in P(\alpha, r) \) looks like (7), so functional (8) takes shape

\[
(\varphi, \mu) = \left\{ \varphi(\rho, t) \mu(\alpha, r, t) dt = \frac{a_0}{2} + \sum_{k=1}^{N} v_k(\alpha, r) \left[a_k(\rho) + b_k(\rho) \right] \right\}
\]

It is easy to obtain conditions under which generalized trigonometric functions exist (9). Because the coefficients \(a_k(\rho), b_k(\rho), (k = 1, 2, \ldots) \) have a growth order \(\rho (\rho = 0,1,\ldots) \), and coefficients \(v_k(\alpha, r), (k = 1, 2, \ldots) \), have decreasing order \(O(k^{-(r+2)}), (r = 0,1,\ldots) \), then it is clear that for the convergence of the series on the right side (6) the condition must be satisfied \(r - \rho > -1 \);

taking into account that \(\rho \) is \(r \) whole, this condition takes on shape

\[
r \geq \rho.
\]

As before, the convolution of a generalized trigonometric function \(\varphi(\rho, t) \) and basic function \(\mu(\alpha, r, t) \) given like expression

\[
\varphi(\rho, t) * \mu(\alpha, r, t) = \left\{ \frac{a_0}{2} + \sum_{k=1}^{N} v_k(\alpha, r) \left[a_k(\rho) \cos kt + b_k(\rho) \sin kt \right] \right\}.
\]

In this case, depending on the parameters \(\rho \) and \(r \), we can obtain both a normal function and a generalized trigonometric function. So, when the condition is satisfied \(r \geq \rho \) we get an ordinary continuous function; at \(r - \rho \leq -2 \) we obtain a generalized trigonometric function; at other values \(\rho \) and \(r \) series (11) requires additional research.

In the future, we will consider convolutions of generalized and basic functions in assuming the satisfying of the condition \(r \geq \rho \); In this case, we obtain ordinary periodic (trigonometric) functions \(S(\alpha, p, t) \), which depends from parameter \(\alpha \), differentiated \(p = r - \rho \) times, have an argument \(t \) and given nearby (11).

An important role in the theory of generalized trigonometric functions is played by the methods of constructing the basic functions of the class \(P(\alpha, r) \). In [2] Some variants of the choice of basic functions were considered, the Fourier coefficients of which satisfy this condition.

Interpolation convolutions

An important subclass of generalized trigonometric functions is the set of functions \(0 - n \) order, the sequence of coefficients of which \(a_k(0), b_k(0), (k = 1, 2, \ldots) \) are \(N \)-periodic sequences \((N = 2n + 1, n = 1, 2, \ldots) \). Denote the functions of this subclass through \(G(0, N) \); it is seen that \(G(0, N) \subset G(\rho) \). Note that the operations of differentiating and integrating the class function are locked, that is, they again lead to class functions \(G(0, N) \).
The expediency of allocating a subclass $G(\rho, N)$ generalized trigonometric functions due to the fact that the convolution of the functions of this subclass with the main functions have certain interpolation properties.

$$F(N, \alpha, r, t_j) = \frac{a_0^*}{2} + \sum_{k=1}^{\infty} \frac{1}{H_k(\alpha, r, N)} \left[a_k^* C_k(\alpha, v, r, N, t_j) + b_k^* S_k(\alpha, v, r, N, t_j) \right]$$

Where,

$$C_k(\alpha, v, r, N, t_j) = \cos kt_j \left[v_k(\alpha, r) + \sum_{m=1}^{\infty} v_{mN+k}(\alpha, r) + v_{mN-k}(\alpha, r) \right],$$

$$S_k(\alpha, v, r, N, t_j) = \sin kt_j \left[v_k(\alpha, r) + \sum_{m=1}^{\infty} v_{mN+k}(\alpha, r) + v_{mN-k}(\alpha, r) \right],$$

$$H_k(\alpha, r, N) = \left[v_k(\alpha, r) + \sum_{m=1}^{\infty} v_{mN+k}(\alpha, r) + v_{mN-k}(\alpha, r) \right]$$

And a_0^*, a_k^*, b_k^* coefficients of a trigonometric polynomial which are interpolating some values, $\{f_j\}_{j=1}^{2n+1}$ in nodes of a uniform grid set on $[0, 2\pi)$.

It is clear that the parameter r ($r = 2, 3, ...$) determines the differential properties of interpolation cones $F(\phi, 0, N, \mu, r, t)$, причому $F(\phi, 0, N, \mu, r, t) \in C_{[0, 2\pi)}^{r-2}$.

In other words, the proposed methods for constructing interpolation convolution can be considered as methods for constructing interpolation trigonometric splines of arbitrary order. It can be shown [2] that classes of interpolation trigonometric splines include classes of polynomial simple periodic splines, both even and odd order.

Conclusions

1. A new approach to the construction of generalized trigonometric functions is considered, which differs from those known generalized periodic Schwarz functions by the fact that these functions are given in the classes of finitely differentiated basic functions.

4. Issues of interpolation of trigonometric polynomials in knots of even-dimensional grids by convolutions of generalized trigonometric functions with principal functions are considered. The obtained results extend to the problem of interpolation of continuous functions in the same nodes.

5. Developed methods for constructing interpolation functions can be considered as methods for constructing functions with given differential properties; In particular, these methods can be considered as methods of constructing interpolation trigonometric splines arbitrary in-line.

6. The class of interpolation trigonometric splines is quite broad and, in particular, includes a well-known class of simple polynomial periodic splines.

7. The results of the numerical calculations are in good agreement with the theoretical provisions.

References in English

DE LA VALLÉE POUSSIN INEQUALITY FOR IMPULSIVE DIFFERENTIAL EQUATIONS

Doğru Akgöl S., Özbekler A.

Key words: Vallée Poussin inequality; impulsive differential equation; Green’s function.
AMS Subject Classification: 34A37, 34A40.

We derive a De la Vallée Poussin inequality for the linear impulsive differential equation of the form

\[
\begin{aligned}
x'' + p(t)x' + q(t)x &= 0, \quad t \neq t_k, \quad t \geq a, \quad k = 1, 2, \ldots , \\
\Delta x' + \tilde{p}_k x' + \tilde{q}_k x &= 0, \quad t = t_k
\end{aligned}
\]

(1)

with Dirichlet boundary conditions \(x(a) = 0 = x(b)\), where \(p, q \in C[a, b]\), \(\{\tilde{p}_k\}\) and \(\{\tilde{q}_k\}\) are real sequences, \(\{t_k\}\) is a strictly increasing sequence of real numbers such that \(\lim_{k \to \infty} t_k = \infty\), and \(\Delta\) is the impulse operator defined by \(\Delta u(t_k) = u(t_k^+) - u(t_k^-)\) with \(u(t_k^\pm) = \lim_{t \to t_k^\pm} u(t)\).

We denote by \(\text{PLC}[a, b]\) the set of functions \(x\) such that \(x(t)\) is continuous on \((t_k, t_{k+1}]\) and \(x(t_k^+)\) exists for each \(k\) for which \(a \leq t_k < b\).

When we consider the linear homogeneous differential equation

\[
x'' + p(t)x' + q(t)x = 0
\]

(2)

with the boundary conditions \(x(a) = 0 = x(b)\), and \(x(t) \neq 0\) for \(t \in (a, b)\), the inequality

\[
1 < p_0(b - a) + q_0 \frac{(b - a)^2}{2}
\]

(3)

holds, where \(p_0 = \max_{t \in [a, b]} |p(t)|\) and \(q_0 = \max_{t \in [a, b]} |q(t)|\). The above result is known as Vallée Poussin inequality, see for an example [1]. Hartman and Wintner [1] proved that inequality (3) could be improved as

\[
b - a < \max \left\{ \int_a^b (s - a)|p(s)|ds, \int_a^b (b - s)|p(s)|ds \right\} + \int_a^b (s - a)(b - s)|q(s)|ds.
\]

(4)

The following inequality is easily derived from (4):

\[
b - a < p_0 \max \left\{ \int_a^b (s - a)ds, \int_a^b (b - s)ds \right\} + q_0 \int_a^b (s - a)(b - s)ds = p_0 \frac{(b - a)^2}{2} + q_0 \frac{(b - a)^3}{6}.
\]

(5)
Analogous results on time scales and fractional differential equations were obtained very recently by Ferreira respectively in [2] and [3], and on partial differential equations by Agarwal et.al. in [5]. As far as we know, there are no related results concerning differential equations under impulse effect. Motivated by the works listed above we considered the impulsive differential equations of the form (1) and obtained a De la Vallée Poussin inequality. Our results cover the inequalities (4) and (5) when the impulse effects dropped from equation (1).

Many plane boundary problems on mathematical and theoretical physics and applied mechanics by means of integral transformations can be come to the system of functional equations in the complex plane decided by means of the Wiener–Hopf method [1]. The key problem of solution is the factorization of the system matrix coefficient. However now the only special matrix functions class of complex variable assuming exact factorization is known. The method of this matrices class factorization offered by G.N. Chebotarev and developed by A.A. Khrapkov [2] was successfully used in the solution of some problems on fracture mechanics, scattering theory of electromagnetic or elastic waves, contact problems. At the same time, the Chebotarev–Khrapkov method appeared insufficient in the case of more complicated matrices. This stimulated the development of matrix functions approximate factorization methods.

In this work the method of successive approximations is offered for the solution of the Wiener–Hopf functional equations system, using the presentation of the system matrix coefficient as the sum of two matrices, if the first matrix assumes the exact factorization, and the second one is assumed far less first matrix in the domain of system definition:

$$
\Phi^+(p) + F(p) = G(p)\Phi^-(p), \quad G(p) = G_0(p) + G'(p) \left(\left| G_0(p) \right| \right)^{-1} \left| G'(p) \right| \quad (p \in D),
$$

(1)

where \(\Phi^+(p), \Phi^-(p) \) are unknown linear vectors, analytical in the domains \(D^+ \) and \(D^- \) respectively, \(D = D^+ \cap D^- \); \(F(p) \) and \(G(p) \) are certain linear vector and square matrix, thus \(G_0(p) \) is factorized by means of analytical matrix in the domains \(D^+ \) and \(D^- \):

\(G_0(p) = G_0^+(p)G_0^-(p) \).

By means of the Wiener–Hopf method at the implementations of condition

\(p \to \infty, \left(G_0^+(p) \right)^{-1} \Phi_0^+(p) \to 0 \)

we obtain the solution of the system (1) in a zero approaching in the form of

\(\Phi_0^+(p) = -G_0^+(p)F_0^+(p) \quad (p \in D^+), \quad \Phi_0^-(p) = -\left(G_0^-(p) \right)^{-1} F_0^-(p) \quad (p \in D^-), \)

\(F_0^+(p) = \frac{1}{2\pi i} \int_{\gamma} \frac{\left(G_0^+(z) \right)^{-1} F(z)}{z - p} \, dz \quad (\gamma \in D, \quad p \in D^\pm), \)

where the degree "\(^{-1}\)" denotes an inverse matrix, \(\gamma \) is an infinite line in the domain of system definition \(D \).

In the first approximation, the equation (1) has the form

\(\Phi_1^+(p) = G_0(p)\Phi_1^-(p) + G'(p)\Phi_0^-(p) \quad (p \in D). \)

We introduce a vector function \(F_1(p) = -G'(p)\Phi_0^-(p) \) and find the first order correction by perturbation to the solution:
The n-th order corrections $\Phi_n^\pm(p)$ are obtained in the same way as in the previous step. Summing up these corrections, we find the final solution of equation (1):

$$\Phi^+(p) = -G_0^+(p)F_1^+(p) \quad (p \in D^+), \quad \Phi^-(p) = -\left(G_0^-(p)\right)^{-1}F_1^-(p) \quad (p \in D^-),$$

$$F_n^\pm(p) = \frac{1}{2\pi i} \gamma \int \left(G_0^+(z)\right)^{-1} F_1(z) \frac{1}{z - p} d\gamma \quad (\gamma \in D, \ p \in D^\pm).$$

Formally the solution (2) can be considered an exact one. The condition of the correctness of the solution is the convergence of its series, that is, the implementation of inequality $\left|F_n^\pm(p)\right| < \left|F_{n-1}^\pm(p)\right|$. According to the definition $F_n^\pm(p)$ in (2), this inequality is equivalent to the condition

$$\left|\left(G_0^+(p)\right)^{-1} G'(p)\left(G_0^-(p)\right)^{-1}\right| < 1.$$ (3)

At the same time, the practical application of formulas (2) for numerical calculations encounters an increase in the multiplicity of integrals in each next approximation. This circumstance forces us to be limited in (2) to a small number of terms, which are taken into account in calculations, and imposes a more strict restriction on the perturbation matrix instead of (3):

$$\left|\left(G_0^+(p)\right)^{-1} G'(p)\left(G_0^-(p)\right)^{-1}\right| \leq 1.$$

As it can be seen from the previous consideration, the advantage of the suggested method is to avoid the need for factorization of the full coefficient $G(p)$ of the initial equation (1). On the other hand, formally the solution (2) can be represented as the result of the action of some matrix operators:

$$\Phi^\pm(p) = -\hat{G}^\pm(p)F_0(p) \quad (p \in D^\pm),$$

which allows us to represent the factorization of the initial matrix coefficient $G(p)$ as a result of the successive action of two analytic matrix operators:

$$G(p) \to \hat{G}^+(p)\hat{G}^-(p).$$

In this interpretation, the considered method is close to some approximate methods of factorization of matrix functions, in particular, to the asymptotic method of factorization of the class of matrices proposed in [3], which at infinity tend to the unit matrix.

NEW APPROACH TO A WEAKLY NONLINEAR SYSTEM NORMALIZATION

Dzhalladova, I., Ružičková, M.

Key words: averaging, normal form of system, weakly nonlinear system, qualitative properties, essential and non-essential coefficients, method of degrees equalization.

AMS Subject Classification: 34C15, 34C29

1 Introduction

The basic idea of averaging comes from the late 18th century to solve the problems of celestial mechanics as the gravitational three-body problem, electronic circuit theory as a nonlinear oscillator.

A new stage in the development of averaging began with the work by Van der Pol, Mandelshtim, Papileksi, who used the method to study oscillatory solutions to non-canonical systems of differential equations. This method was further developed in works by Krylov, Bogolyubov, Mitropolsky, Strizhak and others.

Simultaneously with averaging, the method of normal forms was developed in the theory of ordinary differential equations. The method of normal forms was developed in the works by Birkhoff, Sternberg, Mozer, Siegel, Poincaré, and others. It was found that the averaging method and the method of normal forms lead to the same results in cases when the characteristic exponents of the linear approximation lie on the imaginary axis that was performed for the canonical systems under consideration. It turned out that averaging is actually a method of reducing the system to a normal form.

Although the normal form of a system of differential equations can be considered as the simplest form of equations, the transformation into normal form, that is, the normalization of equations is a time consuming and difficult operation, it is based on solving a system of linear partial differential equations. In our contribution we propose an original and very simple method of averaging, this means a method for determining the coefficients of a given non-linear system when it becomes normal.

2 Concept of normal form and degrees equalization

We consider a system of nonlinear differential equations with polynomial right-hand sides and a small parameter. In practice, weakly nonlinear system is usually given as:

\[\frac{dx}{dt} = Ax + \mu F(x) \] \hspace{1cm} (1)

where \(x = (x_1(t), x_2(t), \ldots, x_m(t))^T \) is \(m \)-dimensional column vector state function with components \(x_j \in C^1(\mathbb{R}), \ j = 1, 2, \ldots, m; \) \(A = \text{diag}(\alpha_1, \alpha_2, \ldots, \alpha_m) \) is an \(m \times m \) diagonal constant matrix; \(\mu \) is a
sufficiently small parameter; and \(F = (f_1(x), f_2(x), \ldots, f_m(x))^T \) is an \(m \)-dimensional column vector function with components in the form of convergent power series:

\[
f_k(X) = \sum_j f_k^{(j)} x_1^{s_{k1}} x_2^{s_{k2}} \cdots x_m^{s_{km}}, \quad k = 1, 2, \ldots, m,
\]

\(s_{kl}^{(j)} \in \mathbb{Z}^+, \quad s_{k1}^{(j)} + s_{k2}^{(j)} + \cdots + s_{km}^{(j)} \geq 1, \quad k, l = 1, 2, \ldots, m. \)

We assume that point \(x = \mathcal{O} := (0, 0, \ldots, 0)^T \) is a stationary point, i.e. a singular point to system (1), that is, \(F(\mathcal{O}) = \mathcal{O} \). We change the variable \(x \) to \(y \) using equations

\[
x_k = y_k + \mu \varphi_k(y_1, y_2, \ldots, y_m), \quad k = 1, 2, \ldots, m,
\]

where \(y = (y_1(t), y_2(t), \ldots, y_m(t))^T \) is a new state vector, this is, an \(m \)-dimensional column vector function with components \(y_i \in C^1(\mathbb{R}), i = 1, 2, \ldots, m. \) Through transformation (3), the function \(F(x) \) in system (1) is transformed into a function \(\Phi(y) = (\varphi_1(y), \varphi_2(y), \ldots, \varphi_m(y))^T \) whose components \(\varphi_k(y_1, y_2, \ldots, y_m), k = 1, 2, \ldots, m \) can be spread over a convergent power series:

\[
\varphi_k(y_1, y_2, \ldots, y_m) = \sum_j \varphi_k^{(j)} y_1^{s_{k1}} y_2^{s_{k2}} \cdots y_m^{s_{km}}, \quad k = 1, 2, \ldots, m
\]

with \(s_{kl}^{(j)} \in \mathbb{Z}^+, \quad s_{k1}^{(j)} + s_{k2}^{(j)} + \cdots + s_{km}^{(j)} \geq 1, \quad k, l = 1, 2, \ldots, m. \) Point \(y = \mathcal{O} \) remains the stationary point, \(\Phi(\mathcal{O}) = \mathcal{O}. \)

In this way, as a result of transformation (3), we get the first approximation to system (1)

\[
\frac{dy}{dt} = Ay + \mu H(y),
\]

where \(H(y) = (h_1(y), h_2(y), \ldots, h_m(y))^T, \quad H(\mathcal{O}) = \mathcal{O}, \quad H_2(\mathcal{O}, \mu) = \mathcal{O}, \) and

\[
h_k(y) = \sum_j h_k^{(j)} y_1^{s_{k1}} y_2^{s_{k2}} \cdots y_m^{s_{km}}, \quad k = 1, 2, \ldots, m.
\]

Definition. The property of solutions to system (1) which remains unchanged after transformation (3) is said to be the qualitative property.

Theorem. Let there exist constants \(j \in \mathbb{N} \) and \(s_{kl}^{(j)} \in \mathbb{Z}^+, \quad s_{k1}^{(j)} + s_{k2}^{(j)} + \cdots + s_{km}^{(j)} \geq 1 \) such that

\[
s_{k1}^{(j)} \alpha_1 + s_{k2}^{(j)} \alpha_2 + \cdots + s_{km}^{(j)} \alpha_m = \alpha_k.
\]

Then the coefficients indexed \(\cdot^{(j)} \) in the \(k \)-th equation of systems (1) and (5) are equivalent, i.e.

\[
h_k^{(j)} = f_k^{(j)},
\]

for any transformation (3). Otherwise, coefficient \(h_k^{(j)} \) can take any pre-assigned value depending on transformation (3).

Definition. The system (5) obtained under transformation (3) from system (1) such that

\[
h_k^{(j)} = f_k^{(j)}, \quad \text{if} \quad s_{k1}^{(j)} \alpha_1 + s_{k2}^{(j)} \alpha_2 + \cdots + s_{km}^{(j)} \alpha_m = \alpha_k,
\]

\[
h_k^{(j)} = 0, \quad \text{if} \quad s_{k1}^{(j)} \alpha_1 + s_{k2}^{(j)} \alpha_2 + \cdots + s_{km}^{(j)} \alpha_m \neq \alpha_k,
\]

is called the normal form of system (1).

The transformation itself is called the normalization or averaging of the system.
Example. Transform sytem

\[
\begin{aligned}
\frac{dx_1}{dt} &= x_1 + \mu x_1 (x_1^2 x_2 + x_1 x_2 + x_1 x_2^2), \\
\frac{dx_2}{dt} &= -2x_2 + \mu x_2 (2x_1^2 x_2 + 3x_1 x_2 + 4x_1 x_2^2),
\end{aligned}
\]

into its normal form such that conditions (9), (10) will be met. Verifying six equalities we get the normal form of the system as

\[
\begin{aligned}
\frac{dx_1}{dt} &= x_1 + \mu x_1^2 x_2, \\
\frac{dx_2}{dt} &= -2x_2 + 2\mu x_1^2 x_2^2.
\end{aligned}
\]

The following theorem gives a simple way of transforming the original system into its normal form.

Theorem. There exists a change of coordinates \(x = e^{At} y\) under which system (1) becomes normal,

\[
\frac{dy}{dt} = \mu H(y),
\]

where only the coefficients \(h^{(j)}_k\), whose terms do not depend explicitly on \(t\), are not equal to zero.

Example. On the basis of that Theorem, replacing \(x_1\) to \(e^t x_1\), \(x_2\) to \(e^{-t} x_2\) and excluding members that explicitly depend on \(t\), without integration, we get the normal form

\[
\begin{aligned}
\frac{dx_1}{dt} &= 2\mu x_1^2 x_2, \\
\frac{dx_2}{dt} &= 4\mu x_1 x_2^2.
\end{aligned}
\]

to system

\[
\begin{aligned}
\frac{dx_1}{dt} &= x_1 + \mu (2x_1^2 x_2 + x_1 x_2 + 3x_1 x_2^2), \\
\frac{dx_2}{dt} &= -x_2 + \mu (4x_1^2 x_2^2 + x_1 x_2 + 5x_1^2 x_2),
\end{aligned}
\]

to which Krylov-Bogolyubov method is not applicable.

CONCENTRATION DISTRIBUTION IN A MODEL ELECTROCATALYTIC PROCESS

Gichan O.I.

The purpose of the work is to obtain and analyze the analytical expressions for the concentration distributions of species with different diffusion coefficients in the model electrocatalytic process with potential-dependent adsorption/desorption of electroactive species on planar electrode surface and a preceding homogeneous chemical reaction of first order in the Nernst diffusion layer. The adsorption process is described by the Frumkin isotherm. The limiting stage of the process under consideration is a preceding homogeneous chemical reaction. The case of stationary conditions is considered. The chosen model system belongs to the N-NDR type of system. The system’s voltammetric curve has the N-shaped form with the region of the negative differential resistance (NDR), where dynamic instabilities occur. An exact solution of a system of differential equations describing the concentration distribution in the Nernst diffusion layer was obtained [1]. The dependencies of electrode surface stationary concentrations on the coverage by adsorbate θ were obtained. The functions of concentration gradients of reactive species depending on a distance to electrode surface and the parameter θ were analyzed. The obtained results can be applied for a better understanding of the non-linear behavior of non-equilibrium system.

THE LAX-SATO INTEGRABLE MULTI-DIMENSIONAL GENERAL MONGE,
PLEBANSKI TYPE AND HUSAIN HEAVENLY EQUATIONS AND THEIR
LIE-ALGEBRAIC STRUCTURE

Hentosh O.Ye., Prykarptsy Ya.A.

Key words: heavenly equations, Lax-Sato integrability, loop Lie algebra, Adler-Kostant-Symes theory, Casimir invariants.

AMS Subject Classification: 37K05 37K30 37K65 35Q75 35Q35

The notion of the heavenly equations has been introduced by J. Plebanski [1] to determine some class of dispersionless equations being reductions of the Einstein equation in the general relativity theory. The integrability of such type equations has been studied with use of the Lax-Sato theory by Takasaki and Takebe [2].

In [3] a general Lie-algebraic approach to constructing the Lax-Sato integrable heavenly type systems on functional manifolds has been developed. It is based on the Adler-Kostant-Symes theory and \(\mathcal{R} \)-operator structures related with the loop Lie algebra \(\tilde{\text{diff}}(\mathbb{T}^n) \) of vector fields on an \(n \)-dimensional torus \(\mathbb{T}^n \) and adjacent Lie algebra \(\text{diff}_{\text{hol}}(\mathbb{T}^n \times \mathbb{T}_1^1) \subset \text{diff}(\mathbb{T}^n \times \mathbb{T}_1^1) \) of vector fields on a torus \(\mathbb{T}^n \times \mathbb{T}_1^1 \), which are holomorphic in the "spectral" parameter \(\lambda \in S_1^1 \subset \mathbb{C} \). In the framework of this approach the Lax-Sato integrable heavenly systems arise as a commutability condition for two Hamiltonian flows on dense subspaces of the dual spaces to the Lie algebras \(\tilde{\text{diff}}(\mathbb{T}^n) \) and \(\text{diff}_{\text{hol}}(\mathbb{T}^n \times \mathbb{T}_1^1) \) and their conservation laws are generated by the corresponding sets of Casimir invariants. In our paper it is used for constructing the Lax-Sato integrable multi-dimensional analogs of the general Monge, Plebanski type and Husain heavenly equations.

The multi-dimensional general Monge heavenly equation. A seed element \(\tilde{l} \) from a dense subspace \(\tilde{\mathcal{G}}^* \) of the dual space to the loop Lie algebra \(\mathcal{G} := \tilde{\text{diff}}(\mathbb{T}^{2k}) \), \(k \in \mathbb{N} \) and \(k > 1 \), taken in the form

\[
\tilde{l} = du_y + du_t + \lambda^{-1}(dx_1 + dx_2),
\]

where \(u \in C^2(\mathbb{T}^{2k} \times \mathbb{R}^2; \mathbb{R}) \), \((x_1, x_2, \ldots, x_{2k-1}, x_{2k}) \in \mathbb{T}^{2k} \), \(\lambda \in \mathbb{C}\setminus\{0\} \) and "\(d \)" designates a total differential, generates \(2k \) independent Casimir functionals \(\gamma^{(j)} \in \bar{1}(\tilde{\mathcal{G}}^*) \), \(j = \bar{1, 2k} \), whose gradient asymptotic expansions are equal to the following expressions:

\[
\nabla \gamma^{(1)}(l) \sim (0, 1, 0, \ldots, 0) + (-u_{yx_2} + u_{tx_2}) - (\partial_{x_2} - \partial_{x_1})^{-1}(u_{yx_2x_1} + u_{tx_2x_1}),
\]

\[
- (\partial_{x_2} - \partial_{x_1})^{-1}(u_{yx_2x_1} + u_{tx_2x_1}),
\]

52
\[
\left(0, \ldots, 0\right) \Lambda + O(\lambda^2),
\]
\[
\nabla \gamma^{(2)}(I) \sim \left(1, 0, 0, \ldots, 0\right) + \left((\partial_{x_1} - \partial_{x_2})^{-1}(u_{yx_1x_2} + u_{tx_1x_2})\right) + \left((\partial_{x_1} - \partial_{x_2})^{-1}(u_{yx_1x_2} + u_{tx_1x_2})\right) \Lambda + O(\lambda^2),
\]
\[
\nabla \gamma^{(3)}(I) \sim \left(0, 0, -u_{yx_4}, u_{yx_3}, 0, \ldots, 0\right) + \left(0, u_{tx_4}u_{yx_4} - u_{tx_4}u_{yx_3}\right) \Lambda + O(\lambda^2),
\]
\[
\nabla \gamma^{(4)}(I) \sim \left(0, 0, -u_{yx_4}, u_{yx_3}, 0, \ldots, 0\right) + \left(0, u_{tx_4}u_{yx_4} - u_{tx_4}u_{yx_3}\right) \Lambda + O(\lambda^2),
\]
\[
\nabla \gamma^{(2k-1)}(I) \sim \left(0, \ldots, 0, 0, 0, -u_{yx_2k}, u_{yx_2k-1}\right) + \left(0, \ldots, 0, 0, u_{tx_2k-1}u_{yx_2k} - u_{tx_2k}u_{yx_2k-1}\right) \Lambda + O(\lambda^2),
\]
\[
\nabla \gamma^{(2k)}(I) \sim \left(0, \ldots, 0, 0, 0, -u_{tx_2k}, u_{tx_2k-1}\right) + \left(0, \ldots, 0, u_{yx_2k-1}u_{tx_2k} - u_{yx_2k}u_{tx_2k-1}\right) \Lambda + O(\lambda^2),
\]

There is shown that the commutability condition
\[
[X^{(y)}, X^{(t)}] = 0
\]
for the vector fields
\[
X^{(y)} := \partial/\partial y + \nabla h^{(y)}(\tilde{I}), \quad X^{(t)} := \partial/\partial t + \nabla h^{(t)}(\tilde{I}),
\]
where
\[
\nabla h^{(y)}(\tilde{I}) := \left(\lambda^{-1}(\nabla \gamma^{(1)}(\tilde{I}) + \nabla \gamma^{(3)}(\tilde{I}) + \ldots + \nabla \gamma^{(2k-1)}(\tilde{I}))\right) = 0\partial/\partial x_1 + \lambda^{-1}\partial/\partial x_2 - \lambda^{-1} \sum_{j=2}^{k} \left(u_{yx_2j} \partial/\partial x_{2j-1} - u_{yx_2j-1} \partial/\partial x_2\right),
\]
\[
\nabla h^{(t)}(\tilde{I}) := \left(\lambda^{-1}(\nabla \gamma^{(2)}(\tilde{I}) + \nabla \gamma^{(4)}(\tilde{I}) + \ldots + \nabla \gamma^{(2k)}(\tilde{I}))\right) = -\lambda^{-1}\partial/\partial x_1 + 0\partial/\partial x_2 - \lambda^{-1} \sum_{j=2}^{k} \left(u_{tx_2j} \partial/\partial x_{2j-1} - u_{tx_2j-1} \partial/\partial x_2\right),
\]
leads to the following multi-dimensional analogs of the general Monge heavenly equation:

\[u_{yx_1} + u_{tx_2} + \sum_{j=2}^{\infty} (u_{yx_2j-1}u_{tx_2j} - u_{yx_2j}u_{tx_2j-1}) = 0. \]

Their Lax-Sato representations are given by the first order partial differential equations

\[X^{(y)}\Psi = 0, \quad X^{(t)}\Psi = 0, \]

where \(\Psi \in C^\infty(\mathbb{T}^{2k} \times \mathbb{R}^2; \mathbb{C}) \).

The multi-dimensional Plebanski type and Husain heavenly equations. The Lax-Sato integrable first Plebanski heavenly equation:

\[\sum_{m=1}^{k} (u_{yx_2m-1}u_{tx_2m} - u_{yx_2m}u_{tx_2m-1}) = 1, \]

and modified Plebanski one:

\[u_{yt} - \sum_{m=1}^{k} (u_{yx_2m}u_{x_2x_2m-1} - u_{yx_2m-1}u_{x_2x_2m}) = 0, \]

are obtained with use of the loop Lie algebra \(\text{diff}(\mathbb{T}^{2k}) \), \(k \in \mathbb{N} \), in the cases of one singularity at the point \(\infty \) and two singularities at the points \(0 \) and \(\infty \) respectively. There is investigated the relation of the first Plebanski heavenly equation to the seed element

\[\tilde{l} = \lambda^{-1}(du_y + dt) \]

where \(u \in C^2(\mathbb{T}^{2k} \times \mathbb{R}^2; \mathbb{R}) \), \((x_1, x_2, \ldots, x_{2k-1}, x_{2k}) \in \mathbb{T}^{2k} \) and \(\lambda \in \mathbb{C} \setminus \{0\} \), and modified Plebanski one to the seed element

\[\tilde{l} = d(\lambda^{-1}u_y + u_x - u_\xi + \lambda x_1 + \lambda x_2). \]

The Lax-Sato integrable Husain heavenly equation:

\[u_{yy} + u_{tt} + \sum_{m=1}^{k} (u_{yx_2m-1}u_{tx_2m} - u_{yx_2m}u_{x_2x_2m-1}) = 0, \]

is shown to be generated by the seed element

\[\tilde{l} = (\lambda - i)^{-1}d(u_y + iu_t) + (\lambda + i)^{-1}d(u_y - iu_t) = 2(\lambda^2 + 1)^{-1}(\lambda du_y - du_t), \]

where \(u \in C^2(\mathbb{T}^{2k} \times \mathbb{R}^2; \mathbb{R}) \), \((x_1, x_2, \ldots, x_{2k-1}, x_{2k}) \in \mathbb{T}^{2k} \), \(\lambda \in \mathbb{C} \setminus \{-i; i\} \) and \(i^2 = -1 \), from a dense subspace of the dual space to the loop Lie algebra \(\text{diff}(\mathbb{T}^{2k}) \), \(k \in \mathbb{N} \), in the case of complex conjugate singularities \(i \) and \(-i\).

A NOVEL LYAPUNOV TYPE INEQUALITY FOR LINEAR DISCRETE HAMILTONIAN SYSTEMS

Kayar Z., Zafer A.

Key words: Discrete Hamiltonian systems, Lyapunov inequality, matrix measure on discrete systems.

AMS Subject Classification: 34K05, 34C10, 34A30, 34A40, 34B09

We obtain a new Lyapunov type inequality for the Hamiltonian system of $2m$-difference equations, $m \geq 1$, of the form

$$
\Delta x(n) = A(n)x(n + 1) + B(n)y(n),
\Delta y(n) = -C(n)x(n + 1) - A^T(n)y(n), \quad n \in \mathbb{Z},
$$

where $A(n)$ is an $m \times m$ matrix function with $(I - A(n))^{-1}$ exists and $B(n), C(n)$ are $m \times m$ matrix functions with $B^T(n) = B(n), C^T(n) = C(n)$ and Δ is the forward difference operator defined by $\Delta f(n) = f(n + 1) - f(n)$.

The celebrated Lyapunov inequality was established by Lyapunov [1] in 1893 for the second order linear differential equation

$$x'' + q(t)x = 0 \tag{2}$$

as follows.

Theorem 1 Let $q(t) \geq 0$, $q(t) \not\equiv 0$. If $x(t)$ is a nontrivial solution of (2) with $x(a) = 0 = x(b)$, where $a, b \in \mathbb{R}$ with $a < b$ are consecutive zeros, i.e $x(t) \neq 0$ for $t \in (a, b)$, then the so-called Lyapunov inequality

$$
\int_a^b q(t)dt > \frac{4}{b - a} \tag{3}
$$

holds.

When $m = 1$ in system (1), as far as we know, the first and the last results obtained for the planar discrete Hamiltonian system

$$
\Delta x(n) = a(n)x(n + 1) + b(n)y(n),
\Delta y(n) = -c(n)x(n + 1) - a(n)y(n), \quad n \in \mathbb{Z},
$$

(4)

can be found in [2] and [3] as

$$
\sum_{n=n_1}^{n_2} |a(n)| + \left(\sum_{n=n_1}^{n_2} b(n) \right)^{1/2} \left(\sum_{n=n_1}^{n_2} c^+(n) \right)^{1/2} \geq 2, \tag{5}
$$
\[\exp \left(\sum_{n=n_1}^{n_2-2} |\ln (|1-a(n)|)| \right) \left(\sum_{n=n_1}^{n_2-1} b(n) \right) \left(\sum_{n=n_1}^{n_2-2} c^+(n) \right) \geq 4, \quad (6) \]

respectively, where \(n_1, n_2 \in \mathbb{Z} \) with \(n_1 + 1 < n_2 \) and \(x(n_1) = 0 = x(n_2) \) with \(x(n) \neq 0 \) on \((n_1, n_2)\mathbb{Z}\), \(1 - a(n) \neq 0 \), \(b(n) > 0 \) and \(c^+(n) = \max \{c(n), 0\} \).

Since Lyapunov type inequalities are useful tools in qualitative analysis of solutions of differential and difference equations and systems and to the best of our knowledge, there is no result for the general Hamiltonian system (1), our main aim is to generalize the previous related results, particularly, inequality (5) and inequality (6), which are obtained for planar discrete Hamiltonian system (4), to the more general Hamiltonian system (1). This generalization provides a new Lyapunov type inequality for system (1) and usage of this new inequality may fulfill the gap in knowledge about qualitative nature of solutions of discrete Hamiltonian system (1).

Acknowledgement: This work was supported by Research Fund of the Van Yüziüncü Yıl University. Project Number: 8218.
EXISTENCE AND STABILITY OF TRAVELING WAVES IN PARABOLIC SYSTEMS OF DIFFERENTIAL EQUATIONS WITH WEAK DIFFUSION

Klevchuk I.I., Hrytchuk M.V.

Keywords: parabolic system, bifurcation, integral manifold, stability, traveling wave.

AMS Subject Classification: 35B10, 35B25, 35C07

The existence of countably many cycles in hyperbolic systems of differential equations with transformed argument were considered in [3]. The existence and stability of an arbitrarily large finite number of cycles for the equation of spin combustion with delay were considered in [4]. We study the existence and stability of an arbitrarily large finite number of cycles for a parabolic system with delay and weak diffusion. Similar problems for partial differential equations were studied in numerous works (see, e.g., [1 – 6]).

1. Traveling waves for parabolic equations with weak diffusion. Consider a system

\[
\frac{\partial u_1}{\partial t} = \varepsilon \gamma \frac{\partial^2 u_1}{\partial x^2} - \varepsilon \phi \frac{\partial^2 u_2}{\partial x^2} - \omega_0 u_2 + \varepsilon (\alpha u_1 - \beta u_2) + (d_0 u_1 - c_0 u_2)(u_1^2 + u_2^2),
\]

\[
\frac{\partial u_2}{\partial t} = \varepsilon \gamma \frac{\partial^2 u_2}{\partial x^2} + \varepsilon \phi \frac{\partial^2 u_1}{\partial x^2} - \omega_0 u_1 + \varepsilon (\alpha u_2 + \beta u_1) + (d_0 u_2 + c_0 u_1)(u_1^2 + u_2^2)
\]

(1)

with periodic condition

\[u_1(t, x + 2\pi) = u_1(t, x), \quad u_2(t, x + 2\pi) = u_2(t, x),\]

(2)

where \(\varepsilon\) is a small positive parameter, \(\omega_0 > 0\), \(\alpha > 0\), \(\gamma > 0\), \(d_0 < 0\).

Passing to the complex variables \(u = u_1 + iu_2\) and \(\bar{u} = u_1 - iu_2\), we arrive at the equation

\[
\frac{\partial u}{\partial t} = i\omega_0 u + \varepsilon \left[(\gamma + i\phi) \frac{\partial^2 u}{\partial x^2} + (\alpha + i\beta) u \right] + (d_0 + ic_0) u^2 \bar{u}.
\]

(3)

In the present paper, we investigate the existence and stability of the wave solutions of problem (1), (2). The solution of equation (3) is sought in the form of traveling wave \(u = \theta(y)\), \(y = \sigma t + x\), where the function \(\theta(y)\) is periodic with period 2\(\pi\). We arrive at the equation

\[
\sigma \frac{d\theta}{dy} = i\omega_0 \theta + \varepsilon \left[(\gamma + i\phi) \frac{d^2 \theta}{dy^2} + (\alpha + i\beta) \theta \right] + (d_0 + ic_0) \theta^2 \bar{\theta}.
\]

By the change of variables \(\frac{d\theta}{dy} = \theta_1\), this equation is reduced to the following system:

\[
\frac{d\theta}{dy} = \theta_1, \quad \sigma \theta_1 = i\omega_0 \theta + \varepsilon \left[(\gamma + i\phi) \frac{d\theta_1}{dy} + (\alpha + i\beta) \theta_1 \right] + (d_0 + ic_0) \theta^2 \bar{\theta}.
\]

(4)
The integral manifold of system (4) can be represented in the form
\[\theta_1 = \frac{i\omega_0}{\sigma} \theta + \varepsilon \left[\frac{\alpha + i\beta}{\sigma} \theta - \frac{\omega_0^2}{\sigma^3}(\gamma + i\delta)\theta \right] + \frac{d_0 + ic_0}{\sigma} \theta^2 \theta + \ldots. \]

Here, we keep the terms of order \(O(\varepsilon) \) in the linear terms and the terms of order \(O(1) \) in the nonlinear terms. The equation on this manifold takes the form
\[\frac{d\theta}{dy} = \frac{i\omega_0}{\sigma} \theta + \varepsilon \left[\frac{\alpha + i\beta}{\sigma} \theta - \frac{\omega_0^2}{\sigma^3}(\gamma + i\delta)\theta \right] + \frac{d_0 + ic_0}{\sigma} \theta^2 \theta + \ldots. \] (5)

Passing to the polar coordinates \(\theta = r \exp(i\varphi) \) in Eq. (5), we get
\[\frac{dr}{dy} = \varepsilon \left(\frac{\alpha}{\sigma} - \frac{\gamma}{\sigma^2}\omega_0^2 \right) r + \frac{d_0}{\sigma} r^3. \] (6)

Let \(d_0 < 0 \) and let the inequality \(\alpha > \frac{\gamma}{\sigma^2}\omega_0^2 \) be true. Then Eq. (6) possesses the stationary solution
\[r = \sqrt{\varepsilon} R_0, \quad R_0 = \sqrt{\left(\frac{\alpha - \frac{\gamma}{\sigma^2}\omega_0^2} \right)|d_0|^{-1}}, \]

hence, the periodic solution of Eq. (5) takes the form \(\theta = \sqrt{\varepsilon} R_0 \exp \left(\frac{i\omega_0}{\sigma} y \right) + O(\varepsilon) \). Since the function \(\theta \) is periodic with period \(2\pi \), we get \(\sigma = \frac{\omega_0}{\varepsilon} + O(\varepsilon), n = \pm 1, \pm 2, \ldots \). Thus, the periodic solution of Eq. (3) takes the form
\[u_n = u_n(t, x) = \sqrt{\varepsilon} r_n \exp(\varepsilon(\chi_n(\varepsilon)t + nx)) + O(\varepsilon), \] (7)

where \(r_n = \sqrt{\left(\frac{\alpha - n^2\gamma} \right)|d_0|^{-1}}, \chi_n(\varepsilon) = \omega_0 + \varepsilon\beta + \varepsilon c_0 r_n^2 - \varepsilon \delta n^2, n \in \mathbb{Z} \). Thus, the periodic solution of problem (1), (2) takes the form
\[u_1 = \sqrt{\varepsilon} r_n \cos(\chi_n(\varepsilon)t + nx), \quad u_2 = \sqrt{\varepsilon} r_n \sin(\chi_n(\varepsilon)t + nx), \quad n \in \mathbb{Z}. \] (8)

The following statement is true:

Theorem 1. Let \(\omega_0 > 0, \alpha > 0, \gamma > 0, d_0 < 0 \) and let the inequality \(\alpha > \gamma n^2 \) be true for some integer \(n \). Then there exists \(\varepsilon_0 > 0 \) such that, for \(0 < \varepsilon < \varepsilon_0 \), problem (1), (2) has solutions (8) periodic in \(t \).

2. Stability of periodic solutions. The equation in variations in the vicinity of the solution (7) of equation (3) takes the form
\[\frac{\partial v}{\partial t} = i\omega_0 v + \varepsilon \left[(\gamma + i\delta) \frac{\partial^2 v}{\partial x^2} + (\alpha + i\beta) v \right] + \varepsilon(d_0 + ic_0)(2r_n^2 v + w_n^2 \overline{v}), \] (9)

where \(v_n = r_n \exp(i(\chi_n(\varepsilon)t + nx)), \chi_n(\varepsilon) = \omega_0 + \varepsilon\beta + \varepsilon c_0 r_n^2 - \varepsilon \delta n^2 \). By the change of variables \(v = w \exp(i\chi_n(\varepsilon)t) \) in Eq. (9), we find
\[\frac{\partial w}{\partial t} = \varepsilon \left[(\gamma + i\delta) \frac{\partial^2 w}{\partial x^2} + (\alpha + i\delta n^2 + d_0 r_n^2) w + (d_0 + ic_0)r_n^2(w + \overline{w} \exp(2inx)) \right]. \] (10)

We seek the solution of Eq. (10) in the form of Fourier series in the complex form
\[w(t, x) = \sum_{k=\pm \infty} y_k(t) \exp(ikx), \quad \overline{w}(t, x) = \sum_{k=\pm \infty} v_k(t) \exp(ikx). \] (11)
Substituting (11) in (10) and equating the coefficients of \(\exp(ikx) \), we obtain the equations for the coefficients of the Fourier series

\[
\frac{dy_{k+n}}{dt} = \varepsilon \left[(\alpha + i\delta n^2 + d_0 r_n^2) y_{k+n} - (\gamma + i\delta)(k + n)^2 y_{k+n} + (d_0 + i\varepsilon 0) r_n^2 (y_{k+n} + v_{k-n}) \right].
\] (12)

Similarly, substituting (11) in the equation adjoint to (10), we get

\[
\frac{dv_{k-n}}{dt} = \varepsilon \left[(\alpha - i\delta n^2 + d_0 r_n^2) v_{k-n} - (\gamma - i\delta)(k - n)^2 v_{k-n} + (d_0 - i\varepsilon 0) r_n^2 (v_{k-n} + y_{k+n}) \right].
\] (13)

The stability of the wave solutions of problem (1), (2) is determined by the stability of system (12), (13) with a parameter \(k \in \mathbb{Z} \). By the change of variables \(y_{k+n} = z_{k+n} \exp(-2i\varepsilon \delta kn) \), \(v_{k-n} = w_{k-n} \exp(-2i\varepsilon \delta kn) \) in system (12), (13), we get a linear system with the matrix

\[
\varepsilon A = \left(\begin{array}{cc} \varepsilon a_{11} & \varepsilon a_{12} \\ \varepsilon a_{21} & \varepsilon a_{22} \end{array} \right).
\]

The matrix \(A \) has an eigenvalue equal to zero for \(k = 0 \). Since the sum of diagonal elements of the matrix \(A \) is negative, \(a = a_{11} + a_{22} \leq 0 \), for the orbital exponential stability of the periodic solution \(u_n(t, x) \), it is necessary and sufficient that the condition \(a^2 c > f^2 \), where \(c = \text{Re}(\text{det}(A)), f = \text{Im}(\text{det}(A)), f = 4\gamma kn(c_0 r_n^2 - \delta k^2) \), be satisfied for \(k \neq 0 \), i.e.

\[
(d_0 r_n^2 - \gamma k^2)^2 (\gamma^2 k^2 + \delta^2 k^2 - 2\gamma d_0 r_n^2 - 4\gamma^2 n^2 - 2\delta c_0 r_n^2) > 4\gamma^2 n^2 (c_0 r_n^2 - \delta k^2)^2,
\] (14)

where \(r_n^2 = (\gamma n^2 - \alpha)/d_0 \).

Theorem 2. The traveling waves \(u_n(t, x) \) of problem (1), (2) are exponentially orbitally stable if and only if condition (14) is satisfied for all \(k \in \mathbb{Z} \setminus \{0\} \).

As an example, we consider a system (1), where \(\delta = 0, c_0 = 0 \). Hence, Theorem 1 implies that the periodic solution

\[
u_n = \sqrt{\varepsilon(\alpha - \gamma n^2)\varepsilon d_0}^{-1} \left(\begin{array}{c} \cos(\omega_0 t + nx) \\ \sin(\omega_0 t + nx) \end{array} \right),
\]

exists for \(d_0 < 0 \) and \(\gamma n^2 < \alpha \). By Theorem 2, the traveling waves \(u_n(t, x) \) are exponentially orbitally stable if and only if \(n^2 < \frac{1}{12\gamma}(\gamma + 2\alpha) \).

Let R be the set of real numbers and \mathbb{R}^n be the n-dimensional Euclidean space ($n \geq 2$). We denote by $\text{conv}(\mathbb{R}^n)$ the set of all nonempty compact and convex subsets of \mathbb{R}^n. For two given sets $X, Y \in \text{conv}(\mathbb{R}^n)$ and $\lambda \in \mathbb{R}$, the Minkowski sum and scalar multiple are defined by $X + Y = \{x + y | x \in X, y \in Y\}$ and $\lambda X = \{\lambda x | x \in X\}$. We consider the Hausdorff distance $h(\cdot, \cdot)$ given by $h(X, Y) = \min\{r \geq 0 | X \subset Y + B_r(0), Y \subset \mathcal{R}^n B_r(0)\}$, where $B_r(0) = \{x \in \mathbb{R}^n | \|x\| \leq r\}$ is the closed ball with radius r centered at the origin (\mathcal{R}^n denotes the Euclidean norm). It is known that $(\text{conv}(\mathbb{R}^n), h)$ is a complete metric space. However, $\text{conv}(\mathbb{R}^n)$ is not a linear space since it does not contain inverse elements for the addition, and therefore the difference is not well defined, i.e. if $A \in \text{conv}(\mathbb{R}^n)$ and $A \neq \{0\}$, then $A + (-1)A \neq \{0\}$. As a consequence, alternative formulations for difference have been suggested. One of these alternatives is the Hukuhara difference [1].

Definition 1 [1]. Let $X, Y, Z \in \text{conv}(\mathbb{R}^n)$. The set Z is the Hukuhara difference (H-difference) of the sets X and Y, if $Z = X + Y$ and is denoted by $Z = X^H Y$.

In this case $X^H Y = \{0\}$ and also $(A + B)^H B = A$ for any $A, B \in \text{conv}(\mathbb{R}^n)$. Also, we note that $X^H Y \neq X + (-1)Y$.

At the same time, M. Hukuhara introduced the concept of H-differentiability [1] for set-valued functions by using the H-difference.

Definition 2 [1]. Let $X : [0, T] \rightarrow \text{conv}(\mathbb{R}^n)$ be a set-valued mapping. We say that the mapping $X(\cdot)$ has Hukuhara derivative (H-derivative) $D_H X(t)$ at $t \in (0, T)$, if for all $\Delta > 0$ that are sufficiently close to 0, the H-differences and the limits exist

$$\lim_{\Delta \to 0} \Delta^{-1} (X(t + \Delta)^H X(t)) = \lim_{\Delta \to 0} \Delta^{-1} (X(t)^H X(t - \Delta)) = D_H X(t).$$

Theorem 1 [1]. If the mapping $X : [0, T] \rightarrow \text{conv}(\mathbb{R}^n)$ is H-differentiable on $[0, T]$, then $X(t) = X(0) + \int_0^t D_H X(s)ds$, where the integral is understood in the sense of M. Hukuhara [1].
Corollary 1. If the set-valued mapping $X(\cdot)$ is H-differentiable on $[0, T]$, then $diam(X(\cdot))$ is a non-decreasing function on $[0, T]$.

Corollary 2. If the function $diam(X(\cdot))$ is a decreasing function on $[0, T]$, then the set-valued mapping $X(\cdot)$ is not H-differentiable on $[0, T]$.

Subsequently, other definitions of derivatives were introduced for set-valued mappings to eliminate this disadvantage. A.V. Plotnikov and N.V. Skripnik took advantage of some approaches that were used in [2] and introduced a new definition of a derivative, and studied its properties [3,4].

Definition 3 [3]. Let $X : [0, T] \to conv(R^n)$ be a set-valued mapping. We say that $X(\cdot)$ has a PS-derivative $D_{ps}X(t) \in conv(R^n)$ at $t \in (0, T)$, if for all $\Delta > 0$ that are sufficiently close to 0, the H-differences and the limits exist in at least one of the following expressions:

\[\lim_{\Delta \to 0} \Delta^{-1}(X(t+\Delta) - X(t)) = D_{ps}X(t),\]
\[\lim_{\Delta \to 0} \Delta^{-1}(X(t) - X(t-\Delta)) = D_{ps}X(t),\]
\[\lim_{\Delta \to 0} \Delta^{-1}(X(t+\Delta) - X(t)) = D_{ps}X(t),\]
\[\lim_{\Delta \to 0} \Delta^{-1}(X(t) - X(t-\Delta)) = D_{ps}X(t).\]

Theorem 2 [3]. If the mapping $X : [0, T] \to conv(R^n)$ is PS-differentiable on $[0, T]$, then if function $diam(X(t))$ is a non-decreasing (decreasing) function on $[0, T]$, then

\[X(t) = X(0) + \int_0^t D_{ps}X(s)ds\]
\[X(t) = X(0) - \int_0^t D_{ps}X(s)ds\]

Definition 4 [7]. Let $X : [0, T] \to conv(R^n)$ be a set-valued mapping. We say that $X(\cdot)$ has a BG-derivative $D_{bg}X(t) \in conv(R^n)$ at $t \in (0, T)$, if for all $\Delta > 0$ that are sufficiently close to 0, the H-differences and the limits exist in at least one of the following expressions:

\[\lim_{\Delta \to 0} \Delta^{-1}(X(t+\Delta) - X(t)) = D_{bg}X(t),\]
\[\lim_{\Delta \to 0} \Delta^{-1}(X(t) - X(t-\Delta)) = D_{bg}X(t),\]
\[\lim_{\Delta \to 0} \Delta^{-1}(X(t+\Delta) - X(t)) = D_{bg}X(t),\]
\[\lim_{\Delta \to 0} \Delta^{-1}(X(t) - X(t-\Delta)) = D_{bg}X(t).\]

Remark 1. In [5] M.T. Malinowski considered set-valued mappings that satisfy condition (ii) and called this derivative a second type Hukuhara derivative.

Theorem 3 [7]. If the mapping $X : [0, T] \to conv(R^n)$ is BG-differentiable on $[0, T]$, then if function $diam(X(t))$ is a non-decreasing (decreasing) function on $[0, T]$, then

\[X(t) = X(0) + \int_0^t D_{bg}X(s)ds\]
\[X(t) = X(0) - \int_0^t D_{bg}X(s)ds\]

Remark 2. If the set-valued mapping $X(\cdot)$ is H-differentiable on $[0, T]$ then it is BG-differentiable on $[0, T]$ and PS-differentiable on $[0, T]$ as well as $D_{H}X(t) = D_{ps}X(t) = D_{bg}X(t)$.

61
Remark 3. There exist set-valued mappings $X(\cdot)$ such that $D_{bg}X(t) \neq D_{ps}X(t)$ for any t.

Now, we consider linear set-valued differential equations

$$DX(t) = aX(t), \quad X(0) = X_0,$$

where $a \in R, (a \neq 0)$; $X : [0, T] \rightarrow \text{conv}(R^n)$ is a set-valued mapping; $DX(t)$ is one of the previously considered derivatives $(D_H X(t), D_{ps} X(t), D_{bg} (t))$ of the set-valued mapping $X(t)$.

Definition 5. A set-valued mapping $X(\cdot)$ is called a solution of (1) if it is continuously differentiable and satisfies system (1) everywhere on $[0,T]$.

As known, linear differential equation (1) with Hukuhara derivative has a unique solution on the interval $[0,T]$. It is also obvious that function $diam(X(t))$ is a non-decreasing function on $[0,T]$.

Now, we consider linear set-valued differential equation (1) with PS-derivative and BG-derivative. By [3-7], set-valued differential equation (1) with PS(BG)-derivative has at least one solution. Moreover, one of these solutions (the one whose diameter is a non-decreasing function) coincides with the solution of the corresponding Hukuhara differential equation and always exists. The second solution that may exist is such that its diameter is a decreasing function. These solutions are called basic (first and second basic solutions). There may also be mixed solutions such that the diameter is not monotonic function.

Proposition. For set-valued differential equation (1) with PS(BG)-derivative the following statements are true:

1) if H-difference $X_0 H_{(-1)}X_0$ exists, then differential equation (1) with PS(BG)-derivative has two basic solutions;

2) if H-difference $X_0 H_{(-1)}X_0$ does not exist, then

a) if $a > 0$, then differential equation (1) with PS-derivative has two basic solutions and differential equation (1) with BG-derivative has one basic solution;

b) if $a < 0$, then differential equation (1) with BG-derivative has two basic solutions and differential equation (1) with PS-derivative has one basic solution.

ON ASYMPTOTIC PHASE OF DYNAMICAL SYSTEM HYPERBOLIC ALONG ATTRACTION INVARIANT MANIFOLD

Luchko A.V., Parasyuk I.O.

Key words: asymptotic phase, stable invariant manifold, hyperbolic dynamical system.

AMS Subject Classification: 34D35, 37D05, 37D10.

It is well known that under quite general conditions, motions of dissipative dynamical systems evolve towards attracting invariant sets. One may reasonably expect that the behavior of system on attracting set adequately displays main asymptotic properties of system motions in the whole phase space.

Let \(\left\{ g^t(\cdot) : \mathcal{M} \to \mathcal{M} \right\} \) be a flow on a metric space \((\mathcal{M}, \rho(\cdot, \cdot))\) with metric \(\rho(\cdot, \cdot) : \mathcal{M} \to \mathbb{R}_+\), and let there exists an invariant attracting set \(A \subset \mathcal{M}\) with a basin \(B\):

\[
\lim_{t \to \infty} \rho \left(g^t(p), A \right) = 0 \quad \forall p \in B.
\]

It is said that a motion \(t \mapsto g^t(p), p \in B\), has an asymptotic phase if there exists \(p_* \in \mathcal{M}\) such that

\[
\rho \left(g^t(p), g^t(p_*) \right) \to 0, \quad t \to \infty.
\]

The following problem arises: what are the conditions guaranteeing the existence of asymptotic phase? The answer to this problem is rather important, since the existence of asymptotic phase for any \(p \in B\) ensures that any motion starting in \(B\) eventually behaves like a corresponding motion on \(A\), and thus the flow restricted to attractor \(A\) faithfully describes the long-time behavior of the motions starting in \(B\). Nevertheless there are cases where no motion starting outside the attracting invariant set exhibits the same long time behavior as a motion on the set.

As an example, consider the planar system

\[
\begin{align*}
\dot{x} &= x(1 - x^2 - y^2)^3 - y(1 + x^2 + y^2), \\
\dot{y} &= x(1 + x^2 + y^2) + y(1 - x^2 - y^2)^3,
\end{align*}
\]

which in polar coordinates \((\varphi \mod 2\pi, r)\) takes the form

\[
\dot{\varphi} = 1 + r^2, \quad \dot{r} = r \left(1 - r^2 \right)^3.
\]

The limit cycle of the system, \(r = 1\), attracts all the orbits except the equilibrium \((0,0)\). Let \(\varphi(t; \varphi_0, r_0)\) be the \(\varphi\)-coordinate of the motion starting at point \((r_0 \cos \varphi_0, r_0 \sin \varphi_0)\). Obviously, \(\varphi(t; \varphi_*, 1) = 2t + \varphi_*\), but if \(r_0 \not\in \{0, 1\}\), then it is not hard to show that

\[
\lim_{t \to \infty} |\varphi(t; \varphi_0, r_0) - \varphi(t; \varphi_*, 1)| = \infty \quad \forall \{\varphi_0, \varphi_*\} \subset [0, 2\pi).
\]
As was pointed out in [1], the conditions ensuring the existence of an asymptotic phase involve the requirement that the decay rate of solutions toward the manifold is greater than the decay rate of the solutions within the manifold. The aim of the present report is to show that such a condition is not a necessary one. Like in [2], we consider the case of asymptotically stable hyperbolic invariant manifold, but in contrary to the mentioned article we deal with a flow rather then a cascade. Our main observation is that one can weaken the expanding structure condition [2] by abandoning the requirement of asymptotic phase uniqueness.

Let a C^2-vector field v generates the flow $\{\chi^t(\cdot) : \mathbb{R}^n \rightarrow \mathbb{R}^n\}_{t \in \mathbb{R}}$ in space \mathbb{R}^n endowed with scalar product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\| := \sqrt{\langle \cdot, \cdot \rangle}$. Assume that there is a domain $D \subset \mathbb{R}^n$ containing a compact attracting invariant C^1-sub-manifold $M \hookrightarrow D$ of dimension $m < n$:

$$\chi^t(M) = M \quad \forall t \in \mathbb{R}; \quad \lim_{t \rightarrow \infty} \inf_{\xi \in M} \|\chi^t(x) - \xi\| = 0 \quad \forall x \in D.$$

Denote the normed fundamental matrix of variational system $\dot{y} = v^t(\chi^t(x)) y$ as $X^t(x)$. We say that the flow $\{\chi^t(\cdot)\}$ is hyperbolic along the manifold M (equivalently, the manifold M is said to be hyperbolic w.r.t. the flow $\{\chi^t(\cdot)\}$) if:

1. at every point $x \in M$, the tangent space $T_x \mathbb{R}^n \simeq \mathbb{R}^n$ is decomposed into the direct sum of three sub-spaces:

$$T_x \mathbb{R}^n = \mathbb{L}_{-x}^0 \oplus \mathbb{L}_{x}^+ \oplus \mathbb{L}_{x}^0,$$

where $\mathbb{L}_{x}^0 := \{\lambda v(x)\}_{\lambda \in \mathbb{R}}$ is a 1-D subspace spanned by the vector $v(x) := \frac{d}{dt}|_{t=0} X^t(x)$;

2. the correspondences $M \ni x \mapsto \mathbb{L}_{x}^\pm$ define continuous and X^t-invariant fields of planes $\{\mathbb{L}_{x}^\pm\}_{x \in M}$:

$$X^t(x) \mathbb{L}_{x}^\pm = \mathbb{L}_{\chi_t(x)}^\pm \quad \forall (t, x) \in \mathbb{R} \times M;$$

3. there exist constants $c \geq 1, \alpha > 0$ such that

$$\|X^t(x) \eta\| \leq c e^{-\alpha t} \|\eta\| \quad \forall t \geq 0, \forall x \in M, \forall \eta \in \mathbb{L}_{x}^-,$$

$$\|X^t(x) \eta\| \leq c e^{\alpha t} \|\eta\| \quad \forall t \leq 0, \forall x \in M, \forall \eta \in \mathbb{L}_{x}^+.$$

Observe that since the fields of plains $\{T_x M\}_{x \in M}$ and $\{\mathbb{L}_{x}^\pm\}_{x \in M}$ are X^t-invariant, then the flow on invariant manifold, $\{\chi^t(\cdot) : M \rightarrow M\}_{t \in \mathbb{R}}$, has the structure of Anosov dynamical system (see, e.g., [3]).

Theorem. If the flow $\{\chi^t(\cdot)\}$ is hyperbolic along the attracting invariant manifold M, then there is a neighborhood U of M such that any motion starting in U has an asymptotic phase.

The proof of this theorem is based on construction of local contracting foliation generated by the fields of planes $\{\mathbb{L}_{x}^\pm\}_{x \in M}$. The existence of such a foliation can be obtained by appropriate interpolation of corresponding results [2] concerning diffeomorphisms. However, the paper [2] does not contain any details on the issue. To prove that a neighborhood of stable invariant manifold is filled with motions for each of which there exists an asymptotic phase we apply the Brouwer fixed point theorem, rather then the theorem on invariance of domain for homeomorphisms as in [2].

Let $V_{i,j}(t)$ be concentration of antigens, $F_{i,j}(t)$ be concentration of antibodies in biopixel (i,j), $i,j = 1, N$.

The model is based on the following biological assumptions for arbitrary biopixel (i,j).

1. We have some constant birthrate $\beta > 0$ for antigen population.

2. Antigens are detected, bound and finally neutralized by antibodies with some probability rate $\gamma > 0$.

3. We have some constant death rate of antibodies $\mu_f > 0$.

4. We assume that when the antibody colonies are absent, the antigen colonies are governed by the well known delay logistic equation:

$$\frac{dV_{i,j}(t)}{dt} = (\beta - \delta_v V_{i,j}(t - \tau))V_{i,j}(t),$$ \hspace{1cm} (1)

where β and δ_v are positive numbers and $\tau \geq 0$ denotes delay in the negative feedback of the antigen colonies.

5. The antibody decreases the average growth rate of antigen linearly with a certain time delay τ; this assumption corresponds to the fact that antibodies cannot detect and bind antigen instantly; antibodies have to spend τ units of time before they are capable of decreasing the average growth rate of the antigen colonies; these aspects are incorporated in the antigen dynamics by the inclusion of the term $-\gamma F_{i,j}(t - \tau)$ where γ is a positive constant which can vary depending on the specific colonies of antibodies and antigens.

6. In the absence of antigen colonies, the average growth rate of the antibody colonies decreases exponentially due to the presence of $-\mu_f$ in the antibody dynamics and so as to incorporate the negative effects of antibody crowding we have included the term $-\delta_f F_{i,j}(t)$ in the antibody dynamics.
7. The positive feedback $\eta \gamma V_{i,j}(t - \tau)$ in the average growth rate of the antibody has a delay since mature adult antibodies can only contribute to the production of antibody biomass; one can consider the delay τ in $\eta \gamma V_{i,j}(t - \tau)$ as a delay in antibody maturation.

8. While the last delay need not be the same as the delay in the hunting term and in the term governing antigen colonies, we have retained this for simplicity. We remark that the delays in the antibody term, antibody replacement term and antigen negative feedback term can be made different and a similar analysis can be followed.

9. We have some diffusion of antigens from four neighboring pixels $(i - 1, j)$, $(i + 1, j)$, $(i, j - 1)$, $(i, j + 1)$ with diffusion $D > 0$. Here we consider only diffusion of antigens, because the model describes so-called "competitive" configuration of immunosensor. When considering competitive configuration of immunosensor, the factors immobilized on the biosensor matrix are antigens, while the antibodies play the role of analytes or particles to be detected.

10. We consider surface lateral diffusion (movement of molecules on the surface on solid phase toward an immobilized molecules). Moreover, there are works which assume and consider surface diffusion as an entirely independent stage.

11. We extend definition of usual diffusion operator in case of surface diffusion in the following way. Let $n \in (0, 1]$ be a factor of diffusion disbalance. It means that only nth portion of antigens of the pixel (i, j) may be included into diffusion process to any neighboring pixel as a result of surface diffusion.

For the reasonings given we consider a very simple delayed antibody-antigen competition model for biopixels two-dimensional array which is based on well-known Marchuk model and using spatial operator \hat{S}

$$
\begin{align*}
\frac{dV_{i,j}(t)}{dt} &= (\beta - \gamma F_{i,j}(t - \tau) - \delta V_{i,j}(t - \tau))V_{i,j}(t) + \hat{S}\{V_{i,j}\}, \\
\frac{dF_{i,j}(t)}{dt} &= (-\mu_f + \eta \gamma V_{i,j}(t - \tau) - \delta_f F_{i,j}(t))F_{i,j}(t)
\end{align*}
$$

with given initial functions

$$
\begin{align*}
V_{i,j}(t) &= V_{i,j}^0(t) \geq 0, & F_{i,j}(t) &= F_{i,j}^0(t) \geq 0, & t \in [-\tau, 0), \\
V_{i,j}(0), F_{i,j}(0) &> 0.
\end{align*}
$$

For a square $N \times N$ array of traps, we use the following discrete diffusion form of the spatial operator

$$
\hat{S}\{V_{i,j}\} = \begin{cases}
D \left[V_{i+1,j} - 2nV_{i,j} \right] & i, j = 1 \\
D \left[V_{i,j+1} - 3nV_{i,j} \right] & i = 1, j \in [2, N - 1] \\
D \left[V_{i,j-1} - 3nV_{i,j} \right] & i = \in \{2, N - 1\}, j = N \\
D \left[V_{i,j} - 2nV_{i,j} \right] & i = N, j = N \\
D \left[V_{i,j+1} - 3nV_{i,j} \right] & i = N, j \in \{2, N - 1\} \\
D \left[V_{i,j-1} - 3nV_{i,j} \right] & i = \in \{2, N - 1\}, j = 1 \\
D \left[V_{i,j+1} + V_{i,j-1} + V_{i,j+1} - 4nV_{i,j} \right] & i, j \in \{2, N - 1\}
\end{cases}
$$
Each colony is affected by the antigen produced in four neighboring colonies, two in each dimension of the array, separated by the equal distance Δ. We use the boundary condition $V_{i,j} = 0$ for the edges of the array $i, j = 0, N + 1$. Further we will use the following notation of the constant

$$k(i, j) = \begin{cases}
2 & i, j = 1; \quad i = 1, j = N; \quad i = N, j = N; \quad i = N, j = 1, \\
3 & i = 1, j \in 2, N - 1; \quad i = i, j = N; \quad i = N, j \in 2, N - 1; \\
4 & i, j \in 2, N - 1
\end{cases}$$

which will be used in manipulations with the spatial operator (4).

Results of modeling (2) are presented in [1-4]. It can be seen that qualitative behavior of the system is determined mostly by the time of immune response τ (or time delay), diffusion D and constant n.

Theorem. Assume that:

1. The basic reproduction numbers satisfy to

$$R_{0,i,j} > 1, \quad i, j = 1, N,$$

2. The value of time delay τ is less than τ^*. Here $\tau^* = \min\{\tau_1, \tau_2\}$, where

$$\tau_1 := \min_{i,j \in 1, N} \left[\frac{2K_1(i, j) - k(i, j)D^2 - 1}{\gamma V_{i,j}^* \left(\frac{\delta_v}{\gamma} + 1 \right) k(i, j)D^2 + \left(\frac{2\delta_v}{\gamma} + 1 \right) K_1(i, j) + \delta_v V_{i,j}^* + \frac{\delta_v}{\gamma} + (2\eta + \delta_f)F_{i,j}^*} \right] > 0,$$

$$\tau_2 := \min_{i, j \in 1, N} \left[\frac{2\delta_f}{K_1(i, j) + (\delta_v + 2\gamma) V_{i,j}^* + 1 + \delta_f F_{i,j}^*} \right] > 0,$$

where $K_1(i, j) := \frac{S(V_{i,j}^*)}{V_{i,j}^*} + k(i, j)Dn + \delta_v V_{i,j}^*$.

Then the positive equilibrium $E_{i,j}^* = \left(V_{i,j}^*, F_{i,j}^* \right)$, $i, j = 1, N$ of system (2) is uniformly asymptotically stable.

Consider on the interval \(I = [a, b] \) the second order nonlinear ordinary differential equation
\[
u''(t) = p(t)u(t) + f(t, u(t)) + h(t),
\]
with the boundary conditions
\[
u(a) = 0, \quad u(b) = 0,
\]
where \(h, p \in L(I; R) \) and \(f \in K(I \times R; R) \). By a solution of the problem (1), (2) we understand a function \(u \in \tilde{C}'(I, R) \), which satisfies equation (1) almost everywhere on \(I \) and satisfies conditions (2).

Along with (1), (2) we consider the homogeneous problem
\[
\begin{align*}
\quad w''(t) &= p(t)w(t) \quad \text{for} \quad t \in I, \\
\quad w(a) &= 0, \quad w(b) = 0.
\end{align*}
\]

At present, primarily is studied the case when the homogeneous problem (3), (4) has only a trivial solution i.e., the non resonance case. The case when problem (3), (4) has the nontrivial solution is still little investigated and the majority of the authors study the case when \(p \) is constant function and this constant is the first eigenvalue of linear problem (see, for instance, [1], [2], [3], and references therein), i.e., when problem (1), (2) and equation (3) are of the following type
\[
\begin{align*}
u''(t) &= -\lambda^2 u(t) + f(t, u(t)) + h(t) \quad \text{for} \quad t \in [0, \pi], \\
u(0) &= 0, \quad u(\pi) = 0,
\end{align*}
\]
and
\[
\begin{align*}
w''(t) &= -\lambda^2 w(t) \quad \text{for} \quad t \in [0, \pi],
\end{align*}
\]
respectively, and \(\lambda = 1 \).

Here we establish the Landesman-Lazer’s type conditions of the solvability of problem (1), (2), when the function \(p \in L(I; R) \) is not necessarily constant, under the assumption that the nontrivial solution of homogeneous problem (3), (4) has the zeros in the open interval \([a, b]\) (for problem (5), (6) this is the case \(\lambda \geq 2 \).)

The following notation is used throughout the work:
\(N \) is the set of all natural numbers, \(R \) is the set of all real numbers, \(R_+ = [0, +\infty[\). \(C(I; R) \) is the Banach space of continuous functions \(u : I \to R \) with the norm \(\|u\|_C = \max\{|u(t)| : t \in I\} \) and...
\[\mathcal{C}(I; R) \] is the set of functions \(u : I \to R \) which are absolutely continuous together with their first derivatives. \(L(I; R) \) is the Banach space of Lebesgue integrable functions \(p : I \to R \) with the norm \(\| p \|_L = \int_a^b |p(s)|ds \). \(K(I \times R; R) \) is the set of functions \(f : I \times R \to R \) satisfying the Carathéodory conditions, i.e., \(f(\cdot, x) : I \to R \) is a measurable function for all \(x \in R \), \(f(t, \cdot) : R \to R \) is a continuous function for almost all \(t \in I \), and for arbitrary \(r \in R \), \(f^*(t, r) = \sup\{|f(t, x)| : |x| \leq r\} \in L(I, R) \). Also having \(x : I \to R \), we put:

\[[x(t)]_+ = (|x(t)| + x(t))/2, \quad [x(t)]_- = (|x(t)| - x(t))/2. \]

Definition 0.1 Let \(w \) is an arbitrary nonzero solution of problem (3), (4) then \(N_p \) \(\overset{\text{def}}{=} \{ t \in [a, b[: w(t) = 0 \} \).

Definition 0.2 Let \(f \in K(I \times R; R) \) and \(A = \{ t_1, \cdots, t_k \} \) be a finite subset of \(I \). Then we say \(f \in E(A) \) if for an arbitrary neighbourhood \(U(A) \) of the set \(A \), there exists \(\lambda_1 > 0 \) such that

\[\int_{U(A) \setminus U_\lambda} |f(s, x)| ds - \int_{U_\lambda} |f(s, x)| ds \geq 0 \quad \text{for} \quad |x| \geq r, \lambda_1 \leq \lambda_1, \]

where \(U(A) = I \cap U(A), \quad U_\lambda = I \cap \left(\bigcup_{j=1}^k [t_j - \lambda, t_j + \lambda] \right) \).

Remark 0.1 It is clear that if \(f(t, x) \overset{\text{def}}{=} f_0(t)g_0(x) \), where \(f_0 \in L(I; R) \) and \(g_0 \in C(I; R) \), then \(f \in E(A) \) for an arbitrary finite \(A \subset I \).

Here we study problem (3), (4) only under the assumption that \(N_p \neq \emptyset \).

Theorem 0.1 Let \(i \in \{0, 1\} \), \(r > 0 \), \(f \in E(N_p) \), functions \(f^+, f^- \in L(I; R) \) be such that

\[(-1)^i f(t, x) \leq -f^-(t) \quad \text{for} \quad x \leq -r, \quad f^+(t) \leq (-1)^i f(t, x) \quad \text{for} \quad x \geq r, \quad (8_i) \]

on \(I \), and condition

\[\lim_{\rho \to +\infty} \frac{1}{\rho} \int_a^b f^*(s, \rho) ds = 0, \quad (9) \]

holds. Let moreover \(w \) be an arbitrary nonzero solution of problem (3), (4) and there exists \(\varepsilon > 0 \) such that

\[-\int_a^b (f^+(s)[w(s)]_- + f^-(s)[w(s)]_+) ds + \varepsilon \gamma_r ||w||_C \leq (-1)^{i+1} \int_a^b h(s)w(s) ds \]

\[\leq \int_a^b (f^-(s)[w(s)]_- + f^+(s)[w(s)]_+) ds - \varepsilon \gamma_r ||w||_C, \quad (10_i) \]

where \(\gamma_r = \int_a^b f^*(s, r) ds \). Then problem (1), (2) has at least one solution.

Remark 0.2 If \(f \neq 0 \), then condition (10i) in Theorem 0.1 can be replaced by the condition

\[-\int_a^b (f^+(s)[w(s)]_- + f^-(s)[w(s)]_+) ds < (-1)^{i+1} \int_a^b h(s)w(s) ds < \]

\[< \int_a^b (f^-(s)[w(s)]_- + f^+(s)[w(s)]_+) ds. \quad (11_i) \]
Remark 0.3 If \(f \equiv 0 \), then \(f \equiv f^+ \equiv f^- \equiv 0 \), and Theorem 0.1 turns to the first part of Fredholm’s Theorem.

Theorem 0.2 Let \(i \in \{-1, 1\} \), \(r > 0 \), and the conditions

\[
(-1)^i f(t, x) \text{sgn } x \geq 0 \quad \text{for } |x| \geq r, \ t \in I,
\]

and (9) be satisfied. Let moreover there exist such sets \(I^+, I^- \subset I \) that

\[
\lim_{x \to \pm\infty} |f(t, x)| = +\infty \quad \text{uniformly on } I^+,
\]

and for an arbitrary solution \(w \) of problem (3), (4) the inequalities

\[
\int_{I^+} [w(s)]_+ds + \int_{I^-} [w(s)]_-ds \neq 0, \quad \int_{I^+} [w(s)]_-ds + \int_{I^-} [w(s)]_+ds \neq 0,
\]

hold. Then for an arbitrary \(h \in L(I; R) \) problem (1), (2) has at least one solution.

Corollary 0.1 Let \(i \in \{0, 1\} \), \(f(t, x) \equiv f_0(t)g(x) \) where the functions \(f_0 \in L(I; R_+) \), and \(g \in C(R; R) \), be such that

\[
\int_a^b f_0(s)ds \neq 0, \quad \lim_{|x| \to +\infty} \frac{g(x)}{x} = 0,
\]

and

\[
(-1)^i \lim_{x \to +\infty} g(x) = +\infty, \quad (-1)^i \lim_{x \to -\infty} g(x) = -\infty.
\]

Then for an arbitrary \(h \in L(I; R) \) problem (1), (2) has at least one solution.

Example 0.1 From Corollary 0.1 it follows that the equation

\[
u''(t) = -\lambda^2 u(t) + \sigma u(t)|^\alpha \text{sgn} u(t) + h(t) \quad \text{for } 0 \leq t \leq \pi
\]

under the boundary conditions (6), where \(\sigma \in \{-1, 1\}, \lambda \geq 2, \) and \(\alpha \in]0, 1[\), has at least one solution for an arbitrary \(h \in L([0, \pi], R) \).

Список литературы

STABILITY OF LINEAR SWITCHED SYSTEMS WITH UNSTABLE SUBSYSTEMS: THE APPROACH OF COMMUTATOR CALCULUS

Slyn’ko V.I., Denysenko V.S., Bivziuk V.O.

Key words: linear switched system, stability, commutator calculus, principle of comparison.

AMS Subject Classification: 37B25, 34K34, 34A37, 93C30, 93D20.

A switched system is a hybrid dynamical system consisting of a family of continuous-time (discrete-time) subsystems and a rule that orchestrates the switching between them. Such systems are widely used in modeling and control of various mechanical, robotic and technological processes [1]. Quite often, when studying the stability of switching systems, powerful algebraic approaches are used, the essence of which is the analysis of the Lie algebra generated by composite subsystems, as well as the use of commutator calculus, the Baker-Campbell-Hausdorff formula and its modifications.

Consider the Cauchy problem for a linear switched system

\[
\frac{dx(t)}{dt} = A_{\sigma(t)}x(t), \quad x(t_0) = x_0, \tag{1}
\]

where \(x \in \mathbb{R}^n\), \(\sigma : [t_0, +\infty) \to \{1, 2, \ldots, N\}\) is a piecewise constant and left continuous function, i.e. \(\sigma(t - 0) = \sigma(t)\), \(A_i\) are constant \(n \times n\) matrices, \(i = 1, 2, \ldots, N\), \(t_0 \in \mathbb{R}\), \(t_0 < \tau_0, x_0 \in \mathbb{R}\). The set of matrices \(S = \{A_1, \ldots, A_N\}\) is called a structural set of linear switched system (1). Let \(\{\tau_k\}_{k=0}^\infty \subset (t_0, +\infty)\) be an increasing sequence of discontinuity points of the function \(\sigma(t)\). The instants of time \(\tau_k\) are called switching times, and the numbers \(T_k = \tau_k - \tau_{k-1}\) are dwell-times. For the sequence \(\{\tau_k\}_{k=0}^\infty\) it is assumed that it has a unique concentration point at infinity. It is also assumed that the dwell-times are the same for the same state of the system, i.e. there are positive numbers \(\theta_i, i = 1, 2, \ldots, N\) such that if \(\sigma(\tau_k) = j\), then \(T_k = \theta_j\).

The aim of this paper is the stability investigation of (1) and the generalization the results of [2] for linear switched systems with an arbitrary number of subsystems. These subsystems may be unstable.

Let \(M = \{(i,j) \mid i = 1, 2, \ldots, N, j = 1, 2, \ldots, N, i \neq j\}\). Define the function \(\mu : [\tau_0, +\infty) \to M\), \(\mu(t) = (i,j)\), if \(t \in [\tau_{2k}, \tau_{2k+2})\) and \(\sigma(\tau_{2k+1}) = i\), \(\sigma(\tau_{2k+2}) = j\). For each pair \((i,j) \in M\), we associate the number \(\theta_{ij} = \theta_i + \theta_j\) (dwell-time). We also define the commutator operator as

\[
ad_A : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}, \quad Y \mapsto \ad_A(Y) = [A,Y] = AY - YA, \quad A \in \mathbb{R}^{n \times n}.
\]

Let \(F_{ij}(\epsilon)\) be a solution of the Cauchy problem for the matrix differential equation

\[
\frac{dF_{ij}(\epsilon)}{d\epsilon} = -\theta_i \ad_{A_i}(F_{ij}(\epsilon)) + \Psi_{ij}(\epsilon)F_{ij}(\epsilon) + \Psi_{ij}(\epsilon), \quad F_{ij}(0) = 0, \tag{2}
\]
where

\[\Psi_{ij}(\epsilon) = \sum_{k=1}^{\infty} \frac{(-1)^k \epsilon^k}{k!} \text{ad}_i^k(A_j). \]

Along with the original linear switched system, we consider a linear switched impulsive system

\[\frac{dy(t)}{dt} = A_{\mu(t)}y(t), \quad t \in (\tau_{2k}, \tau_{2k+2}), \quad y(t_0) = y_0, \]

\[\Delta y(t) = B_{\mu(t)}y(t), \quad t = \tau_{2k}, \]

where \(y \in \mathbb{R}^n \), \(A_{ij} = \nu_{ij}A_i + \nu_{ji}A_j \) is a mixed state matrix \((i, j) \in M \), \(\nu_{ij} = \frac{\theta_i}{\theta_j} \), \(\Delta y(t) = y(t+0) - y(t) \), \(B_{ij} = F_{ij}(1) \).

The main idea of this study is based on the following auxiliary statement, which can be called the principle of comparison.

Lemma. Suppose that a linear switched impulsive system (3) is asymptotically stable, then the original linear switched system (1) is asymptotically stable.

Note that in the case when the structural set \(S \) of (1) is a commutative family, then the equality \(B_{ij} = 0 \) holds.

The asymptotic stability study of the linear switched impulsive system (3) can be carried out on the basis of the direct Lyapunov method. This method for linear impulsive systems is well developed in many papers (see, e.g., [3]). In this case, very often, the choice of auxiliary functions for a linear switched system (3) can be solved much easier than for the original linear switched system.

For any symmetric matrix \(R \) and symmetric positive definite matrix \(P \), we denote

\[\Lambda(R, P) = \begin{cases} \frac{\lambda_{\min}(R)}{\lambda_{\max}(P)}, & \text{if } \lambda_{\min}(R) \geq 0, \\ \frac{\lambda_{\max}(R)}{\lambda_{\min}(P)}, & \text{if } \lambda_{\min}(R) < 0. \end{cases} \]

Here \(\lambda_{\min}(\cdot) \) and \(\lambda_{\max}(\cdot) \) are minimum and maximum eigenvalues of the corresponding symmetric matrix.

Theorem. Suppose that there exists a symmetric matrix \(P_0 > 0 \) such that for symmetric matrices

\[Q_{ij} = -(A_{ij}^TP_0 + P_0A_{ij}), \quad R_{ij} = -(B_{ij}^TP_0 + P_0B_{ij} + B_{ij}^TP_0B_{ij}), \quad (i, j) \in M \]

the following inequalities hold

\[Q_{ij} > 0, \quad \ln(1 - \Lambda(R_{ij}, P_0)) < \frac{\lambda_{\min}(Q_{ij})}{\lambda_{\max}(P_0)}(\theta_i + \theta_j), \quad (i, j) \in M. \]

Then the linear switched system (1) is asymptotically stable.

So, a new approach for the stability investigation of (1), called the method of mixed neighboring states, is proposed. This approach is based on the ideas of commutator calculus and Lie-algebraic approaches in the theory of stability of motion. We also give an example of a linear switched system with all unstable subsystems, for which the proposed approach greatly simplifies the solution of the stability problem.

METHOD OF PRIORI ESTIMATES FOR INTEGRAL INEQUALITIES ON TIME SCALES

Tymoshenko B.V.

Key words: nonlinear differential and integral inequalities, dynamic equations on time scales, the principle of comparison.

AMS Subject Classification: 45G10, 34N05.

In the study of consensus in multi-agent robotics systems, it is necessary to construct mathematical models of dynamics of such systems in the form of dynamic equations on time scales [1]. This is due to the need to take into account possible interruptions in the exchange of information in the channel of communication between agents [2]. An important problem for nonlinear dynamical equations on time scales is the study of stability, limitation of solutions. A powerful tool for such a study may be differential and integral inequalities on time scales. Methods of the theory of integral and differential inequalities allow us to reduce this research to the integration of comparison systems. The role of the theory of integral inequalities in the problems of dynamics and stability of complex nonlinear systems is given in [3].

An important problem in the theory of dynamical equations in time scales is the stability study, including Lyapunov’s stability, practical and technical stability, and the limitations of solutions of nonlinear dynamical equations on time scales. The theoretical basis for such a study, in some cases, may be the theory of integral inequalities on time scales.

The paper considers integral inequality with many power nonlinearities on an arbitrary time scale. The main problem is the evaluation of a function satisfying a nonlinear integral inequality. To solve this problem, the method of investigation of integral inequalities is proposed, as proposed in [4]. In this paper a method of a priori estimates is proposed that allows to investigate differential and integral inequalities in the case when the corresponding system of comparison is not integrated in quadratures. The generalization of the a priori estimates for integral inequalities on time scales is not trivial given that there are no general methods for integrating the simplest nonlinear dynamical equations on time scales. Therefore, an approach to constructing estimates of solutions of a nonlinear dynamic equation is proposed \(x(t) = f(t)x'(t) \), which is based on the Lakshmikantam method in the theory of nonlinear integral inequalities [5]. Using these approaches and ideas, new results were obtained regarding the nonlinear integral inequalities on time scales which generalizes the results [6].

Consider the integral inequality on an arbitrary time scale \(t \in \mathbb{R} \):

\[
\sum_{k=1}^{m} \left[\int_{t_{k-1}}^{t_{k}} h_k(s) u^r_k(s) \Delta s \right] + u(t) \leq u_0 + \sum_{k=1}^{m} \int_{t_{k-1}}^{t_{k}} h_k(s) u^r_k(s) \Delta s
\] \((1) \)

where \(u \in C(\mathbb{T}, \mathbb{R}+) \), \(h_k \in C(\mathbb{T}, \mathbb{R}+) \), \(r_k > 0 \), \(u_0 > 0 \).

Consider the problem of evaluating the function \(u(t) \) from above.

Let's introduce the following notation:

\[
\bar{r} = \frac{r_1 + r_2 + \ldots + r_m}{m}, \quad r^* = \max_{k=1,m} \{r_k\}, \quad g(t) = m\left(\prod_{k=1}^{m} h_k(t)\right)^{\frac{1}{m}}, \quad \theta(t) = u_0 + \int_{t_0}^{t} G_{\min}(s) \Delta s,
\]

73
\[\varphi(t) = \sum_{k=1}^{m} h_k(t) \left(\theta^{1-\varphi}(t) + \left(1 - \bar{\varphi}\right) \int_{\tau_0}^{t} g(s) \Delta s \right)^{\frac{\eta - \tau^*}{1-\varphi}}, \quad \xi^* = \left(\bar{\varphi} - 1 \right) \int_{\tau_0}^{t} g(s) \Delta s \right)^{\frac{1}{1-\varphi}}. \]

Lemma. Consider a nonlinear dynamic equation:

\[\Delta f(t) = g(t) f^{\varphi}(t), \quad f(t_0) = u_0. \]

Then:

1) \[f(t) \geq \left(\theta^{1-\varphi}(t) + \left(1 - \bar{\varphi}\right) \int_{\tau_0}^{t} g(s) \Delta s \right)^{\frac{1}{1-\varphi}}, \quad \forall t \geq t_0, t \in \mathbb{T} \text{ such that } u_0 + \int_{\tau_0}^{t} G_{\min}(s) \Delta s > 0, \ u_0^{1-\varphi} + \left(1 - \bar{\varphi}\right) \int_{\tau_0}^{t} g(s) \Delta s > 0; \]

2) \[f(t) \leq \left(\theta^{1-\varphi}(t) + \left(1 - \bar{\varphi}\right) \int_{\tau_0}^{t} g(s) \Delta s \right)^{\frac{1}{1-\varphi}}, \quad \forall t \geq t_0, t \in \mathbb{T} \text{ such that } u_0^{1-\varphi} + \left(1 - \bar{\varphi}\right) \int_{\tau_0}^{t} g(s) \Delta s > 0. \]

Theorem. The function \(u(t) \) satisfies the estimate:

\[u(t) \leq \left(u_0^{1-\varphi} + \left(1 - \bar{\varphi}\right) \int_{\tau_0}^{t} \varphi(s) \Delta s \right)^{\frac{1}{1-\varphi}} \quad (2) \]

\[\forall t \geq t_0, t \in \mathbb{T} \text{ such that } u_0^{1-\varphi} + \left(1 - \bar{\varphi}\right) \int_{\tau_0}^{t} \varphi(s) \Delta s > 0, \ \bar{\varphi} > 1 \text{ and those that meet the conditions } 1-2 \text{ of the lemma.} \]

The proposed new method of a priori estimates allows us to investigate a broad class of integral inequalities on time scales. Further generalization of this method will allow extending the application of integral inequalities to qualitative analysis of dynamic equations on time scales.

FINITE ELEMENT METHOD WITH SECOND ORDER ELEMENTS FOR TWO-DIMENSIONAL DYNAMIC ANALYSIS OF THE POLLUTION DISTRIBUTION IN A HYDROTECHNICAL RAMPART-TERRACE

Vergunova I.M.

Key words: dynamic analysis, mass transfer, Finite Element Method, piecewise-continuous surface, two-dimensional model.

AMS Subject Classification: 65M60

As known, the FEM, as an effective engineering method working in arbitrary spatial domains, allows one with enough accuracy to obtain computational models for areas with complex boundaries. Although the complexity of the numerical implementation of even non-evolutionary models leads to the fact that researchers are limited to the consideration of two-dimensional regions with a piecewise-smooth boundary [1, 2].

The model used in our studies is a spatially distributed dynamic model and the goal of its numerical implementation is a dynamic analysis of the distribution of contaminants in the aeration zone of shaft-terrace.

To solve the problem two-dimensional dynamic analysis of the pollution distribution as the result of surface contamination in the system of hydrotechnical ramparts-terraces with piecewise smooth surface we offered the use of the Finite Element Method (FEM) with second order triangular elements.

So, we develop the ways to solve the problem of mass transfer of a pollutant in a rampart-terrace with a piecewise smooth surface where surface contamination occurred at initial moment.

We have the initial model [3]:

\[Zu = \frac{\partial u}{\partial t} + Lu = \frac{\partial u}{\partial t} - \sum_{i=1}^{2} \frac{\partial}{\partial x_i} \left(D(x) \frac{\partial u}{\partial x_i} \right) + \sum_{i=1}^{2} V \frac{\partial u}{\partial x_i} = f(x,t) = -\lambda u_0 \phi(x) \delta(t - 0), \]

\[u(x,0) = 0, \quad x \in \Omega, \]

\[\left(\sum_{i=1}^{2} D(x) \frac{\partial u}{\partial x_i} + Vu \right)_{|_{x \in \Gamma}} = k(\Gamma) c_0 q_0(x), \quad t \in [0,T], \]

\[\left(\sum_{i=1}^{2} D(x) \frac{\partial u}{\partial x_i} + Vu \right)_{|_{x \in \partial Q \times \Gamma}} = 0, \quad t \in [0,T], \]

in bounded area \(Q = \Omega \times (0 \leq t \leq T), \quad \Omega \subset \mathbb{R}^2 \) with piecewise smooth surface \(\partial \Omega \), \(\lambda \) – the half-decomposition factor, \(\phi(x_1, x_2) \) – the function describing the surface of the rampart-terrace \(\Gamma \), \(\varphi(x_1, x_2) \in L_2(\Omega), \quad u_0 – \text{surface contamination}, \quad u(x,t) – \text{the concentration of the substance in the point } x = (x_1, x_2) \text{ at the moment } t, \quad u(x,t) \text{ is twice continuously differentiated by } x \text{ on } \Omega \) and continuously differentiated by \(t \text{ on } [0,T], \quad D(x) – \text{integral and limited, continuously differentiable function in } \overline{Q}, \quad V – \text{positive constant, } \quad k(\Gamma) \cos(\alpha(\Gamma)), \quad k – \text{the coefficient of conductivity (absorption) for the surface } \Gamma, \quad \alpha(\Gamma) \text{ – the slope of the segment of terraces}, \quad q_0 – \text{the flow of the water coming from atmospheric precipitation with a substance concentration } c_0; \quad u(x,t) – \text{the concentration of substance in } x = (x_1, x_2) \in \overline{\Omega} \text{ at the moment } t. \]
We consider also the space H with the norm $\|u\|_H = \int_\Omega \left(u_i^2 + \sum_{i=1}^2 \left(\frac{\partial u}{\partial x_i} \right)^2 \right) dQ$ then for any $u \in H$ we have:

$$(Zu,u)_{L^2(Q)} \leq c \|u\|_H^2, \quad c = \text{const} > 0,$$

$$\|Lu\|_{H^{-1}} \leq c_1 \|u\|_H, \quad c_1 = \text{const} > 0$$

and

$$\frac{\partial}{\partial t} \|u\|_{L^2(Q)} + V \sum_{i=1}^2 \frac{\partial}{\partial x_i} \|u\|_{L^2(Q)} \leq \|f\|_{L^2(Q)} + C_D \|u\|_H, \quad C_D = \text{const} > 0 \ [4].$$

In [4] also has been shown the existence of a unique generalized solution of this problem in the abovementioned space.

The grid

$$\omega = \{x|x = (x_1, x_2), x_1 = \frac{iL}{N} \cos \alpha, \ i = 0, N+1, x_2 = \frac{jL}{N} \sin \alpha, \ j = 0, 2M + N - 1, \ x_2 = x_2 \text{tg} \alpha + \frac{j2L}{N} \sin \alpha, \ i = 0, M, \ x_2 = -x_2 \text{tg} \alpha + \frac{j2L}{N} \sin \alpha, \ j = 0, M + N - 1\}$$

was built in area Ω, which corresponds to the terrace segment.

Using the change of variables in the form $\psi = x_1 / \cos \alpha, \ \chi = x_2$, where

$$\left| \begin{array}{cc} \frac{\partial x_1}{\partial \psi} & \frac{\partial x_1}{\partial \chi} \\ \frac{\partial x_2}{\partial \psi} & \frac{\partial x_2}{\partial \chi} \end{array} \right| = \cos \alpha \neq 0,$$

to further simplify the integration we have got the opportunity to proceed to the consideration of a rectangular area Ω', in which we can take MN rectangulars with two triangular finite elements of square $s = \frac{j}{N} \sin \alpha$ each.

Considering triangular elements of the second order, we take six nodes in each element and, accordingly, six basic functions.

An approximate solution of the problem for each element we represent as a function [1]:

$$u^e(t,\psi,\chi) = \sum_{i=1}^6 g_i^e(t)w_i^e(\psi,\chi),$$

where $\omega^e(\psi,\chi)$ — functions of orthonormal basis in $L_2(\Omega)$, which are twice continuously differentiable in Ω and satisfy the boundary conditions.

Functions $g_i^e(t)$ satisfy the initial condition and following system:

$$(Zu_i^e,w_j)_{L^2(\Omega)} = (f,w_j)_{L^2(\Omega)}, \quad j = 1,6.$$

As a result, we arrive at the next system of ordinary differential equations to determine the functions $g_i^e(t)$:

$$\frac{dg_i^e(t)}{dt} + \sum_{i=1}^6 (g_i(t)(A + B)w_i,w_j)_{L^2(\Omega)} = (f,w_j)_{L^2(\Omega)}, \quad j = 1,6,$$

$$g_i^e(0) = 0, \quad i = 1,6.$$

Given the choice of basis functions and also taking into account the numerical implementation of the δ-function [5] which included in the right-hand side, we have received for each element a difference system of the following form:
\[
\frac{g^{k+1e}}{\tau} - \frac{g^k}{\tau} + \sum_{j=1}^{n_e} (g^{k+1e}, (A + B)w_i, w_j)_{L_2(\Omega')} = (f^k, w_j)_{L_2(\Omega')}, \quad j = 1, 6, \quad k = 0, K,
\]

(1)

\[g^{0e} = 0, \quad i = 1, 6.\]

It is also important here that due to the numerical implementation of the \(\delta\)-function, the system of equations in this case quickly becomes homogeneous and at the boundary nodes. The orthonormal basis \([6]\) makes the matrix quite sparse, which also greatly simplifies the solution of the system of equations.

The fulfillment of the kinematic conditions of conjugation of finite elements, the choice of basis functions and generalized coordinates leads to consistency of finite elements.

A small problem is a rather large variety of integrals on the left side system of linear equations (1) (with two types of orientation of triangular elements of the second order, we got twelve types of integrals), but using the above change of variables simplifies their calculation. In addition, the transition to the use of rectangular cells allows us to uniformly consider the whole set of finite elements under conditions consistent numbering in MN rectangulars with two triangular finite elements in each.

Were put grid region \(\Omega_{i}^{h,b}\) and constructed difference analogues for differential expressions of internal nodes in the grid area. The discretization of received differential task in the grid area \(\Omega_{i}^{h,b}\) for internal nodes gives the order of approximation \(O(\tau^2 + h^2)\) for implicit scheme.

ГРУППОВАЯ ДИФФЕРЕНЦИАЛЬНО-РАЗНОСТНАЯ ИГРА СБЛИЖЕНИЯ С ПЕРЕСТАНОВОЧНЫМИ МАТРИЦАМИ

Барановская Л.В.

Ключевые слова: теория игр, динамические игры, дифференциально-разностные игры сближения. AMS Subject Classification: 519.837

Одним из наиболее трудных для исследования классов игр являются задачи сближения нескольких лиц. Здесь следует выделить работы Б. Н. Пшеничного, А. А. Чикрия, Л. Н. Григоренко.

Рассмотрим задачу группового преследования с \(\nu \) преследователями и одним убегающим. Пусть управляемая система описывается дифференциально-разностными уравнениями запаздывающего типа

\[
\dot{z}_i(t) = A_i z_i(t) + B_i z_i(t - \tau_i) + \varphi_i(u, v),
\]

(1)

здесь \(\mathbb{R}^{n_i} - n_i \)-мерное евклидово пространство; \(A_i, B_i \) – постоянные квадратные матрицы порядка \(n_i \); \(U_i, V \) – непустые компакты; функции \(\varphi_i : U_i \times V \rightarrow \mathbb{R}^{n_i} \) принадлежат классу \(C^0 \) на \([0, +\infty)\); \(\tau_i = \text{const} > 0 \).

Начальным состоянием системы (1) является действительная функция \(z(t) = z^0(t) \), \(z^0(t) = (z^0_1(t), \ldots, z^0_{\nu}(t)) \), где \(z^0_i(t) \)- абсолютно непрерывные функции, определённые на отрезке \([-\tau_i, 0]\).

Состоянием системы (1) в момент \(t \) является кусок траектории \(z^i(\cdot) = (z^i_1(\cdot), \ldots, z^i_{\nu}(\cdot)) \), где \(z^i_s(\cdot) = \{z^i(t + s), \quad -\tau_i \leq s \leq 0\} \).

Для \(k=1,2,\ldots \) рассмотрим запаздывающий экспоненциал [1]

\[
\exp_z(B,t) = \begin{cases}
O, & -\infty < t < -\tau; \\
I, & -\tau \leq t < 0; \\
I + B^1 + B^2 \frac{(t-\tau)^2}{2!} + \cdots + B^k \frac{(t-\tau)^k}{k!}, & (k-1)\tau \leq t \leq k\tau.
\end{cases}
\]

Лемма [1]. Пусть матрицы \(A \) и \(B \) системы \(\dot{z}(t) = Az(t) + Bz(t - \tau) + \varphi(u, v) \) перестановочные, т.е. \(AB=BA \). Тогда решение задачи Коши имеет вид

\[
z(t) = F(t)a + \int_{-\tau}^{0} F(t - \tau - s)b(s)ds + \int_{0}^{t} F(t - s)\varphi(u(s),v(s))ds,
\]

где \(a = \exp\{At\}z^0(-\tau), \quad b(t) = \exp\{At\}[z^0(t) - Az^0(t)], \quad F(t) = \exp\{At\} \exp_{\tau}\{B_1,t\}, \quad t \geq 0, \quad B_1 = \exp\{-At\}B.\)
В пространстве $\mathbb{R}^n = \mathbb{R}^{n_1} \times \ldots \times \mathbb{R}^{n_\nu}$ выделено терминальное множество M^*, состоящее из множеств $M_i^* \subset \mathbb{R}^{n_i}$, $i = 1, \ldots, \nu$, каждое из которых является цилиндрическим и имеет вид $M_i^* = M_i^0 + M_i$, где M_i^0 — линейные подпространства из \mathbb{R}^{n_i}, M_i — непустые компакты из ортогонального дополнения L_i к M_i^* в пространстве \mathbb{R}^{n_i}.

Обозначим через Ω_{ν} совокупность измеримых по Лебегу функций $v(t), \quad v(t) \in V, \quad t \geq 0$. Аналогично определяется Ω_{U_i}. Отображение, ставящее в соответствие состоянию $z^0(\cdot)$ элемент из Ω_{ν}, назовём программой стратегии убегающего, а её конкретную реализацию при заданном начальном состоянии $z^0(\cdot)$ процесса (1) назовём программным управлением. В процессе игры убегающий использует программное управление $v(\cdot) \in \Omega_{\nu}$. Контрпрограммами преследователей, соответствующие начальным состояниям $z_i^0(\cdot)$, назовём функции $u_i(t) = u_i(z_i^0(\cdot), t, v(t)), \quad t \geq 0, \quad i = 1, \ldots, \nu$, такие, что если $v(\cdot) \in \Omega_{\nu}$, то $u_i(\cdot) \in \Omega_{U_i}$. Если игра происходит на интервале $[0, T]$, то будем считать, что преследователь выбирает управление в виде

$$u_i(t) = \begin{cases} u_{i_1}(z_i^0(\cdot), t, v(t)), t \in [0, t_*) \\ u_{i_2}(z_i^0(\cdot), t, v(t)), t \in [t_*, T], \end{cases}$$

где $[0, t_*)$ — активный участок, $[t_*, T]$ — пассивный участок, а $t_* = t(v(\cdot))$ — момент переключения с одного закона выбора контруконтроля на другой, зависящий от предыстории управления убегающего.

Таким образом, в целом управления преследователей строятся в виде

$$u_i(t) = u_i(z_i^0(\cdot), t, v_r(\cdot)), \quad t \geq 0, \quad i = 1, \ldots, \nu,$$

где $v_r(\cdot) = \{v(s) : s \in [0, t], \quad v(\cdot) \in \Omega_{\nu}\}$, причём $u_i(\cdot) \in \Omega_{U_i}$.

Будем говорить, что задача преследования может быть закончена из начального состояния $z^0(\cdot)$ за время $T = T(z^0(\cdot))$, если существуют такие измеримые функции $u_i(t) = u_i(z_i^0(\cdot), v^i(\cdot)) \in U_i, \quad t \in [0, T], \quad v^i(\cdot) = \{v(s) : 0 \leq s \leq t\}$, что решение системы (1) при любых измеримых функциях $v(t), v(t) \in V, \quad t \in [0, T]$, принадлежит соответствующему множеству M_i^* в момент $t = T$ хотя бы для одного $i, \quad i = 1, \ldots, \nu$.

В этих предположениях, приняв сторону преследователя, применив модифицированный метод разрешающих функций [2-6], найдём достаточные условия на параметры процесса (1) для окончания игры за некоторое гарантированное время. Пусть π_i — ортопроектор, действующий из \mathbb{R}^{n_i} в L_i. Рассмотрим многозначные отображения

$$W_i(t, v) = \pi_i F_i(t) v_i(U_i, v), \quad W_i(t) = \bigcap_{v \in V} W_i(t, v).$$

Условие Понтрягина. Отображения $W_i(t) \neq \emptyset$ для всех $t \geq 0, \quad i = 1, \ldots, \nu$.

Так как в силу предположений о параметрах процесса (1) многозначное отображение $W_i(t, v)$ непрерывно на множестве $[0, +\infty) \times V$, то при выполнении условия Понтрягина
\[W_i(t) \text{ полунепрерывно сверху, а, значит, борелевское. Тогда существует хотя бы один} \]
борелевский селектор \(\gamma_i(t) : \gamma_i(t) \in W_i(t), \quad i = 1, \ldots, v, \quad t \geq 0. \)

Обозначим через \(\Gamma_i \) совокупность борелевских селекторов многозначного отображения \(W_i(t), \quad i = 1, \ldots, v, \) зафиксируем некоторый элемент \(\gamma_i(\cdot) \in \Gamma_i \) и положим
\[
\xi_i(t, z_i^0(\cdot), \gamma_i(\cdot)) = \pi_i F_i(t)a + \int_{-\tau_i}^0 \pi_i F_i(t-s-\tau_i)b_i(s) \, ds + \int_0^t \gamma_i(s) \, ds.
\]

Рассмотрим функцию, обратную к функции Минковского:
\[
\alpha_i(t, s, z_i^0(\cdot), m_i, v, \gamma_i(\cdot)) = \alpha_{W_i(t-s, v)-\gamma_i(t-s)}(m_i - \xi_i(t, z_i^0(\cdot), \gamma_i(\cdot)) \bigg|_{t \geq s \geq 0, \quad v \in V, \quad \gamma_i(\cdot) \in \Gamma_i, \quad m_i \in M_i, \quad z_i \in \mathbb{R}^{n_i}, \quad i = 1, \ldots, v}.
\]

Она борелевская по совокупности \(s, v \) и полунепрерывна сверху по совокупности \(v, m_i \). Положив
\[
\alpha_i(t, s, z_i^0(\cdot), v, \gamma_i(\cdot)) = \max_{m_i \in M_i} \alpha_i(t, s, z_i^0(\cdot), m_i, v, \gamma_i(\cdot)), \quad i = 1, \ldots, v,
\]
получим равенство
\[
\alpha_i(t, s, z_i^0(\cdot), v, \gamma_i(\cdot)) = \sup\{\alpha \geq 0 : [W_i(t-s, v) - \gamma_i(t-s)] \cap \alpha[M_i - \xi_i(t, z_i^0(\cdot), \gamma_i(\cdot))] \neq \emptyset\}.
\]

Введём функцию
\[
T_v(z^0(\cdot), \gamma(\cdot)) = \inf \left\{ t \geq 0 : \inf_{v(\cdot) \in N} \max_{i=1,\ldots,v} \int_0^t \alpha_i(t, s, z_i^0(\cdot), v, \gamma_i(\cdot)) \, ds \geq 1 \right\},
\gamma(\cdot) = \text{column}(\gamma_1(\cdot), \ldots, \gamma_v(\cdot)), \quad \gamma_i(\cdot) \in \Gamma_i.
\]

Теорема. Пусть для конфликтно управляемого процесса \((1) \) выполнено условие Понтрягина, для начального состояния \(z^0(\cdot) = (z_1^0(\cdot), \ldots, z_v^0(\cdot)) \) и некоторого селектора \(\gamma^0(\cdot) \in \Gamma \)
\(T = T_v(z^0(\cdot), \gamma^0(\cdot)) < +\infty. \) Тогда хотя бы для одного \(i \) траектория процесса \((1) \) может быть приведена из начального состояния \(z_i^0(\cdot) \) на соответствующее множество \(M_i \) в момент \(T. \)

СУЩЕСТВОВАНИЕ, ПОВЕДЕНИЕ И АСИМПТОТИКА АНАЛИТИЧЕСКИХ РЕШЕНИЙ ОДНОЙ СИСТЕМЫ ДВУХ УРАВНЕНИЙ ТИПА БРИО И БУКЕ

Буряк Д.В., Крапива Н.В.

Ключевые слова: асимптотические свойства, аналитические решения, уравнение Брио и Буке.
AMS Subject Classification: 34C41, 34E10, 34M45.

Рассматривается система двух уравнений типа Брио и Буке

\[
\begin{align*}
 z^{1+\gamma_1} w_1' &= a_{11} w_1 + b_1 z + f_1(z, w_1, w_2), \\
 z^{1+\gamma_2} w_2' &= a_{21} w_1 + a_{22} w_2 + b_2 z + f_2(z, w_1, w_2),
\end{align*}
\]

(1)

где \(0 < \gamma_{1,2} \in \mathbb{R}, \ a_{11} = |a_{11}| e^{i\theta_1} (a_{11} \neq 0), \ a_{22} = |a_{22}| e^{i\theta_2} (a_{22} \neq 0), \ b_{1,2} \in \mathbb{R} (|b_1| + |b_2| > 0), \) функции \(f_{1,2}(z, w_1, w_2)\) гомоморфны в области \(|z| < r, |w_j| < \rho, j = 1, 2\) и определены на классе функций, асимптотически равных при \(z \rightarrow 0\) решениям «укороченной» системы:

\[
\begin{align*}
 z^{1+\gamma_1} w_1' &= a_{11} w_1 + b_1 z, \\
 z^{1+\gamma_2} w_2' &= a_{21} w_1 + a_{22} w_2 + b_2 z.
\end{align*}
\]

(2)

Получены достаточные условия существования решений системы (1) аналитических в секторах малого радиуса и вершиной в нуле, асимптотически равных решениям «укороченной» системы (2) и стремящихся к нулю при \(z \rightarrow 0\).

Для удобства вводятся обозначения секторов:

\[
\begin{align*}
 D^{*}_{kj}(\sigma) &= \left\{ 0 < |z| < r, \ -\frac{\pi}{2} + \sigma + 2k_j \pi < \left(\theta_j - \gamma \varphi\right) < \frac{\pi}{2} - \sigma + 2k_j \pi \right\}, \ k_j \in \mathbb{Z}, \ j = 1, 2, \\
 D^{-}_{mj}(\sigma) &= \left\{ 0 < |z| < r, \ \frac{\pi}{2} + \sigma + 2m_j \pi < \left(\theta_j - \gamma \varphi\right) < \frac{3\pi}{2} - \sigma + 2m_j \pi \right\}, \ m_j \in \mathbb{Z}, \ j = 1, 2, \\
\end{align*}
\]

(0 < \sigma \approx 0).

Важно, что указанные секторы \(D^{*}_{kj}(\sigma)\) и \(D^{-}_{mj}(\sigma)\) располагаются либо на конечно-листной, либо на бесконечно-листной поверхности Римана. Выбор секторов зависит от знаков \(\cos(\theta_1 - \gamma \varphi)\) и \(\cos(\theta_2 - \gamma \varphi)\), \(z = |z| e^{i\varphi}\).

Доказано, что для исходной системы уравнений:

1. при \(\forall z \in D^{-}_{m1}(\sigma) \cap D^{-}_{m2}(\sigma)\) существует, начиная с некоторого момента, единственное аналитическое решение;
2. при \(\forall z \in D^{+}_{k1}(\sigma) \cap D^{+}_{k2}(\sigma)\) существует двухпараметрическое семейство аналитических решений;
3. при \(\forall z \in D^{*}_{k1}(\sigma) \cap D^{*}_{k2}(\sigma)\) и при \(\forall z \in D^{+}_{m1}(\sigma) \cap D^{-}_{m2}(\sigma)\) существует однопараметрическое семейство аналитических решений.

(предыдя, доказано, что все указанные выше решения являются решениями порядка \(z\) при \(z \rightarrow 0\)).

При решении задачи применяется следующий алгоритм:
− в случаях 1-2 поведение решений системы исследуется вдоль семейства лучей \(z = te^{i\varphi} \), \(\varphi = \text{const} \), \(0 < t \leq \Delta \), \(t \to +0 \), исходящих из нуля, и семейства концентрических окружностей с центром в нуле.
Нетрудно показать, что выбор указанных секторов в этом случае, действительно зависит от знаков \(\cos(\theta - \gamma \varphi) \). Без ограничения общности, рассуждения проведём для «укороченного» уравнения \(z^{1+\gamma} w' = aw + bz, 0 < \gamma \in \mathbb{R} \), \(a = |a|e^{i\varphi}, a \neq 0 \), соответствующего первому уравнению системы (1). Тогда, при \(z = te^{i\varphi} \) и \(w(z) \equiv w(t) = \alpha(t) + i\beta(t) \), можем записать систему, равносильную «укороченному» уравнению:
\[
\begin{align*}
(1+\gamma) \alpha'(t) &= |a|\left(\alpha(t)\cos(\theta - \gamma \varphi) - \beta(t)\sin(\theta - \gamma \varphi)\right) + bt \cos(1 - \gamma \varphi), \\
(1+\gamma) \beta'(t) &= |a|\left(\alpha(t)\sin(\theta - \gamma \varphi) + \beta(t)\cos(\theta - \gamma \varphi)\right) + bt \sin(1 - \gamma \varphi).
\end{align*}
\]
Далее, введём в рассмотрение поверхность \(\alpha^2(t) + \beta^2(t) = \delta^2 t^2, 0 < t \leq \Delta, \delta >> 1 \).
Вычислим \(\left(1+\gamma T, \frac{N}{2}\right) \), где \(N = (\alpha, \beta, -\delta^2 t) \) вектор внешней нормали к этой поверхности в произвольной ее точке, \(T = (\alpha', \beta', 1) \) вектор поля направлений в той же точке, определяемый последней системой. Очевидно:
\[
\left(1+\gamma T, \frac{N}{2}\right) = |a|\cos(\theta - \gamma \varphi) \cdot \delta^2 t^2 + O(\delta^2) - \delta^2 t^{2+\gamma} = \delta^2 t^2 \left(|a|\cos(\theta - \gamma \varphi) + O\left(\frac{1}{\delta}\right) - t^\gamma\right) = \delta^2 t^2 \left(|a|\cos(\theta - \gamma \varphi) + O\left(\frac{1}{\delta}\right) - t^\gamma\right) = \delta^2 t^2 \left(|a|\cos(\theta - \gamma \varphi) + O\left(\frac{1}{\delta}\right) - t^\gamma\right).
\]
Таким образом, \(\text{sgn}\left(1+\gamma T, \frac{N}{2}\right) = \pm 1 \) в зависимости от \(\cos(\theta - \gamma \varphi) \), при \(t \to +0 \) и \(\delta >> 1 \).
Что и требовалось показать.
− в 3-м случае, кроме рассмотренного выше метода, используется также принцип неподвижной точки.

УСТОЙЧИВОСТЬ БЕГУЩИХ ВОЛН В МОДЕЛИ ДНК ПЕЙРАРА-БИШОПА

Голоскубова Н.С., Михлин Ю.В.

Ключевые слова: модель ДНК, бегущие волны, алгебраизация по Айнсу

AMS Subject Classification: 74J30, 74H55

В связи с бурным развитием био- и нанотехнологий волновым процессам в модели ДНК посвящены многие публикации последних лет. Описание различных моделей нелинейной динамики ДНК представлено в работах [1-3]. Одной из наиболее известных моделей молекулы ДНК является модель Пейрара-Бишопа (или модель ПБ) [4]. В настоящей работе для исследования устойчивости бегущих волн в модели ПБ используются уравнения в вариациях, а также метод алгебраизации по Айнсу этих уравнений, впервые представленный в книге [6]. В основе метода лежит преобразование линейных уравнений с периодическими коэффициентами к виду уравнений с особыми точками. Успешное использование такого подхода в некоторых задачах устойчивости нелинейных форм колебаний описано в книге [7]. Преимущество метода алгебраизации состоит в том, что анализ проблемы устойчивости не требует использования конкретной формы рассматриваемого решения во времени.

Модель Пейрара-Бишопа (модель ПБ) представлена двумя связанными цепями жестких дисксов, соединенными продольными и поперечными пружинами (рис.1)

![Рис. 1. Модель ДНК Пейрара-Бишопа (модель ПБ)](image)

Взаимодействие узлов разных цепочек моделируется потенциалом Морзе, \(V(u) = e^{\alpha(u-n)} - 1 \), который имитирует водородные связи между основаниями комплементарных пар; \(d \) – энергия диссоциации полинуклеотидных цепей; \(\alpha \) - параметр, обратный расстоянию между дисками. Взаимодействие между соседними узлами в цепочке - линейное. Замена \(\sqrt{u}, \sqrt{n} \) приводит уравнения движения к такому виду:

\[
\begin{pmatrix} u_n \\ u_{n-1} \end{pmatrix} + \begin{pmatrix} \beta(z) \\ \beta(y) \end{pmatrix} \sqrt{\frac{1}{\sqrt{u}}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \sqrt{\frac{1}{\sqrt{u}}} \begin{pmatrix} 1 \\ 0 \end{pmatrix}
\]

Здесь \(\beta = - \), \(y = - \) - безразмерные параметры; \(\alpha \) - постоянная, характеризующая взаимодействие между парами оснований вдоль цепи.
Преобразование системы (1) в соответствующую распределенную систему (длинноволновое приближение) может быть выполнено с использованием следующих приближений:

\[y_n \sim y(x); \quad z_n \sim z(x). \]

Поскольку для движения центра масс рассматриваемого дуплекса не введены ограничения, будем рассматривать только динамику расхождения цепей, которая описывается переменной у. По этой причине далее рассматривается только второе уравнение системы (1). Бегущая волна в распределенной системе может быть представлена в такой форме:

\[y = \Phi(\phi), \quad (2) \]

Сохраняя в разложениях экспонент только члены до третьих степеней включительно, получаем уравнение, описывающее бегущую волну:

\[-(\omega^2 - \beta k^2) = (-4\Phi + 6\sqrt{2} - \phi) \quad (3) \]

Интеграл энергии здесь имеет такой вид:

\[-\left(\frac{d\Phi}{dx}\right) (\omega^2 - \beta k^2) + \gamma \left(2\Phi^2 - 2\sqrt{2}\Phi^3 + \frac{\gamma}{\phi} \Phi^4\right) = \quad (4) \]

Выпишем уравнение в вариациях \(W(t, x) \) для бегущей волны вида (2):

\[-\left(\frac{d\Phi}{dx}\right) (\omega^2 - \beta k^2) + \gamma \left(2\Phi^2 - 2\sqrt{2}\Phi^3 + \frac{\gamma}{\phi} \Phi^4\right) = \quad (3) \]

В качестве первого шага мы теперь вводим новые независимые переменные \(\phi, t \). Сделаем далее разделение переменных \(W = e^{st} \phi \) и дополнительное преобразование: \(\phi(\phi) \) где

Затем в качестве новой независимой переменной вместо \(\phi \) выбирается переменная \(\Phi \), определяющая рассматриваемую бегущую волну. Теперь после некоторых преобразований уравнение в вариациях будет представлено в следующем виде:

\[-(\omega^2 - \beta k^2) = (-4 + 12\sqrt{2}) \quad (4) \]

где

Преобразование уравнения в вариациях к виду уравнения с особыми точками (4) представляет собой так называемую алгебраизацию по Айнсу. Преимущество этого подхода состоит в том, что анализ проблемы устойчивости не требует использования конкретной формы решения \(\Phi(\phi) \). Известно, что \(T \)- и \(2T \)-периодические решения определяют границы областей устойчивости / неустойчивости в пространстве параметров уравнения в вариациях, где \(T \)- период коэффициентов уравнения [8]. В уравнении с особыми точками эти «граничные решения» определяются следующими рядами вида:

\[z(a_0 + a_1z + \cdots) \quad (5) \]

Здесь \(r \) - один из двух индексов особых точек уравнения в вариациях (4), а \(z = (r + 0) \). В данном случае

\[\frac{6\sqrt{2}}{\sqrt{2}} - 1 \]

Подставляя теперь ряды (5) в уравнение в вариациях (4) и приравнивая коэффициенты с одинаковыми степенями по \(z \), мы получаем две бесконечные рекуррентные системы линейных однородных алгебраических уравнений для определения коэффициентов рядов Системы имеют нетривиальное решение, если их определители равны нулю. Эти определители были вычислены до четвертого порядка включительно, и, таким образом, получены уравнение, связывающие параметры системы и определяющие границы областей устойчивости/неустойчивости.
На рис. 2 показана граница областей устойчивости/неустойчивости в плоскости параметров \((B, d)\) для случая параметра \(r_0\). Здесь область устойчивости расположена справа от границы. В расчетах принято, что \(a = 1.8, \Phi_0 = 1.315\), полная энергия системы \(h = 2\). Параметр \(d\) меняется в интервале \([0.001; 0.13]\); параметр \(B\) меняется в интервале \([4; 33]\); \(k = 0.5; \rho = 0.3\). Проверочные расчеты, выполненные методом Рунге-Кутта, демонстрируют хорошую точность полученных результатов. Так, на рис. 26 показано ограниченное решение уравнения для вариаций, которое выбирается из области устойчивости в пространстве параметров \((B, d)\), представленном на рис.2. А именно, здесь энергия системы \(h = 2\), безразмерный параметр \(B = 10\), энергия диссоциации полинуклеотидных цепочек \(d = 0.1\).

![Grafik](image)

Рис. 2. Граница областей устойчивости/неустойчивости в плоскости \((B, d)\) (Рис. 2а).
Ограниченное решение из области устойчивости (Рис. 2б)

Таким образом, алгебраизация по Айнсу может быть успешно использована для исследования устойчивости нелинейных бегущих волн в модели Пейрара—Бишопа, описывающей динамику молекулы ДНК. Получены границы областей устойчивости/неустойчивости в пространстве параметров системы. Результаты анализа устойчивости иллюстрируются численным моделированием.

Злосчастьєв Данило Костянтинович, студент 4 курсу, факультету комп’ютерних наук та кібернетики, КНУ імені Тараса Шевченка, Київ, Україна
e-mail: dan.zloschastiev@gmail.com

АДАПТИВНА АПРОКСИМАЦІЯ ВИСокоосцилюючого СИГНАЛУ З ВИКОРИСТАННЯМ ПЕРЕТВОРЕННЯ ФУР’Є

Злосчастьєв Д. К.

Ключові слова: апроксимація, адаптивний, сигнал, перетворення Фур’є
AMS Subject Classification: 65D15

Розглядається проблема апроксимації фізичного сигналу деякою системою базисних функцій. Нехай вихідна функція сигналу представлена вектором вимірів в певних точках часу (показами фізичних датчиків) і є лінійною комбінацією наступних основних складових: високочастотних, що представлені функціями вигляду \(f(t) = \sin(\omega t + \varphi) \) і поліноміальних \(f(t) = t^n \). Окрими складовими є шуми.

Найчастіше, для наближення застосовується поліном вигляду \(f(t) = \sum_{k=0}^{n} C_k t^k \). Для апроксимації сигналу проводиться ітераційна процедура, під час якої до базису додаються функції \(t^k \), і розв’язується задача відшукання коефіцієнтів \(C_k \).

Якщо заздалегідь відомо, що функція сигналу містить осцилюючі складові, для її апроксимації можна застосувати ряд Фур’є \(f(t) = \sum_{k=1}^{n} (A_k \sin(kt) + B_k \cos(kt)) \). Така задача розв’язується за допомогою аналогічної ітераційної процедури. Однак, для функцій, які містять високоосцилюючі складові (мають великі значення \(k \)), необхідно додати до базису \(2k \) функцій, більшість з яких можуть мати коефіцієнти, близькі до нульових, і майже не впливати на результуючу модель; тим не менш, кожна з цих базисних функцій вимагає додаткових обчислень.

Основною технічною складністю вищезгаданої ітераційної процедури є відшукання вектора \(\alpha \), що проводиться за допомогою операції \(\alpha = A^+ b \), де \(A^+ \) – псевдообернена матриця. Операція псевдообернення, як правило, виконується з використанням алгоритмів сингулярного розкладу матриці та операції обернення, що мають складність порядку \(O(m^3 n^3) \).[1, 2]

Таким чином, можна сформулювати наступні проблеми задачі апроксимації, деякі кроки розв’язання яких розглядаються далі у цій роботі:
1. Вихідна функція є високоосцилюючою.
2. Базис апроксимації містить велику кількість функцій, що мало впливають на результат, але потребують розрахунків.
3. Ітераційна процедура обчислення коефіцієнтів \(C_k \) є технічно громіздкою.
4. Додавання кожної точки виміру або базисної функції вимагає повного перерахунку моделі.

Для розв’язання проблем 3 і 4 були запропоновані деякі методи, що носять назву адаптивних. Вони оптимізують процес оновлення параметрів моделі при додаванні нових вимірів або базисних функцій. Ці алгоритми є рекурсивними і не вимагають обчислення псевдооберненої матриці для кожної операції.

Однією із задач даної роботи була програмна реалізація та оптимізація адаптивних алгоритмів для застосування на обчислювальних машинах. Розглянемо один з двох адаптивних методів – додавання точки виміру до моделі.

Процедура проводиться за формулами алгоритму:
1. На кроці \(k \) перевіряється умова: \(a^T_{m+1} Z(A^{n,m}) a_{m+1} > 0 \).
2. Якщо умова 1 справедлива, виконуються обчислення:

\[Z(A^{(n,m+1)}) = Z(A^{(n,m)}) - \frac{Z(A^{(n,m)})a_{m+1}^{T}a_{m+1}^{T}Z(A^{(n,m)})}{a_{m+1}^{T}Z(A^{(n,m)})a_{m+1}}, \]

\[R(A^{(n,m+1)}) = R(A^{(n,m)}) - \frac{Z(A^{(n,m)})a_{m+1}^{T}a_{m+1}^{T}R(A^{(n,m)}) - R(A^{(n,m)})a_{m+1}^{T}a_{m+1}^{T}Z(A^{(n,m)})}{a_{m+1}^{T}Z(A^{(n,m)})a_{m+1}}, \]

\[L_{m}^{(n,n)} = E_{n} - \frac{Z(A^{(n,m)})a_{m+1}^{T}}{a_{m+1}^{T}Z(A^{(n,m)})a_{m+1}} \cdot a_{m+1}, \]

\[\Psi_{m}^{n} = \frac{Z(A^{(n,m)})a_{m+1}}{a_{m+1}^{T}Z(A^{(n,m)})a_{m+1}} \cdot b_{m+1}. \]

3. У разі невиконання умови 1:

\[Z(A^{(n,m+1)}) = Z(A^{(n,m)}), \]

\[R(A^{(n,m+1)}) = R(A^{(n,m)}) - \frac{R(A^{(n,m)})a_{m+1}^{T}a_{m+1}^{T}R(A^{(n,m)})}{a_{m+1}^{T}R(A^{(n,m)})a_{m+1}}, \]

\[= E_{n} - \frac{R(A^{(n,m)})a_{m+1}}{1 + a_{m+1}^{T}R(A^{(n,m)})a_{m+1}} \cdot a_{m+1}, \]

\[\Psi_{m}^{n} = \frac{R(A^{(n,m)})a_{m+1}}{1 + a_{m+1}^{T}R(A^{(n,m)})a_{m+1}} \cdot b_{m+1}. \]

4. Обчислюється вектор невідомих коефіцієнтів:

\[a_{m+1}^{n} = l_{m}^{(n,n)}a_{m}^{n} + \Psi_{m}^{n}. \]

Тут \(Z \) і \(R \) – проекційні оператори, \(a_{m+1} \) – доданий вектор вимірів, \(b_{m+1} \) – значення вихідної функції, \(A^{(n,m)} \) – матриця попереднього кроку [3].

Розрахуємо обчислювальну складність алгоритму. Будемо враховувати лише операції множення/ділення чисел. Операції додавання/віднімання значно менше впливають на час розрахунків, і до того ж їх кількість майже не відрізняється. Зазначимо, що множення матриць розмірності \(m \times n \) та \(n \times p \) потребує \(mnp \) операцій множення [4]. Тоді для кожної формулі:

1. \(a_{m+1}^{T}Z(A^{(n,m)})a_{m+1} = (1 \cdot n \cdot n) + (1 \cdot n \cdot 1) = n^2 + n. \)

2. \(Z(A^{(n,m+1)}) = n^3 + 2n^2, \quad R(A^{(n,m+1)}) = 3n^3 + 10n^2 + n, \quad L_{m}^{(n,n)} = 2n^2 + n, \quad \Psi_{m}^{n} = n^2 + n. \)

3. \(Z(A^{(n,m+1)}) = 0, \quad R(A^{(n,m+1)}) = n^3 + n^2, \quad L_{m}^{(n,n)} = 2n^2 + n, \quad \Psi_{m}^{n} = n^2 + n. \)

4. \(a_{m+1}^{n} = 4n^3 + 16n^2 + 3n - з виконанням умови 1. \)

\(a_{m+1}^{n} = n^3 + 7n^2 + 2n - з невиконанням умови 1. \)

Для технічної оптимізації алгоритму скористаємось методом мемоїзації (використанням попередніх обчислень) та матричними перетвореннями. Виділимо елементи, що повторюються у виразах та розрахуємо їх заздалегідь:

\[a_{m+1}^{T}Z(A^{(n,m)})a_{m+1} = \text{зустрічається 7 разів; попереднє обчислення дозволить уникнути 6n^2 + 6n операцій.} \]

\[a_{m+1}^{T}R(A^{(n,m)})a_{m+1} = \text{зустрічається 3 рази; попереднє обчислення дозволить уникнути 2n^2 + 2n операцій.} \]

\[a_{m+1}^{T} = \text{зустрічається 7 разів; попереднє обчислення дозволить уникнути 6n^2 операцій.} \]
\[
\frac{1}{a_{m+1}Z(a^{(n,m)})a_{m+1}} \text{ – зустрічається 3 рази в одному виразі; винесення за дужки дозволить уникнути } 2n^2 \text{ операцій.}
\]

Таким чином, враховуючи факт, що умови оптимізації накладаються одна на одну, кількість операцій скорочується на 16\(n^2\) (з виконанням умови 1) або на 4\(n^2\) (з невиконанням умови 1). У цьому розрахунку опущено лінійну частину як маловпливову за великих значень \(n\).

Розглянемо далі проблему апроксимації високоосцилюючих складових вихідної функції. Зрозуміло, що їх наближення поліномом не дасть результатів належної якості. За́сто́вування ряда Фур’є є набагато до́цільнішим. Однак, ітеративне додавання функцій \(\sin(\varphi t)\) і \(\cos(\varphi t)\) при переборі значень \(\varphi = 1, \ldots, n\) призведе до надмірного розширення базису. Наприклад, це виходить на містить \(\sin(20\, \pi \, t)\), то буде додано 40 функцій, 39 з яких в результаті обчислень матимуть нульові коефіцієнти. До того ж, дробові значення \(\varphi\) досягають лише лінійною комбінацією базисних функцій і потребують ще більшої кількості останніх у моделі. Для того, щоб розв’язати названі проблеми, у цій роботі пропонується використання дискретного перетворення Фур’є

\[
f_k(b) = \sum_{n=0}^{N-1} b_n e^{-\frac{2\pi i n k}{N}},
\]

де \(N\) – кількість точок вихідного і результуючого вектора. За́сто́воване до вектора \(b\) значень вихідної функції, воно дозволяє отримати масив значень, які відображають залежність міри вкладу частоти від її значення \([5]\).

Оскільки елементами вектора \(f_k(b)\) є комплексні числа, для подальшої роботи з ними і врахування як дійсної, так і уявної частин, від них береться модуль. Окрім цього, розглядається лише перша половина чисел у масиві; всі інші відображають залежності від’ємних частот і в даному випадку не представляють користі. В результаті, векторі знайомо локальні максимиуми аналогами чисельних методів взяття похідної вперед та похідної назад у кожній точці: якщо \(f_{k+1} < f_k > f_{k-1}\), то \(f_k\) є точкою максимуму. Нехай високоосцилюючі складові у вихідних даних представлені лінійною комбінацією \(m\) функцій \(\sin(2\pi \varphi_m t + \psi_m)\), тоді точки максимуму \(f_k\) будуть відповідати частотам \(\varphi_m\) цих складових. Слід зазначити, що для достатньо великого часового інтервалу, на якому отримані дані, та достатньо малій відстані між сусідніми точками часу, точки \(\varphi_m\) визначаються з дуже малою похибкою. Проведені обчислювальні експерименти показали, що похибка не перевищує \(10^{-12}\), якщо часовий інтервал вміщує хоча б 2 періоди осцилюючої складової. Остаточно, в базис моделі адаптивним методом додаються по 2 функції для кожної \(\varphi_m\): \(\sin(2\pi \varphi_m t)\) та \(\cos(2\pi \varphi_m t)\); остання застосовується для компенсації фази \(\psi_m\).

Таким чином, у роботі була розглянута проблема апроксимації функції з високоосцилюючою складовою. До за́сто́вованого адаптивного методу були внесені деякі оптимізаційні покращення. Також було запропоновано використання для даної задачі алгоритму виявлення частот осцилюючих функцій за допомогою перетворення Фур’є та порядок за́сто́вування отриманих результатів у моделі.

Іванов Сергій Миколайович, аспірант, відділ дистанційних методів та перспективних приладів, Інститут космічних досліджень НАН України та ДКА України, Київ, Україна, e-mail: smivanov87@gmail.com
Яценко Віталій Олексійович, професор, Інститут космічних досліджень НАН України та ДКА України, Київ, Україна, e-mail: vyatsenko@gmail.com

НЕОБХІДНА І ДОСТАТНЯ УМОВА ЛОКАЛЬНОЇ СТРУКТУРНОЇ СТИЙКОСТІ ДИНАМІЧНИХ СИСТЕМ НА КОМПАКТНОМУ ГЛАДКОМУ МНОГОВИДІ

Іванов С.М., Яценко В.О.

Ключові слова: локальна орбітальна топологічна еквівалентність, робастність, умова, стійкість.

AMS Subject Classification: 93D09.

Зазвичай, змодельована система представляє собою деяке наближення до реальної дійсності процесу, оскільки при побудові диференціальних рівнянь завжди проводиться деяке спрощення і звичайно ж параметри визначаються наближено [7]. Тому властивості та поведінка динаміки реального процесу не завжди буде повністю відповідати передбачениям змодельованої системи. Отже, виявлення таких властивостей, при яких все-таки можна поширити на реальний процес результати аналізу реконструйованої системи, є необхідним для якісного системного аналізу. Вперше ця задача була поставлена А. А. Андроновим та Л. С. Понтрягіним і сформульована в 1937 р. в статті [8], де було введено поняття грубої системи. Сутність введеного поняття полягає в тому, що мале збурення грубої системи переводить її в орбітально топологічно еквівалентну. Тобто, наступна автономна динамічна система $\dot{x} = f(x)$, $x \in M$, де $\dot{x} = dx/dt$, f - лінійна або нелінійна вектор-функція класу гладкості C^σ, $\sigma \geq 2$, M - компактний гладкий многовид ($f: M \to TM$, де TM-дотичне розшарування) буде грубою, або структурно стійкою, якщо знайдеться така околіця Ω_f точки векторного поля f у просторі $C^\sigma(M, TM)$, що при кожній $f_\epsilon \in \Omega_f$ система $\dot{x} = f_\epsilon(x)$ буде орбітально топологічно еквівалентна системі $\dot{x} = f(x)$, а гомеоморфізм, який виконує цю еквівалентність близький до тотожного в топології простору $C^\sigma(M, M)$.

Означения 1. Дві системи (M_1, f_1) і (M_2, f_2) називаються локально дифеоморфними в околиці точки стійкої рівноваги, якщо існує такий дифеоморфізм, який переводить векторне поле f_1 в околиці точки стійкої рівноваги однієї системи у векторне поле f_2 в околиці точки стійкої рівноваги другої системи [9].

Лема 1. Якщо топологічно еквівалентні лінійні частини двох систем й виконуються умови а) системи є гіперболічними і б) серед власних значень матриці Якобі, обчисленої в
околі нуля не має нулів, то топологічно еквівалентні й ці дві системи: \(\dot{x} = A(x) + f_1(x), \quad \dot{y} = B(y) + f_2(y) \).

Доведення леми проводиться на основі теореми Гробмана-Гартмана [10-12].

Теорема 1 (якщо існує дифеоморфізм \(h \) такий, що \(J_h(m^1) = I \) або \(J_h(n^1_b) = kI \), де \(J_h(m^1) \) - матриця Якобі функції \(h(m^1) \), обчисленна в точці \(m^1 \), \(I \) - одинична матриця). У локально дифеоморфних системах з однаковою розмірністю при виконанні умов а) і б) рівність матриць Якобі, обчисленних в околіці точок стійкої рівноваги є необхідною та достатньою умовою.

Рівність матриць Якобі в теоремі 1, як необхідної і достатньої умови, переводить розгляд до рівностей квадратних матриць. Отже необхідно розглянути власні значення матриць на умову топологічної еквівалентності.

Наслідок 1 (до теореми 1). Рівність власних значень матриць Якобі, обчисленних в околіці точок стійкої рівноваги є необхідною умовою локальної топологічної еквівалентності систем.

Наприклад, розглянемо матриці

\[
A' = \begin{pmatrix} 5 & 3 \\ -2 & 0 \end{pmatrix}, \quad B' = \begin{pmatrix} 1 & -6 \\ 1/3 & 4 \end{pmatrix}.
\]

У них власні значення співпадають \(\lambda = \{2, 3\} \), однак матриці \(A' \) і \(B' \) не є рівними.

Тому рівність власних значень матриць Якобі, обчисленних в околіці точок стійкої рівноваги є необхідною умовою локальної топологічної еквівалентності систем.

Якщо матриці \(A \) і \(B \) подібні, то для деякої невиродженої матриці \(Q \) виконується рівність \(B = Q^{-1} A Q \), то вони мають однакові характеристичні многочлени й їх власні значення співпадають. Як зазначається в [9], поняття топологічної еквівалентності не повністю покриває структурну стійкість системи. В [9] пропонується розглянути наступний приклад: немає векторне поле з замкненою фазовою кривою, наприклад, граничний цикл. Отже топологічно еквівалентна система теж зобов’язана мати граничний цикл з тим самим періодом. Таким чином, якщо достатньо мало [9] змінити векторне поле тоді може трохи змінитися, а отже цей період руху по циклу є неперервно змінюванним інваріантом, який називають модулем. Для того, щоб позбутися модуля, розглядають ще більш грубе поняття орбітальної топологічної еквівалентності.

Означення 2. Системи називаються орбітально топологічно еквівалентними в околіці точок стійкої рівноваги, якщо існує гомеоморфізм деякої околіці точок стійкої рівноваги векторного поля однієї системи в точку стійкої рівноваги другого і відображує локальні фазові криві одного поля в друге зі збереженням напряму руху [9].

Відповідно до означення 2, необхідно встановити необхідний і достатній критерій орбітальної топологічної еквівалентності, за допомогою якого можна визначати структурно стійкі (грубі) системи. Відповідно до попередніх ознак а) і б), встановлених вище у лемі 1.

Критерій має встановити наступні дві умови:

1. Системи мають бути топологічно еквівалентні.
2. Напрямок руху по траєкторіях має співпадати.

Теорема 2 (якщо існує дифеоморфізм \(h \) такий, що \(J_h(m^1) = I \) або \(J_h(n^1_b) = kI \), де \(J_h(m^1) \) - матриця Якобі функції \(h(m^1) \), обчисленна в точці \(m^1 \), \(I \) - одинична матриця). У локально орбітально топологічно еквівалентних системах при виконанні умов а) і б) рівність матриць Якобі, обчисленних в околіці точок стійкої рівноваги є необхідною та достатньою умовою.

Приклад 1. Перевірити на орбітальну топологічну еквівалентність наступні системи: \(\dot{x} = -x, \quad \dot{y} = -y + 5 \).
Очевидно, что матрицы Якоби ровны, напрямок руху по траєкторіям співпадає й дійсно достатньо за допомогою заміни координат перевести точку стійкої рівноваги одного векторного поля в точку стійкої рівноваги іншого векторного поля. Отже, наведені системи є орбітально топологічно еквівалентними.

Приклад 2. Перевірити на орбітальну топологічну еквівалентність наступні системи: \[\dot{x} = -x, \quad \dot{y} = y + 5. \]

Матриці Якоби не рівні, напрямок руху по траєкторіям не співпадає, однак, дійсно достатньо за допомогою заміни координат перевести точку стійкої рівноваги одного векторного поля в точку стійкої рівноваги іншого векторного поля. Але, наведені системи не є орбітально топологічно еквівалентними.

Висновки
Основним результатом даної роботи є доведення необхідності та достатності умов локальної топологічної й орбітальної топологічної еквівалентності (грубості, робастності, структурної стійкості) динамічних систем. Розглядаються як двовимірні динамічні системи, так і більшої розмірності. Показано, що при розмірності системи більше двох, точки стійкої рівноваги поєднують властивості точок систем у двовимірному просторі.

З отриманих результатів випливає, що необхідну і достатню умову можна використати для реконструкції локально структурно стійких (робастних) динамічних систем, які описують процеси різної природи за часовими рядами.

Література
Калитин Борис Сергеевич, кандидат физ.-мат. наук, доцент, БГУ, Минск, Беларусь, e-mail: kalitine@yandex.by;
Боголюбская-Синякова Екатерина Сергеевна, аспирант, экономический факультет, Белорусский государственный университет, Минск, Беларусь, e-mail: ytka11199509@mail.ru;

АНАЛИЗ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПУТЕЙ РАЗВИТИЯ ЭКОНОМИКИ
Калитин Б.С., Боголюбская-Синякова Е.С.

Ключевые слова: рынок, пути развития производства, инновации, дотации, государственное регулирование.

Доклад посвящен анализу возможностей увеличения выручки и дохода для предпринимателей при использовании экстенсивного и инновационного путей развития бизнеса. Как известно [1], первый из них характеризуется увеличением объемов производства за счет количественных факторов, а второй – предполагает качественные изменения в экономике, появление новых технологий, новых правил и принципов деятельности. Исследование подвергался каждый путь развития в предположении, что для руководителя фирмы экстенсивный путь, как правило, предшествует инновационному. В процессе изучения [2–6] построена экономико-математическая модель торгово-производственных ситуаций при производстве и реализации благ. Решаются следующие задачи:

- вывод формулы выручки в виде функции от таких параметров модели, как эластичность спроса по цене, коэффициент общей инфляции, уровень используемых инноваций и др. параметров;
- исследование функциональных зависимостей выручки по каждому параметру, используемому в модели;
- изучение изменений функции выручки при использовании того или иного пути развития;
- выделение максимально возможного значения выручки;
- исследование максимума выручки по параметрам модели;
- вывод формулы дохода в виде функции от эластичности спроса по цене, коэффициента общей инфляции, уровня используемых инноваций и др. параметров;
- исследование функциональных зависимостей дохода по каждому параметру, используемому в модели и их графическая иллюстрация;
- изучение изменений функции дохода при использовании того или иного пути развития;
- выделение максимально возможного значения дохода;
- исследование возможностей государственного регулирования выручки и доходов предпринимателя в случае его выбора инновационного пути развития производства и торговли.

По всем этим решаемым вопросам представлена графическая иллюстрация функциональных зависимостей выручки и дохода от параметров модели и приведены соответствующие выводы экономического характера.

Результаты исследований позволяют отметить достоинства и недостатки каждого из выбранных руководителем фирмы путей развития, а также выгоды и перспективы торговли. Полученные результаты анализа дают возможность предпринимателю сравнить два
пути развития – экстенсивный и инновационный, наметить свое краткосрочное и долгосрочное стратегическое планирование перспектив устойчивого и надежного бизнеса.

О ВЛИЯНИИ ДИССИПАТИВНОГО И ДВУХ ПОСТОЯННЫХ МОМОНТОВ НА УСТОЙЧИВОСТЬ РАВНОМЕРНЫХ ВРАЩЕНИЙ ДВУХ УПРУГО СВЯЗАННЫХ ГИРОСКОПОВ ЛАГРАНЖА

Конюнов Ю.Н., Святенко Я.И.

Ключевые слова: упруго связанные гироскопы Лагранжа, сопротивляющаяся среда, устойчивость.
AMS Subject Classification: 70E50, 70E55

Рассмотрено вращение в сопротивляющейся среде двух упруго связанных динамически симметричных тяжелых твердых тел \(S_i \) \((i=1,2)\). Твердые тела \(S_1 \) и \(S_2 \) связаны в точке \(O_2 \) упругим восстанавливающим сферическим шарниром \(\vec{L} = k \vec{c}_2 \times \vec{c}_2 / |\vec{c}_2| \), \(k \geq 0 \). Нижнее тело \(S_1 \) имеет неподвижную точку \(O_1 \). Тяжелое твердое тело \(S_i \) \((i=1,2)\) находится под действием диссипативного момента \(\vec{M}_{id} = -D_i \vec{\omega}_i \) (\(D_i = \text{diag}(D_{i1},D_{i1},D_{i3}) \)), моделирующего сопротивляющуюся среду, постоянного \(\vec{M}_{sp} = -P_i \vec{\bar{\nu}} \) момента в инерциальной системе координат и постоянного \(\vec{M}_{qG} = Q_i \vec{c}_i \) момента в системе отсчета, связанной с твердым телом \(S_1 \). Здесь \(\vec{c}_i = \bar{O}_i \vec{O}_2 \), \(\vec{c}_i = \bar{O}_i \vec{C}_i \), \(C_i \) и \(\vec{\omega}_i \) соответственно центр масс и угловая скорость тела \(S_i \), \(\bar{\vec{v}} = \bar{g} / g \), \(\bar{\bar{g}} \) -- вектор ускорения свободного падения, \(D_{i1},D_{i1},D_{i3},Q_i \) и \(P_i \) -- постоянные \((D_{i1} > 0, D_{i3} > 0)\).

Исходная система уравнений движения рассматриваемой механической системы допускает частные решения [1-2]

\[
\begin{align*}
\alpha_i^0 &= \cos \omega_0 t, \quad \alpha_i^0 &= \pm \sin \omega_0 t, \quad \alpha_i^0 &= = 0, \\
\alpha_i^0 &= = -\sin \omega_0 t, \quad \alpha_i^0 &= = \pm \cos \omega_0 t, \quad \alpha_i^0 &= = 0, \quad \alpha_i^0 &= = 0, \quad \alpha_i^0 &= = 0, \quad \alpha_i^0 &= = 1, \quad (1)
\end{align*}
\]

которые соответствуют равномерным вращениям тел \(S_i \) вокруг осей \(\vec{c}_i \), совпадающих с вертикально. При этом решению (1) с верхним знаком соответствует случай сбливающихся гироскопов (центр масс обоих находится выше неподвижной точки), а с нижним -- случай статически устойчивых гироскопов (их центр масс находится ниже неподвижной точки).

Для определенности в решении (1) выберем верхний знак и исследуем устойчивость этого решения по части переменных, которые определяют положения осей \(\vec{c}_i \) в пространстве и угловые скорости твердых тел. Для этого в возмущенном движении положим \(\vec{\omega}_i = \vec{\omega}_0 + \overline{\Omega}_i \), где \(|\overline{\Omega}_i| \) является величиной первого порядка малости по сравнению с \(|\vec{\omega}_0| \).

Уравнения возмущенного движения рассматриваемой механической системы могут
быть представлены в виде

\[A_i \ddot{y}_i + (i \ddot{C}_i + D_{1i}) \dot{y}_i + s_i a_2 \ddot{y}_j = (a_i g - k - i \ddot{P}_i) y_i , \quad (i = 1, 2, \ j = 3 - i), \]

где \[A'_i = A_i + s_i^2 m_2, \quad A'_2 = A_2, \quad a_1 = m_i c_1 + m_2 s_1, \quad a_2 = m_2 c_2, \quad C_i = C_i \omega_{0i}, \quad \ddot{P}_i = Q_i + P_i. \]

Здесь следует различать нижний индекс \(i = 1, 2 \) от мнимой единицы.

Характеристическое уравнение возмущенного движения (1) примет вид

\[\lambda^4 + (a_3 + ib_1) \lambda^3 + (\ddot{a}_2 + ib_2) \lambda^2 + (\ddot{a}_1 + ib_1) \lambda + a_0 + i b_0 = 0. \]

Для существования асимптотически устойчивых решений системы необходимо и достаточно, чтобы матрица седьмого порядка, составленная из коэффициентов многочлена (3) была иннорно-положительной [5], т.е. были положительно определены матрицы \(\Delta_1, \Delta_3, \Delta_4 \) и \(\Delta_7 \). Показано, что асимптотическая устойчивость равномерных вращений в сопротивляющейся среде двух гироскопов Лагранжа, связанных упругим сферическим шарниром, определяется тремя неравенствами \(|\Delta_i| > 0 \ (i = 3, 5, 7) \).

Условия устойчивости решения (1) с нижним знаком будут также следовать из этих трех неравенств, если в них заменить \(\ddot{P}_i = Q_i + P_i \) на \(\ddot{P}_i = Q_i - P_i \) и считать \(a_1 < 0, a_2 < 0 \).

Рассматриваемая механическая система является многопараметрической. В этой связи рассмотрен ряд частных случаев, которые имеют и самостоятельный научный интерес: случай не упругого сферического шарнира (\(k = 0 \)), случай цилиндрического шарнира (\(k = \infty \)) и случай универсального упругого шарнира (шарнира Гука) (\(k \neq 0, \omega_{01} = \omega_{02} = \omega \)).

Показано, что в случае цилиндрического шарнира при \(\omega_{01} = \omega_{02} \) или при \((Q_1 + P_1)D_{23} = (Q_2 + P_2)D_{13} \) полученное неравенство совпадает с неравенством работы [3], а при отсутствии второго постоянного момента (\(Q_1 = Q_2 = 0 \)) – с неравенством работы [4].

Таким образом, условия асимптотической устойчивости равномерного вращения в сопротивляющейся среде двух тяжелых гироскопов Лагранжа, связанных упругим сферическим шарниром, определяются тремя неравенствами. В случае сферического неупругого шарнира эти неравенства существенно упрощаются, а при выражении упругого сферического шарнира в цилиндрический сводится к одному неравенству из которого следует, что при отсутствии постоянных моментов или когда их сумма равна нулю вращение статически уравновешенных гироскопов всегда асимптотически устойчиво, а вращение статически неуравновешенных гироскопов неустойчиво.

Исследования выполнены в рамках программы фундаментальных исследований Министерства образования и науки, проект № 0119U100042.

АНАЛІТИЧНИЙ РОЗВ’ЯЗОК ДИФЕРЕНЦІАЛЬНОГО РІВНЯННЯ ЗГИНУ ПРЯМОКУТНОЇ ПЛАСТИНИ НА ЗМІННИЙ ПРУЖНІЙ ОСНОВІ

Крутій Ю.С., Сур’янінов М.Г., Карнаухова Г.С.

Ключові слова: рівняння згину, прямокутна плита, змінна пружна основа, гіпотеза Вінклера, змінний коефіцієнт постелі, граничні умови Леві.
AMS Subject Classification: 35A20

Розглядається диференціальне рівняння в частинних похідних

\[D \left(\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} \right) + k_0 A(x) w = q(x, y), \]

яке є математичною моделлю задачі про згин прямокутної плити (0 ≤ x ≤ a; 0 ≤ y ≤ b) стаєї циліндричної жорсткості D. Плита лежить на змінній пружній основі та знаходиться під дією поперечного неперервно розподіленого навантаження q(x, y). Властивості пружної основи описуються моделлю Вінклера зі змінним уздовж осі x коефіцієнтом постелі k(x), для якого прийнято форму запису k(x) = k_0 A(x). Тут k_0 – сталий розмірний параметр (коефіцієнт постелі в деякій характерній точці плити, наприклад, у точці x = 0), a A(x) – безрозмірна неперервна функція, що визначає закон зміни коефіцієнта постелі на відрізку 0 ≤ x ≤ a.

Розглянуто випадок, коли сторони плити x = 0; x = a закріплені будь-яким чином, а сторони y = 0; y = b шарнірно обперті (граничні умови Леві).

Подання невідомої функції прогину w(x, y) та заданого навантаження q(x, y) у вигляді тригонометричних рядів

\[w(x, y) = \sum_{m=1}^{\infty} w_m(x) \sin \frac{m\pi y}{b}, \quad q(x, y) = \sum_{m=1}^{\infty} q_m(x) \sin \frac{m\pi y}{b}, \]

дозволяє заздалегідь задовольнити заданим граничним умовам та приводить до звичайного диференціального рівняння

\[w'''_m(x) - 2 \left(\frac{m\pi}{b} \right)^2 w''_m(x) + \left(\frac{m\pi}{b} \right)^4 w'_m(x) + k_0 A(x) w_m(x) = \frac{q_m(x)}{D}, \]

відносно нової змінної w_m(x). У разі розподілу навантаження по всій поверхні плити, функція q_m(x) тут визначається рівністю

\[q_m(x) = 2 \int_0^b q(x, y) \sin \frac{m\pi y}{b} dy. \]

Для q_m(x) прийнято форму запису q_m(x) = q_{m,0} B_m(x), де q_{m,0} – сталий розмірний множник, а B_m(x) – безрозмірна функція.
Для розв'язання рівняння (2) застосовано метод пряме інтегрування звичайних диференціальних рівнянь зі змінними коефіцієнтами, який розвинуто в роботі [1].

У підсумку загальний розв'язок рівняння (2), виражений через початкові параметри, визначатиметься наступною сукупністю формул:

\[w_m(x) = w_m(0) \left(X_{m,1}(x) - 2a^2 w_m''(0)X_{m,1}(x) + a^2 w_m''''(0)X_{m,1}(x) \right) + \]

+ \(w_m(0) \left(X_{m,1}(x) - 2a^2 w_m''(0)X_{m,1}(x) + a^2 w_m''''(0)X_{m,1}(x) \right) + aX_{m,2}(x); \)

\[X_{m,n}(x) = \alpha_{m,n,0}(x) + \alpha_{m,n,1}(x) + \alpha_{m,n,2}(x) + \alpha_{m,n,3}(x) + \ldots (n = 1, 2, 3, 4, 5); \]

\[\alpha_{m,n,0}(x) = \frac{1}{(n-1)!}(x)^{n-1} (n = 1, 2, 3, 4); \]

\[\alpha_{m,n,0}(x) = \frac{q_{m,0}}{aD} \int \int \int \int B_m(x)dxdxdxdx; \]

\[\alpha_{m,n,k}(x) = 2 \left(\frac{m\pi a}{b} \right)^2 \int \int \int \int \alpha_{m,n,k-1}(x)dxdxdxdx - \left(\frac{m\pi a}{b} \right)^2 \int \int \int \int \alpha_{m,n,k-1}(x)dxdxdxdx - \]

- \(k_0 \int \int \int \int A(x) \alpha_{m,n,k-1}(x)dxdxdxdx \) \((n = 1, 2, 3, 4, 5)(k = 1, 2, 3, \ldots). \)

Загальгуємо, що формула (3) є рекурентною. Відповідно до цієї формулі кожній початковій функції \(\alpha_{m,n,0}(x) \) \((n = 1, 2, 3, 4, 5) \) буде відповідати своя нескінчена множина так званих [1] твірних функцій \(\alpha_{m,n,k}(x) \) \((n = 1, 2, 3, 4, 5)(k = 1, 2, 3, \ldots). \)

Для зручності чисельної реалізації твірні функції (3) подано степеневими рядами

\[\alpha_{m,n,k}(x) = \left(\frac{x}{a} \right)^{n+2k-1} \sum_{j=0}^{\infty} c_{m,n,k,j} \left(\frac{x}{a} \right)^j (n = 1, 2, 3, 4, 5)(k = 1, 2, 3, \ldots) \]

з безрозмірними коефіцієнтами \(c_{m,n,k,j}. \) Для обчислення цих коефіцієнтів отримано наступну сукупність рекурентних формул:

\[c_{m,n,0,0} = \frac{1}{(n-1)!}; \ c_{m,n,0,j} = 0 \ (n = 1, 2, 3, 4)(j = 1, 2, 3, \ldots); \]

\[c_{m,5,0,j} = \frac{q_{m,0}a^3}{D} \frac{B_{m,j}}{(j+1)(j+2)(j+3)(j+4)} \ (j = 0, 1, 2, \ldots); \]

\[c_{m,n,k,j} = 2 \left(\frac{m\pi a}{b} \right)^2 \frac{c_{m,n,k-1,j}}{e_{n,k,j}} (k = 1, 2, 3, \ldots)(j = 0, 1); \]

\[c_{m,n,k,j} = \frac{2 \left(\frac{m\pi a}{b} \right)^2 c_{m,n,k-1,j}}{e_{n,k,j}} - \frac{1}{f_{n,k,j-2} \left(\frac{m\pi a}{b} \right)^4 c_{m,n,k-1,j-2} + \frac{k_0 a^4}{D} \sum_{i=0}^{i-2} A_{j-i-2} c_{m,n,k-1,j-2}}, \]

де \(A_j, B_{n,j} (j = 0, 1, 2, \ldots) \) – відповідно коефіцієнти розкладу в ряди Маклорена безрозмірних функцій \(A(x), B_m(x) \) по степеням \(x/a. \)

АНАЛІТИЧНИЙ РОЗВ'ЯЗОК ДИФЕРЕНЦІАЛЬНОГО РІВНЯННЯ ОСЕСИМЕТРИЧНОГО ЗГИНУ КРУГЛОЇ ПЛАСТИНИ НА ЗМІННІЙ ПРУЖНІЙ ОСНОВІ

Крутій Ю. С., Сур’янінов М. Г., Карнаухова Г. С.

Ключові слова: рівняння осесиметричного згину, кругла пластина, радіальна координата, змінна пружна основа, гіпотеза Вінклера, змінний коефіцієнт постелі.

AMS Subject Classification: 35A20

Розглядається звичайне диференціальне рівняння

$$D \frac{1}{r} \frac{d}{dr} \left[r \frac{d}{dr} \left(\frac{1}{r} \frac{d}{dr} \left(r \frac{dw}{dr} \right) \right) \right] + k_0 A(r)w = q_0 B(r),$$

де k_0, q_0 – сталі розмірні множники (відповідно коефіцієнт постелі та навантаження у деякій характерній точці пластини, наприклад, у точці $r = 0$), а $A(r)$, $B(r)$ – безрозмірні функції, що відповідно визначають закони зміни коефіцієнта постелі та навантаження від радіальної координати r.

Для розв’язання рівняння (1) застосовано метод прямого інтегрування звичайних диференціальних рівнянь зі змінними коефіцієнтами, який розвинуто в роботі [1].

У підсумку загальний розв’язок рівняння (1), визначатиметься наступною сукупністю формул:

$$w(r) = C_1 X_1(r) + C_2 X_2(r) + C_3 \left(X_1(r) \ln \frac{r}{a} + Z_1(r) \right) + C_4 \left(X_2(r) \ln \frac{r}{a} + Z_2(r) \right) + \frac{q_0 a^4}{D} X_3(r);$$

$$X_n(r) = \alpha_{n,0}(r) - K \alpha_{n,1}(r) + K^2 \alpha_{n,2}(r) - K^3 \alpha_{n,3}(r) + \ldots \quad (n = 1, 2, 3);$$

$$Z_n(r) = \beta_{n,0}(r) - K \beta_{n,1}(r) + K^2 \beta_{n,2}(r) - K^3 \beta_{n,3}(r) + \ldots \quad (n = 1, 2);$$

$$\alpha_{n,0}(r) = \beta_{n,0}(r) = \left(\frac{r}{a} \right)^{2n-2} \quad (n = 1, 2);$$
\[\alpha_{3,0}(r) = \frac{1}{a^4} \int_0^r \int_0^r \int_0^r \int_0^r r B(r) dr dr dr dr ; \]
\[\alpha_{n,k}(r) = \frac{1}{a^4} \int_0^r \int_0^r \int_0^r \int_0^r r A(r) \alpha_{n,k-1}(r) dr dr dr dr \quad (n = 1, 2, 3) (k = 1, 2, 3, ...); \]
\[\beta_{n,k}(r) = \frac{1}{a^4} \int_0^r \int_0^r \int_0^r \int_0^r \left(A(r) \beta_{n,k-1}(r) - \frac{4a^4}{r} d^3 \alpha_{n,k}(r) \right) dr dr dr dr \quad (n = 1, 2) (k = 1, 2, 3, ...). \]

de \(C_1, C_2, C_3, C_4 \) – сталі інтегрування.

Формули (2), (3) є рекурентними. Згідно з цими формулами кожної із початкових функцій \(\alpha_{n,0}(r) (n = 1, 2, 3) \) та \(\beta_{n,0}(r) (n = 1, 2) \) відповідатимуть свої нескінченні множини так званих [1] твірних функцій \(\alpha_{n,k}(r) (n = 1, 2, 3) (k = 1, 2, 3, ...) \) та \(\beta_{n,k}(r) (n = 1, 2) (k = 1, 2, 3, ...) \).

Для зручності чисельної реалізації твірні функції (2), (3) подано степеневими рядами:
\[\alpha_{n,k}(r) = \left(\frac{r}{a} \right)^{2n+4k-2} \sum_{j=0}^{\infty} c_{n,k,j} \left(\frac{r}{a} \right)^j \quad (n = 1, 2, 3) (k = 1, 2, 3, ...); \]
\[\beta_{n,k}(r) = \left(\frac{r}{a} \right)^{2n+4k-2} \sum_{j=0}^{\infty} d_{n,k,j} \left(\frac{r}{a} \right)^j \quad (n = 1, 2) (k = 1, 2, 3, ...). \]

Коефіцієнти цих рядів є безрозмірними. Для їх обчислення отримано наступну сукупність рекурентних формул:
\[c_{n,0,0} = 1; \quad c_{n,0,j} = 0 \quad (n = 1, 2) (j = 1, 2, 3, ...); \]
\[c_{3,0,j} = \frac{B_j}{p_{3,0,j}} \quad (j = 0, 1, 2, ...); \]
\[c_{n,k,j} = \frac{1}{p_{n,k,j}^2} \sum_{i=0}^{j} A_{j-i} c_{n,k-i,i} \quad (n = 1, 2, 3) (k = 1, 2, 3, ...) (j = 0, 1, 2, ...); \]
\[d_{n,0,0} = 1; \quad d_{n,0,j} = 0 \quad (n = 1, 2) (j = 1, 2, 3, ...); \]
\[d_{n,k,j} = \frac{1}{p_{n,k,j}^2} \sum_{i=0}^{j} A_{j-i} d_{n,k-i,i} - \left(2n + 4k - 3 \right) c_{n,k,j} \quad (n = 1, 2) (k = 1, 2, 3, ...) (j = 0, 1, 2, ...); \]
\[p_{n,k,j} = \left(2n + 4k + j - 4 \right) \left(2n + 4k + j - 2 \right), \]
де \(A_j, B_j (j = 0, 1, 2, ...) \) – відповідно коефіцієнти розкладу в ряди Маклорена безрозмірних функцій \(A(r), B(r) \) по степеням \(r/a \).

ДИСКРЕТНА ОПТИМІЗАЦІЯ ПОРТФЕЛЯ АКЦІЙ ПРИ ОБМЕЖЕННЯХ

Кулян В.Р., Юнькова О.О., Коробова М.В.

Ключові слова: оптимальний портфель інвестицій, допустима множина, ефективна множина.

AMS Subject Classification: 91B28

Для розв’язання та аналізу прикладних задач портфельного інвестування існує широкий спектр підходів [1, 2]. Значна частина із них передбачає активне використання методів технічного аналізу, які дають можливість визначити ринкову вартість акції у майбутньому. Такі правила побудови прогнозу, в силу добре розроблених математичних формалізацій і підходів та відносно не складної практичної реалізації, активно розвиваються і ефективно застосовуються не тільки на фондовому ринку. Використання аналітичних методів фундаментального аналізу дозволяє дати відповідь на питання: чому ринкова вартість акції у майбутньому буде якраз такою? На даний момент, зважаючи на складність математичних моделей при дослідженні процесів ринкового ціноутворення активів фондового ринку, методи фундаментального аналізу ще не знайшли ефективного розвитку та конструктивного застосування. Принципи здійснення процесів, які грунтуються на математичному моделюванні [2, 3], очевидно, є одними з найбільш перспективних і їх розробці приділяється значна увага науковців.

Метою даного наукового дослідження є розробка аналітичних методів та обчислювальних процедур для розв’язання задач оптимізації портфеля ризикованих цінних паперів у постановці Г. Марковиця при наявності кількісних та якісних інструментальних обмежень на його структурі.

Розглянемо задачу про оптимізацію ризику оптимального за очікуваною прибутковістю портфеля акцій у загальній постановці Г. Марковиця. Для цього скористаємося множинами допустимих та ефективних портфелів, що відповідають обраному набору акцій. Процедура оптимізації ризику для оптимального за очікуваною прибутковістю портфеля полягає в виборі на кожному кроці допустимих портфелів, які лежать на прямій EF (Рис.1). Ця лінія з’єднує точку , що відповідає оптимальному за ринковою вартістю портфелю, з точкою , яка належить ефективній множині. Дана пряма паралельна осі ризикованості портфелів , яка лежить на прямій EF (Рис.1). Ця лінія з’єднує точку , що відповідає оптимальному за ринковою вартістю портфелю, з точкою , яка належить ефективній множині. Дана пряма паралельна осі ризикованості портфелів . Особливістю такого вибору оптимального портфеля є те, що на цій прямої, згідно означення, кожному із портфелів відповідає одна і та ж очікувана прибутковість, але ризикованість зменшується у напрямку осі . Така властивість допустимої множини інвестиційних портфелів дозволяє з одного боку врахувати обмеження

\[x_i(t) \in X(t), \ i = \overline{1,n} , \]

а з іншого – визначити портфель “оптимальної” очікуваної прибутковості з меншим ризиком.
Якщо ж визначений портфель знаходиться у точці E', тобто є таким для якого немає можливості зменшити ризикованість згідно запропонованого вище правила, то "оптимальний портфель" визначаємо перемістивши його із точки E' у точку F', яка є елементом ефективної множини портфелів. Фактично це означає визначення портфеля акцій з більшою очікуваною прибутковістю. Разом з тим, така процедура дозволяє конструктивно врахувати наявні обмеження при диверсифікації портфеля.

Інша математична постановка задачі про оптимізацію очікуваної прибутковості $r_p(T)$ інвестиційного портфеля при визначеному на момент часу T рівні його ризику τ є такою

$$
\begin{align*}
&\max_{x} \quad r^T(T)x(T) \\
&x^T(T)Vx(T) = \tau \\
&I^T x(T) = 1 \\
&x_i(t) \geq 0, i = \overline{1,n}, t \in [t_0,T] \\
&x_i(t) \in X(t), i = \overline{1,n}, t \in [t_0,T]
\end{align*}
$$

Процедура оптимізації очікуваної прибутковості r_p портфеля для визначеного рівня його ризику τ полягає у виборі на кожному кроці допустимих портфелів, які лежать на прямій EG (Рис.2), що з’єднує точку E, яка відповідає оптимальному за очікуваною прибутковістю розрахованому портфелю і точку G, яка належить ефективній множині. Ця пряма паралельна осі ринкової вартості r_p. Особливістю такого вибору оптимального портфеля є те, що на цій прямій, згідно означення, кожному із портфелів відповідає одна і та ж ризикованість, але ринкова вартість r_p збільшується. Ця властивість допустимої множини інвестиційних портфелів, як і у попередньому випадку, дозволяє з одного боку врахувати обмеження $x_i(t) \in X(t), i = \overline{1,n}$, а з іншого – визначити портфель з “оптимальним” ризиком і більшою очікуваною прибутковістю.
Якщо визначений портфель знаходиться у точці K, тобто такий для якого немає можливості збільшити очікувану прибутковість, згідно запропонованого вище правила, то “оптимальний портфель” визначаємо, перемістивши його із точки K у точку G', яка є елементом ефективної множини портфелів. Фактично це означає зменшення ризикованості портфеля акцій. Ефективна множина або множина ефективних портфелів на рис. 1, 2 знаходиться на дузі CD. Вона є множиною Парето для існуючої на ринку множини акцій.

Леонтьева Виктория Владимировна, кандидат физ.-мат. наук, доцент, Запорожский национальный университет, Запорожье, Украина.
e-mail: vleonteva15@gmail.com, vleonteva@mail.ru;
Кондратьева Наталия Александровна, кандидат физ.-мат. наук, доцент, Запорожский национальный университет, Запорожье, Украина.
e-mail: nkondr100@gmail.com.

ЧУВСТВИТЕЛЬНОСТЬ АСТАТИЧЕСКОГО ГИРОСКОПА С ТРЕМЯ СТЕПЕНИМИ СВОБОДЫ, УСТАНОВЛЕННОГО НА НЕПОДВИЖНОМ ОСНОВАНИИ

Леонтьева В.В., Кондратьева Н.А.

Ключевые слова: астатический гироскоп в кардановом подвесе, модель в переменных состояния, параметрическая чувствительность, вариация параметров математической модели.

AMS Subject Classification: 93B35-06.

Работа посвящена исследованию вопроса о параметрической чувствительности [1-3] астатического гироскопа с тремя степенями свободы в кардановом подвесе, установленного на неподвижном основании в инерциальном пространстве [4-6] к вариации его параметров при различных воздействующих на него внутренних и внешних факторов.

С учетом формализма Лагранжа, основанном на вариационном принципе формулировки механики и теории поля, в которой состояние системы задается обобщенными координатами q_i, в качестве которых в данном случае выступают соответственно углы поворота внешней рамки гироскопа относительно основания α и внутренней рамки относительно внешней β, обобщенными скоростями \dot{q}_i, уравнения движения исследуемого в работе гироскопа представляет собой систему уравнений вида [4]

$$
\begin{align*}
\left(J_1 + J_2 \cos^2 \beta \right) \ddot{\alpha} - 2 J_2 \dot{\alpha} \dot{\beta} \sin \beta \cos \beta + H \dot{\beta} \cos \beta &= N - R \sin \beta, \\
J_3 \ddot{\beta} + J_2 \dot{\alpha}^2 \sin \beta \cos \beta - H \dot{\alpha} \cos \beta &= L, \\
\frac{dH}{dt} &= R,
\end{align*}
$$

где J_1, J_2, J_3 – моменты сил инерции гироскопа; H – собственный кинетический момент гироскопа; N – момент сил, действующий на гироскоп вдоль внешней оси подвеса; L – момент сил, действующий вдоль внутренней оси подвеса; R – момент внешних сил вдоль главной оси гироскопа.

Предполагая, что моменты внешних сил изменяются во времени в соответствии с гармоническим законом, пренебрегая центробежными моментами сил инерции, принимая во внимание, что угловая скорость собственного вращения гироскопа может быть поддержана за счет технических устройств постоянной, а также, в силу малого изменения во времени углов поворота β гироскопа (в тригонометрических выражениях уравнений (1)), получим упрощенную линеаризованную систему уравнений движения гироскопа в виде

$$
\begin{align*}
\left(J_1 + J_2 \cos^2 \beta_{cp} \right) \ddot{\alpha} + H_0 \cos \beta_{cp} \dot{\beta} &= N - R \sin \beta_{cp}, \\
J_3 \ddot{\beta} - H_0 \cos \beta_{cp} \dot{\alpha} &= L,
\end{align*}
$$

где β_{cp} – некоторое среднее значение угла поворота β; H_0 – постоянный собственный кинетический момент гироскопа.

В связи с тем, что исследование чувствительности является, по своей сути, задачей анализа теории автоматического управления, с целью сохранения терминологических и
методологических аспектов теории автоматического управления рассматриваемая математическая модель исследуемого гироскопа, описанная системой (1), представляется как модель систем автоматического управления в переменных состояния, описываемая системой вида

\[
\begin{align*}
\dot{x}(t) &= \tilde{A}x(t) + \tilde{B}u(t); \\
y(t) &= \tilde{C}x(t),
\end{align*}
\]

где \(x(t) = [x_1(t), x_2(t)]^T \) – вектор состояния системы; \(u(t) = [u_1(t), u_2(t), u_3(t)]^T \) – вектор управления системы; \(y(t) = [y_1(t), y_2(t)] \) – вектор выхода системы; \(\tilde{A} = \begin{bmatrix} 0 & -B/A \\ C/A & 0 \end{bmatrix} \) – матрица состояния системы; \(A = J_1 + J_2 \cos^2 \beta_{cp} \); \(B = H_0 \cos \beta_{cp} \); \(C = J_3 \); \(\tilde{B} = \begin{bmatrix} 1/A & \sin(\beta_{cp})/A & 0 \\ 0 & 0 & 1/C \end{bmatrix} \) – матрица управляющих воздействий; \(\tilde{C} = I \) – матрица выхода системы; \(I \) – единичная матрица.

Первое из уравнений системы (2) представляет собой уравнение состояния системы, а второе – уравнение выхода системы. Таким образом, в соответствии с (2), изучаемый гироскоп рассматривается как система управления с тремя входами и двумя выходами. При этом входами (а также и управлениями) \(u_i(t), i = 1, 3 \) являются моменты сил, действующих на гироскоп: \(N = N(t), R = R(t), L = L(t) \), а выходами \(x_i(t), i = 1, 2 \) – угловые скорости \(\alpha \) и \(\beta \) поворота гироскопа вокруг соответствующей внешней и внутренней осей гироскопа. Кроме того, в данной работе рассматривается случай, когда указанные управления изменяются в соответствии со следующим законом: \(u_i(t) = g_0^i + g_1^it + g_2^it^2 + g_3^i \sin(\omega_i t + \epsilon_i), \)

\[i = 1, 3, \quad \text{где} \ g_i^j, \ \omega_i, \ \epsilon_i \ (i = 1, 3; \ j = 0, 3) \] – постоянные величины.

Для изучаемого гироскопа получены функции чувствительности системы к вариации отдельных параметров математической модели, описываемой системой (2). По результатам анализа полученных функций чувствительности была выявлена чувствительность гироскопа к вариации обозначенных параметров и определены условия, при которых представляется возможным осуществить снижение чувствительности и, таким образом, повысить эффективность и качество исследуемой системы. В зависимости от ставящихся перед исследователем целей полученные результаты могут в дальнейшем быть использованы при решении задач управления и регулирования.

ОЦЕНКИ МНОЖИНИ ПОЧАТОЧНЫХ УМОВ У ЗАДАЧИ ПРАКТИЧЕСКОЙ
СТИЙКОСТИ ЛИНИЙНЫХ ДИСКРЕТНЫХ СИСТЕМ З НЕПЕРВИВОУЮ
ПРАВОЮ ЧАСТИНОЮ

Линдер Я.М., Пичкур В.В.

Ключевые слова: практическая стойкость, дискретная система, оптимальная оценка, функции Лянпунова
AMS Subject Classification: 39A30

Задачи доследования практической стойкости дискретных систем включаются в [1, 2]. В данных работах описывается практическая стойкость дискретных систем с нейтральной правовой частью системы. Здесь задачи оценки множества начальных условий динамической дискретной системы, что обеспечивает практическую стойкость. В линейном видах нейтальной система означает вырожденность матрицы дискретной системы.

В дополнение наводятся необходдимые и достаточные условия практической стойкости дискретных систем с нейтральной правовой частью, для чего выскокостользоваються функции Лянпунова. Знаяяюено введение увид дел с функцией Лянпунова для своего класса задач.

Рассмотрим линейную дискретную систему

\[x(k + 1) = A_k \cdot x(k), \quad k = 0, 1, \ldots, N - 1, \]

для \(A_k \) – матрицы размёрии \(n \times n \), матрицы вырожденные, \(\Phi_k, k = 0, 1, 2, \ldots, N \) – множества фазовых установок, которые непрерывны. Крим того, \(0 \in int \Phi_k, \) где \(int \Phi_k \) – внутренность множества \(\Phi_k, \) Введем постановку \(S \) – единичная сфера, \(c(A, \psi) \) – опорная функция множества \(A, \) KerB – ядро матрицы \(B, \) \(\Theta(k) = A_{k-1} \cdot A_{k-2} \cdot \ldots \cdot A_0, \) и достаточно \(\Theta(0) = E, \) где \(E \) – единичная матрица.

Теорема 1. Оптимальная оценка множества начальных условий уравнений у класса вычисление у такой способ

\[r* = \min_{k \in 0, \ldots, N} \min_{\psi \in S \setminus Ker \Theta(k)} \frac{c(\Phi_k, \psi)}{\|\Theta(k)\psi\|}. \]

Теорема 2. Нет ли \(\Phi_k \) задаются у формул полиномов \(\Phi_k = \{ x : \langle x, l_k(s) \rangle \leq 1 \} \) для каждого \(s \in 1, 2, \ldots, S, S \in N \). Тогда оптимальная оценка множества начальных условий у класса вычисление у такой способ

\[r* = \min_{k \in 0, \ldots, N} \min_{x \in 1, 2, \ldots, S} \frac{1}{\|\Theta(k)l_k(s)\|}. \]

2. Башняков А.Н. О максимальном множестве начальных условий в задачах практической устойчивости дискретной системы / А.Н. Башняков, В.В. Пичкур, И.В. Хитко. – Проблемы управления и информатики. – 2010. – № 2. – С. 5 - 11.
ЗВАЖЕНА ОЦІНКА ТОЧНОСТІ СІТКОВОЇ СХЕМИ ДЛЯ ДИФЕРЕНЦІАЛЬНОГО РІВНЯННЯ З ДРОБОВОЮ ПОХІДНОЮ

Майко Н. В., Рябічев В. Л.

Ключові слова: диференціальне рівняння, дробова похідна, крайова умова Діріхле, сіткова схема, оцінка точності, крайовий ефект.

AMS Subject Classification: 65L10, 65L20, 65N12, 65N50.

У теорії і застосуваннях методу сіток для розв'язування стаціонарних і нестаціонарних задач у канонічних областях становить значний інтерес питання про точність наближеного розв'язку поблизу тієї частини межі області, де задана крайова умова Діріхле. Оскільки сітковий розв'язок задовольняє таку умову точно, то природно очікувати, що в примежових вузлах сітки його точність буде вищою, ніж у внутрішніх вузлах. Кількісна характеристика цього явища у вигляді вагових оцінок, які враховують вплив крайової умови Діріхле, уперше запропонована в [1]. Ідеї [1] знайшли своє продовження і розвиток у багатьох публікаціях (див., напр., [2, 3]). Апріорні вагові оцінки похибки традиційних різницевих схем для одно- і двомірного параболічного рівняння з крайовою умовою Діріхле отримані в [4, 5]. З доведених оцінок випливає, що точність схеми вища поблизу бічних сторін і дна просторово-часового прямокутника в дванадцірному випадку та бічних граней і дна просторово-часового паралелепіпеда – у дванадцірному.

Дослідження крайового і початкового ефектів становить значний інтерес і для нових класів задач. Поява таких задач зумовлена бурхливим розвитком дробового інтегро-диференціювання. Цей розділ класичного аналізу майже трисот років (з 1695 р. і до теперішнього) був не більше ніж вищуваною математичною абстракцією. Однак в останні п’ять десятиліть дробовий аналіз (fractional analysis) знайшов широке застосування в моделюванні багатьох природних явищ. У стані активного розвитку перебувають і наближені методи розв’язування дробово-диференційних і дробово-інтегральних рівнянь, про що свідчить значна кількість публікацій на цю тему (див., напр., [6]).

Дана робота присвячена розв’язуванню методом сіток першої крайової задачі для двомірного рівняння Пуассона з дробовою похідною порядку 1/2 по одній із змінних. Для розв’язку диференційної задачі та похибки сіткової схеми першого порядку апроксмізації доведено вагові оцінки, які враховують вплив крайової умови Діріхле. Отримані оцінки свідчать про те, що точність наближеного розв’язку вища у примежових вузлах сітки, ніж в її внутрішніх вузлах.

Розглянемо задачу

\[
\frac{\partial^2 u(x,y)}{\partial x^2} - \frac{\alpha}{\sqrt{\pi}} \frac{\partial}{\partial x} \int_{0}^{x-t} \frac{u(t,y)}{\sqrt{x-t}} dt + \frac{\partial^2 u(x,y)}{\partial y^2} = -f(x,y), \quad x \in \Omega = (0,1)^2, \tag{1}
\]

\[u(x,y) = 0, \quad (x,y) \in \Gamma = \partial \Omega.\]

Виконавши нескладні перетворення, одержимо інтегральне рівняння Фредгольма другого роду.
\[u(x, y) = \int_0^1 K(x, t; y, \eta)u(t, \eta)dt + \int_0^1 G(x, \xi; y, \eta)f(\xi, \eta)d\eta d\xi \quad (2) \]

З ядром

\[K(x, t; y, \eta) = \frac{\alpha}{\sqrt{\pi}} \frac{1}{\sqrt{\xi - t}} \frac{\partial G(x, \xi; y, \eta)}{\partial \xi} \]

\[= \frac{2\alpha}{\pi\sqrt{\pi}} \sum_{n=1}^{\infty} \frac{(n\pi x)v_n(t)}{n\sinh(n\pi)} \left(n\pi \left(1 - \frac{y + \eta + |y - \eta|}{2} \right) \right) \left(n\pi \left(\frac{y + \eta - |y - \eta|}{2} \right) \right) \]

де

\[G(x, \xi; y, \eta) = \frac{4}{\pi^2} \sum_{m, n=1}^{\infty} \frac{\sin(n\pi x)\sin(n\pi \xi)\sin(m\pi y)\sin(m\pi \eta)}{n^2 + m^2} \]

\[= \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin(n\pi x)\sin(n\pi \xi)}{n\sinh(n\pi)} \left(n\pi \left(1 - \frac{y + \eta + |y - \eta|}{2} \right) \right) \left(n\pi \left(\frac{y + \eta - |y - \eta|}{2} \right) \right) \]

– функція Грина першої крайової задачі для оператора Лапласа,

\[v_n(t) = \int_0^1 n\pi \cos(n\pi \xi) \frac{d\xi}{\sqrt{\xi - t}} = \pi\sqrt{2n} \left[\cos(n\pi t)C\left(\sqrt{2n(1-t)}\right) - \sin(n\pi t)S\left(\sqrt{2n(1-t)}\right) \right] \]

\[C(x) = \frac{x}{\phi(x)} \int_0^1 \cos\left(\frac{\pi \phi^2}{2}\right) d\phi, \quad S(x) = \frac{x}{\phi(x)} \int_0^1 \sin\left(\frac{\pi \phi^2}{2}\right) d\phi \quad \text{інтегрили Френеля.} \]

Далі використовуємо позначення для норм:

\[\|w\|_\infty = \max_{(x,y) \in \Omega} |w(x,y)|, \quad \|w\|_{1,\omega} = \|w_x'\|_\infty + \|w_y'\|_\infty. \]

Доведено таке твердження.

Теорема 1. Нехай \(\alpha \) задовольняє умови

\[1 - \frac{2\alpha \zeta(3/2)}{\pi^{3/2}} = 1 - \frac{2\alpha}{\left(\sigma + 1\right)\pi^{3/2}} > 0, \quad 1 - \frac{2\alpha}{\left(\sigma + 1\right)\pi^{3/2}} \zeta(3/2 - \sigma) > 0, \]

де \(\zeta(\cdot) \) – дзета-функція Рімана, а \(\sigma \) як завгодно близько до 1/2 знизу. Тоді для розв’язку \(u(x,y) \) задачі (1) справджується вагова оцінка

\[\left\| \frac{u(x,y)}{\rho(x,y)} \right\|_\infty \leq M \|f\|_\infty, \]

де \(\rho(x,y) = \min \{ x^\sigma, (1-x)^\sigma, y, 1-y \} \), \(M \) – стала, не залежна від \(u(x,y) \):

\[M = \max \left\{ \frac{1}{2} \left(1 - \frac{2\alpha \zeta(3/2)}{\pi^{3/2}}\right)^{-1}, \frac{4}{\pi^{3-\sigma}} \zeta(3-\sigma) \left(1 - \frac{2\alpha}{\left(\sigma + 1\right)\pi^{3/2}} \zeta(3/2 - \sigma)\right)^{-1} \right\}. \]

Для наближеного розв’язування інтегрального рівняння (2) застосуємо метод сіток. Уведемо сіткову множину \(\bar{\omega} = \{(x_j, y_j) : x_i = ih, y_j = jh, i,j = 0,1,\ldots,N, \quad h = 1/N \} \) і позначимо сіткову норму \(\|w\|_{x,y,\bar{\omega}} = \max_{(x,y) \in \bar{\omega}} |w(x,y)| \). Апроксимуємо (2) сітковою схемою
$$u^h(x_i,y_p) - \sum_{k,j=1}^{N-1} u^h(x_k,y_j) \int_{\Omega_{kj}} K(x_i,t;y_p,\eta)dtd\eta = \int_0^1 G(x_i,t;y_p,\eta)f(t,\eta)dtd\eta,$$

$$i, p = 1, 2, \ldots, N - 1,$$

de $\Omega_{kj} = [x_{k-1}, x_k] \times [y_{j-1}, y_j]$, $k, j = 1, \ldots, N$.

Похибка $z(x,y) = u^h(x,y) - u(x,y)$ є розв'язком сіткової задачі

$$z(x_i,y_p) - \sum_{k,j=1}^{N-1} z(x_k,y_j) \int_{\Omega_{kj}} K(x_i,t;y_p,\eta)dtd\eta = \sum_{k,j=1}^{N-1} \int_{\Omega_{kj}} [u(x_k,y_j) - u(t,\eta)]K(x_i,t;y_p,\eta)dtd\eta,$$

$$i, p = 1, 2, \ldots, N - 1.$$
НЕЛИНЕЙНАЯ КРАЕВАЯ ЗАДАЧА ДЛЯ
ДИФФЕРЕНЦИАЛЬНО-АЛГЕБРАИЧЕСКОЙ СИСТЕМЫ

Несмелова О.В.

Ключевые слова: нелинейные краевые задачи, дифференциально-алгебраические системы.
AMS Subject Classification: 34A09, 34A30, 34K10, 34B15.

Исследована задача о построении решений

\[z(t, \varepsilon) : z(\cdot, \varepsilon) \in C^1[a, b], \quad z(t, \cdot) \in C^1[0, \varepsilon_0] \]

нелинейной дифференциально-алгебраической краевой задачи

\[A(t)z'(t, \varepsilon) = B(t)z(t, \varepsilon) + f(t) + \varepsilon Z(z, t, \varepsilon), \]

\[\ell z(\cdot, \varepsilon) = \alpha. \] \((1) \)

Решения нетеровой \((n \neq k)\) краевой задачи \((1), (2)\) ищем в малой окрестности решения порождающей задачи

\[A(t)z_0'(t) = B(t)z_0(t) + f(t), \quad \ell z_0(\cdot) = \alpha. \] \((3) \)

Здесь \(A(t), B(t) \in C_{m \times n}[a, b] - \) непрерывные матрицы, \(f(t) \in C[a, b] - \) непрерывный вектор; \(Z(z, t, \varepsilon) - \) нелинейная функция, непрерывная дифференцируемая по независимой \(z(t)\) в малой окрестности решения порождающей задачи, непрерывная по \(t \in [a, b]\) и непрерывная по малому параметру; \(\ell z(\cdot, \varepsilon) : C[a, b] \to \mathbb{R}^k - \) линейный векторный функционал. Нелинейная дифференциально-алгебраическая краевая задача \((1), (2)\) обобщает многочисленные постановки нелинейных нетеровых краевых задач \([1]\). Предположим, что порождающая краевая задача \((3)\) невырождена \([2,3]\)

\[P_{A^*(t)} = 0, \quad A^+(t)B(t) \in C_{n \times n}[a; b], \quad A^+(t)f(t) \in C[a; b], \] \((4) \)

при этом система \((1)\) разрешима относительно произвольной

\[z' = A^+(t)B(t)z + \mathfrak{F}_0(t, \nu_0(t)) + \varepsilon A^+(t)Z(z, t, \varepsilon), \quad \mathfrak{F}_0(t, \nu_0(t)) := A^+(t)f(t) + P_{A_m}(t)\nu_0(t); \] \((5) \)

здесь \(A^+(t) - \) псевдообратная (по Муру – Пенроузу) матрица, \(P_{A^*(t)} : \mathbb{R}^m \to N(A^*(t)) - \) ортогональный проектор \([1]\), \(P_{A_m}(t) = (n \times \rho_0) - \) матрица, составленная из \(\rho_0\) линейно-независимых столбцов \((n \times n) - \) матрицы-ортогонального проектора \(P_A(t) : \mathbb{R}^n \to N(A(t))\). Общее решение порождающей дифференциально-алгебраической краевой задачи \((3)\) для фиксированной непрерывной вектор-функции \(\nu_0(t) \in C[a, b]\) имеет вид \([2,3]\)

\[z_0(t, c_r) = X_r(t)c_r + G[f(s); \nu_0(s); \alpha](t), \quad c_r \in \mathbb{R}^r. \]

Решения краевой задачи \((2), (5)\) ищем в малой окрестности решения порождающей задачи \(z(t, \varepsilon) = z_0(t, c_r) + x(t, \varepsilon)\). Фиксируя одну из констант \(c_r \in \mathbb{R}^r\), для нахождения вектора

\[x(t, \varepsilon) : x(\cdot, \varepsilon) \in C^1[a, b], x(t, \cdot) \in C^1[0, \varepsilon_0], x(t, 0) \equiv 0 \]
аналогично [1], приходим к задаче
\[x' = A^+(t)B(t)x + \varepsilon A^+(t)Z(z_0 + x, t, \varepsilon), \quad \ell x(\cdot, \varepsilon) = 0. \] (6)

Предположим, что для дифференциально-алгебраической краевой задачи (1), (2) имеет место критический случай \((P_2 \neq 0)\). Предположим также, что дифференциально-алгебраическое уравнение (3) невырождено. При этом порождающая задача (3) разрешима тогда и только тогда, когда выполнено условие
\[P_{Q_2} \{ \alpha - \ell K[f(s), \nu_0(s)](\cdot) \} = 0 \] (7)

и для фиксированной непрерывной вектор-функции \(\nu_0(t) \in \mathbb{C}[a, b]\), имеет \(r\) линейно-независимых решений
\[z_0(t, c_r) = X_r(t)c_r + G[f(s); \nu_0(s); \alpha](t), \quad c_r \in \mathbb{R}^r. \]

В критическом случае в малой окрестности решения порождающей задачи краевая задача (2), (5) разрешима тогда и только тогда, когда
\[P_{Q_2} \ell K[Z(z, s, s, \varepsilon), \nu_0(s)](\cdot) = 0 \] (8)

и для фиксированной непрерывной вектор-функции \(\nu_0(t) \in \mathbb{C}[a, b]\) имеет \(r\) линейно-независимых решений
\[z_0(t, c_r) = X_r(t)c_r + G[f(s); \nu_0(s); \alpha](t), \quad c_r \in \mathbb{R}^r. \]

Предположим также, что нелинейная дифференциально-алгебраическая краевая задача (1), (2) имеет решение, при \(\varepsilon = 0\) обращающееся в порождающее \(z(t, 0) = z_0(t, c_r^\ast)\). При дополнительном условии
\[A^+(\cdot)Z(z, t, \varepsilon) \in \mathbb{C}[a; b], \quad A^+(t)Z(z, t, \varepsilon) \in \mathbb{C}[||z - z_0|| < q] \] (9)

для существования решений нелинейной дифференциально-алгебраической краевой задачи (1), (2) необходимо выполнение условия [2]
\[F(c_r^\ast) := P_{Q_2} \ell K[Z(z_0(s, c_r^\ast), s, 0), \nu_0(s)](\cdot) = 0. \] (10)

Фиксируя одно из решений \(c_r^\ast \in \mathbb{R}^r\) уравнения (10), решение \(z(t, \varepsilon) = z_0(t, c_r^\ast) + x(t, \varepsilon)\) дифференциально-алгебраической краевой задачи (1), (2) ищем в окрестности порождающего решения
\[z_0(t, c_r^\ast) = X_r(t)c_r^\ast + G[f(s); \nu_0(s); \alpha](t). \]

Таким образом, аналогично [1], приходим к задаче
\[x'(t, \varepsilon) = A^+(t)B(t)x(t, \varepsilon) + \varepsilon A^+(t)Z(z_0(t, c_r^\ast) + x(t, \varepsilon), t, \varepsilon), \quad \ell x(\cdot, \varepsilon) = 0. \] (11)

Решения дифференциально-алгебраической краевой задачи (11) при этом определяет операторная система [1]
\[z(t, \varepsilon) = z_0(t, c_r^\ast) + x(t, \varepsilon), \quad x(t, \varepsilon) = X_r(t)c(\varepsilon) + x^{(1)}(t, \varepsilon), \]
\[x^{(1)}(t, \varepsilon) = G[A^+(s)Z(z_0(s, c_r^\ast) + x(s, \varepsilon); \nu_0(s); \varepsilon](t). \]

Используя непрерывную дифференцируемость по первому аргументу функции \(Z(z(t, \varepsilon), t, \varepsilon)\) в окрестности порождающего решения, разлагаем эту функцию в окрестности точек \(x = 0\) и \(\varepsilon = 0\):
\[Z(z_0(t, c_r^\ast) + x(t, \varepsilon), t, \varepsilon) = Z(z_0(t, c_r^\ast), t, 0) + A_1(t)x(t, \varepsilon) + R(z_0(t, c_r^\ast) + x(t, \varepsilon), t, \varepsilon), \] (12)
где $A_1(t) = Z'_r(z_0(t, c^*_r), t, 0)$. Остаток $R(z_0(t, c^*_r)+x(t, \varepsilon), t, \varepsilon)$ разложения функции $Z(z_0(t, c^*_r)+x(t, \varepsilon), t, \varepsilon)$ при условии $Z'_r(z_0(t, c^*_r), t, 0) \equiv 0$ более высокого порядка малости по x и ε в окрестности точек $x = 0$ и $\varepsilon = 0$, чем первые два члена разложения. При условии $P_{B^*_0} = 0$ по меньшей мере одно решение краевой задачи (11) определяет операторная система

$$x(t, \varepsilon) = X_r(t)c_r(\varepsilon) + x^{(1)}(t, \varepsilon), \quad B_0 c_r(\varepsilon) = P_{Q^*_d} f K [A_1(s)x^{(1)}(s, \varepsilon) + R(z(s, \varepsilon), s, \varepsilon)](\cdot),$$

$$x^{(1)}(t, \varepsilon) = \varepsilon G[Z(z_0(s, c^*_r) + x(s, \varepsilon), s, \varepsilon); \nu_0(s); \alpha](t),$$

эквивалентная задаче о построении решения краевой задачи (11); здесь [2]

$$B_0 := P_{Q^*_d} f K [A_1(s)X_r(s), \nu_0(s)](\cdot)$$

— постоянная $(d \times r)$ — матрица.

Теорема. Предположим, что дифференциально-алгебраическое уравнение (3) невырождено. В критическом случае $(P_{Q^*_d} \neq 0)$ порождающая задача (3) разрешима тогда и только тогда, когда выполнено условие (7) и для фиксированной непрерывной векторфункции $\nu_0(t) \in C[a, b]$ имеет r—линейно-независимых решений

$$z_0(t, c_r) = X_r(t)c_r + G[f(s); \nu_0(s); \alpha](t), \quad c_r \in \mathbb{R}^r.$$

При условии $P_{B^*_0} = 0$ для каждого корня $c^*_r \in \mathbb{R}^r$ уравнения (10) для порождающих амплитуд при условии $P_{B^*_0} = 0$ и дополнительном условии (9) нелинейная дифференциально-алгебраическая краевая задача (1), (2) имеет по меньшей мере одно решение, при $\varepsilon = 0$ обращающееся в порождающе $z(t, 0) = z_0(t, c^*_r)$.

Доказанная теорема [2] обобщает соответствующие утверждения [1,4,5] на случай нелинейной невырожденной дифференциально-алгебраической краевой задачи (1), (2) в критическом случае. Для построения решений нелинейной дифференциально-алгебраической краевой задачи (1), (2) применима схема итерационная схема [2]. Для оценки точности приближений к решению нелинейной дифференциально-алгебраической краевой задачи (1), (2) определены невязки $\Delta_k(\varepsilon)$ приближений к решению этой задачи. Изображать невязки в краевом условии для приближений к решению краевой задачи (1), (2) можно при нахождении вектора $c_r(\varepsilon)$ непосредственно из условия разрешимости (8), в данном случае, нелинейного уравнения, аналогично [6,7].

Осипова Олександра Володимирівна, аспірант, факультет математики та інформатики, Чернівецький національний університет імені Юрія Федьковича, Чернівці, Україна, e-mail: shurenkacv@gmail.com

АСИМПТОТИЧНА ДЕКОМПОЗИЦІЯ РІЗНЕТЄМПОВИХ ЛІНІЙНИХ СИНГУЛЯРНО ЗБУРЕНИХ СИСТЕМ МЕТОДОМ ІНТЕГРАЛЬНИХ МНОГОВИДІВ

Осипова О.В.

Ключові слова: декомпозиція, інтегральний многовид, лінійна сингулярно збурена система, асимптотична декомпозиція

AMS Subject Classification: 34A30, 34C45, 34D15, 34E15.

Зручним апаратом, який дозволяє ефективно розв’язувати важливу для застосувань задачу пониження розмірності сингулярно збурених систем диференціальних рівнянь є метод інтегральних многовидів Боголюбова-Митропольського [1,2]. Такий підхід є конструктивним тільки в тому випадку, якщо вдається точно або наближено знайти інтегральний многовид системи.

Для лінійних сингулярно збурених систем з декількома малими параметрами метод інтегральних многовидів дозволяє здійснити розцеплення вихідної системи на незалежні швидку та повільні підсистеми [3,4].

У роботі досліджується схема декомпозиції лінійних сингулярно збурених систем з багатьма малими параметрами, що базується на ідеях теорії інтегральних многовидів повільних та швидких змінних. Основи такого підходу для сингулярно збурених систем з одним малим параметром розглядались в [1,2], а для систем з декількома малими параметрами в [3-4].

Розглянемо лінійну сингулярно збурену систему

$$\prod_{j=0}^{i} \varepsilon_j \dot{x}_i = \sum_{j=0}^{k} A_{ij} x_j, \quad i = 0, k,$$

де \(x_i \in \mathbb{R}^{n_i}, i = 0, k \), \(A_{ij} = A_{ij}(t), i, j = 0, k \), – матриці розмірностей \(n_i \times n_j \), \(\varepsilon_0 = 1, \varepsilon_1, \varepsilon_2, ..., \varepsilon_k \) – малі додатні параметри.

1) матриці \(A_{ij}(t), i, j = 0, k \), рівномірно обмежені для \(t \in \mathbb{R} \),
2) власні значення \(\lambda_i = \lambda_i(t), i = 1, n_j \), матриць \(A_{ij}(t), j = 0, k \), задовольняють нерівність

$$\Re \lambda_i \leq -2\beta < 0.$$

Застосовуючи метод інтегральних многовидів швидких та повільних змінних [3-4] запропонована схема побудови заміни змінних

$$ (x_0, x_1, x_2, ..., x_k) = \Phi(y_0^k, y_1^k, y_2^{k-1}, ..., y_k) $$

заступлюється системою (2) за допомогою якої система (1) за \(k+1 \) крок розцеплюється на швидку та повільну підсистеми.

Теорема 1[4]. Нехай справдіються умови 1)-2). Тоді для достатньо малих \(\varepsilon_i, i = 1, 2, ..., k \) існує заміна змінних (2), за допомогою якої система (1) зводиться до блочно-трикутного вигляду

$$ y_0^k = B_0 y_0^k, $$

$$ \prod_{j=0}^{i} \varepsilon_j y_i^{k+1-i} = B_i y_i^{k+1-i}, i = 0, k. $$

112
Точний вигляд розщеплюючого перетворення (2) вдається знайти тільки у найпростіших випадках. У роботах [5-6] запропонована методика побудови асимптотичних розкладів коефіцієнтів розщеплюючого перетворення у вигляді рекурентних алгебраїчних співвідношень.

Припустимо, що для системи (1) справджується умова:

3) нехай матриці \(A_i(t), i, j = 0, k, A_{k,k}^{-1}(t) \) рівномірно обмежені для \(t \in \mathbb{R} \) разом зі своїми похідними до \((n+1)\) порядку.

Теорема 2 [6]. Нехай справджуються умови 1)-3). Тоді для достатньо малих \(\varepsilon_i, i = 1, 2, \ldots, k \) існує заміна змінних (2), за допомогою якої система (1) зводиться до вигляду (3) і коефіцієнти асимптотичних розкладів перетворення (2) однозначно знаходяться із рекурентних алгебраїчних співвідношень.

Для тестової модельної лінійної сингулярно збуреної системи з двома малими параметрами побудовано нульове і перше наближення розщепленої системи (3). На основі розщеплюючого співвідношення (2) знайдено початкові умови для нульового і першого наближення за початковими умовами вихідної системи (1).

Здійснено числове моделювання для тестової модельної задачі та встановлено точність наближення її розв’язку розв’язками систем нульового та першого наближення.

5. Осипова О.В. Асимптотична декомпозиція лінійних сингулярно збурених систем / О.В. Осипова, І.М. Черевко // Буковинський математичний журнал. – 2013. – 1, № 3-4. – С. 114-118.
ОЦЕНКА ТОЧНОСТИ СТАТИСТИЧЕСКИХ МОДЕЛЕЙ ДРОБОВОГО БРОУНІВСКОГО РУХУ

Пашко А.О., Синявська О.О.

Ключевые слова: гауссовский процесс, дробовый броуновский рух, индекс Хюрста, консистентная оценка, точность моделирования.

AMS Subject Classification: (60G22, 60G18, 60G15, 60G10)

В оставшие роки методы статистического моделирования випадковых процессов та полей находят широкое застосування в різних прикладних галузях. Використання методів статистичного моделювання є доцільним і обґрунтованним, якщо досліджуються точність і надійність моделей. Тому останнім часом велика увага приділяється точності та надійності моделювання.

В роботі розглядається один метод моделювання дробового броуновского руху та методи оцінки параметра Хюрста. Вінерівський процес та процес дробового броуновского руху є гауссовими випадковыми процессами. Саме вони дуже часто використовуються в прикладних задачах.

В роботі розглянуто підхід, коли точність статистичної моделі дробового броуновского руху досліджується на основі оцінок параметра Хюрста. Наведено приклади статистичного моделювання дробового броуновского руху.

Нехай (Ω, \mathcal{B}, P)- стандартний ймовірнісний простір.

Гауссовий випадковий процес $W(t), t \in R$ з нульовим середнім значенням та коваріаційною функцією $r(s,t) = \frac{1}{2} \left(|s|^{2\alpha} + |t|^{2\alpha} - |s-t|^{2\alpha} \right), s,t \in R$

де $0<\alpha<1$, називається дробовим броуновским рухом (ДБР) з параметром Хюрста α.

ДБР можна зобразити у вигляді випадкового ряду [1]

$W_{\alpha}(t) = \sum_{k=1}^{\infty} \left(a_k \sin(x_k t) X_k + b_k (1-\cos(y_k t)) Y_k \right), \quad (1)$

de $\{X_k, Y_k\}$- незалежні стандартні гауссові випадкові величини, $\{x_k\}$- нулі функції Бесселя $J_{-\alpha}(x)$, $\{y_k\}$- нулі функції Бесселя $J_{1-\alpha}(x)$,

$a_k = \frac{\pi^{\alpha} \sqrt{2C}}{x_k^{\alpha+1} J_{1-\alpha}(x_k)}, \quad b_k = \frac{\pi^{\alpha} \sqrt{2C}}{y_k^{\alpha+1} J_{-\alpha}(y_k)}, \quad C = \frac{\Gamma(2\alpha+1) \sin(\pi\alpha)}{\pi^{2\alpha+1}}.$

Для обчислення нулів функцій Бесселя будемо використовувати зображення

$x_n = \left(n + \frac{3}{4} - \frac{\alpha}{2} \right) \pi - \frac{4\alpha^2-1}{2\pi(4n+3-2\alpha)} + \ldots, \quad y_n = \left(n + \frac{5}{4} - \frac{\alpha}{2} \right) \pi - \frac{4(1-\alpha)^2-1}{2\pi(4n+1+2\alpha)} + \ldots.$

Для обчислення функцій Бесселя будемо використовувати зображення

$J_{1-\alpha}^2(x_n) = \sqrt{\frac{2}{\pi n}} \left(\cos \left(x_n + \frac{2\alpha \pi - \pi}{4} \right) - \frac{4\alpha^2-1}{8x_n} \sin \left(x_n + \frac{2\alpha \pi - \pi}{4} \right) \right).$
\[J_{-\alpha}^{2}(y_n) = \sqrt{\frac{2}{\pi y_n}} \left(\cos \left(\frac{y_n + (1 - 2\alpha)\pi}{4} \right) \right) \left(-1 \right)^{\frac{1}{2} - \frac{1}{2} \sin \left(\frac{y_n + (1 - 2\alpha)\pi}{4} \right) \right). \]

Модель випадкового процесу будемо у вигляді
\[S_\alpha(t,M) = \sum_{k=1}^{M} (a_k \sin(x_k t)X_k + b_k (1 - \cos(y_k t))Y_k), \]
де \(\{X_k, Y_k\} \) - незалежні стандартні гауссові випадкові величини.

При реальному моделюванні незалежних гауссових випадкових величин, за раціональної точності представлення та виконання операцій з дійсними числами, отримуємо строго субгауссові випадкові величини. Нулі функцій Бесселя та значення функцій Бесселя також обчислюються з найдою точністю.

Для \(a_k, b_k, x_k, y_k \) позначимо їх наближені значення \(\tilde{a}_k, \tilde{b}_k, \tilde{x}_k, \tilde{y}_k \). Нехай \(|a_k - \tilde{a}_k| \leq \gamma^a_k \), \(|b_k - \tilde{b}_k| \leq \gamma^b_k \), \(|x_k - \tilde{x}_k| \leq \gamma^x_k \), \(|y_k - \tilde{y}_k| \leq \gamma^y_k \), де \(\gamma^a_k, \gamma^b_k, \gamma^x_k, \gamma^y_k \) - задана точність.

Тоді модель дробового броунівського руху матиме вигляд
\[\tilde{S}_\alpha(t,M) = \sum_{k=1}^{M} (\tilde{a}_k \sin(\tilde{x}_k t)X_k + \tilde{b}_k (1 - \cos(\tilde{y}_k t))Y_k). \]

Точність моделювання \(\Delta(t) = W_\alpha(t) - \tilde{S}_\alpha(t,M) \). Нехай \(\gamma = \gamma^a_k = \gamma^b_k = \gamma^x_k = \gamma^y_k \).

Теорема 1. Модель \(\tilde{S}_\alpha(t,M) \) наближає процес \(W_\alpha(t) \) з точністю \(\delta > 0 \) й надійністю \(1 - \varepsilon, \quad 0 < \varepsilon < 1 \) в нормі простору \(L_2([0,1]) \), якщо мають місце нерівності \(\delta^2 > B_1M \), та
\[
\exp \left(\frac{1}{2} \right) \frac{\delta}{\sqrt{B_1M}} \exp \left(-\frac{\delta^2}{2B_1M} \right) \leq \varepsilon, \quad \text{де} \quad B_1M = \sum_{k=M+1}^{\infty} (a_k^2 + 4b_k^2) + \gamma^2 \sum_{k=1}^{M} ((a_k + 1)^2 + (b_k + 2)^2). \]

В роботах [2-3] досліджувались оцінки точності і надійності моделі (2) дробового броунівського руху в різних функціональних просторах.

Нехай \(W_\alpha([t,t+h], a, p) = a_p - a_p \) -приріст дробового броунівського руху \(W_\alpha \) на відрізку \([t, t+h], \quad t \in R, \quad h > 0 \). Нехай \(\tilde{S}_n^{(p)} = n^{2a-1}S_n^{(p)} = n^{2a-1} \sum_{k=0}^{n-1} W_\alpha \left(\left[\frac{k}{n}, \frac{k+1}{n} \right], a_p \right)^2, \quad n \geq 1 \)
– послідовність бактерійських сум дробового броунівського руху \(W_\alpha \).

Теорема 2. Нехай \(\alpha_1, \alpha_2 \in [0,1] \) фіксовані, \(\alpha \in (\alpha_1, \alpha_2) \).

Статистика \(H(\alpha)^{(n)} = \frac{1}{2} \left(1 - \frac{S_n^{(l)}}{S_n^{(i)}} \right), \quad n \geq 2 \) є сильно консистентною оцінкою параметра Хюрста \(\alpha \), а інтервал \(\left(H(\alpha)_n^{(l)} - l_\varepsilon(n), \; H(\alpha)_n^{(l)} + r_\varepsilon(n) \right) \cap (\alpha_1, \alpha_2) \) є інтервалом надійності для параметра Хюрста \(\alpha \) з рівнем довіри \(1 - \varepsilon \), де
\[
\begin{align*}
& r_\varepsilon(n) = \frac{1}{2 \ln n} \left(1 + k_0 \frac{\sqrt{W_n(\alpha_1, \alpha_2)}}{\sqrt{n}} \phi(\varepsilon) \right), \\
& l_\varepsilon(n) = \frac{1}{2 \ln n} \left(1 - k_0 \frac{\sqrt{W_n(\alpha_1, \alpha_2)}}{\sqrt{n}} \phi(\varepsilon) \right).
\end{align*}
\]

Введемо такі позначення: \(W_{k,n}^{(l)} = W_\alpha \left(\frac{k+1}{a_n} \right) - W_\alpha \left(\frac{k}{a_n} \right) \).
Розглянемо наступні послідовності бакстерівських сум:

\[
S_n^{(i)} = \sum_{k=0}^{a_n-1} B_{k,n}^{(i)}, \quad \tilde{S}_n^{(i)} = a_n^{2\alpha-1} S_n^{(i)}, \quad i = 1, 2, \quad n \geq 1.
\]

Теорема 3. Нехай \(W_\alpha(t), t \in [0,1] \) – дробовий броунівський рух з параметром Хюрста \(\alpha \). Тоді з ймовірністю одиниці

\[
S_n^{(2)} = \frac{\tilde{S}_n^{(2)}}{S_n^{(0)}} \to 2^{2-2\alpha} - 1, \quad \alpha \in (0,1) \quad \text{при} \quad n \to \infty.
\]

Розглянемо функцію \(\theta(\alpha) := 2^{2-2\alpha} - 1, \quad \alpha \in (0,1) \). Нехай \(\varphi(\theta) := 1 - \frac{1}{2} \log_2 (\theta + 1), \theta \in (0,3) \) – функція, обернена до функції \(\theta(\alpha) \).

Теорема 4. Статистика

\[
\hat{\alpha}_n = 1 - \frac{1}{2} \log_2 (\hat{\theta}_n + 1), \quad \text{де} \quad \hat{\theta}_n = \frac{\tilde{S}_n^{(2)}}{S_n^{(0)}}, \quad n \geq 1,
\]

є сильно консистентною оцінкою параметра \(\alpha \).

Оцінка параметра Хюрста за формулою (3) складає для першої реалізації \(\alpha = 0.374 \) та \(\alpha = 0.378 \) для другої реалізації (рис.1а). Відповідно \(\alpha = 0.711 \) для першої та для другої реалізації \(\alpha = 0.731 \) (рис.1б).

![Рис. 1. Реалізація дробового броунівського руху для \(\alpha = 0.3 \) (а) та \(\alpha = 0.7 \) (б).](image)

При використанні моделі (2) необхідно обчислювати нулі функції Бесселя з великою точністю. Це вимагає великої підготовчої роботи. Результати оцінювання параметра Хюрста (3) доводять доцільність підготовчої роботи.

ФОРМУЛЫ СПЕЦИАЛЬНЫХ РЕШЕНИЙ РОДСТВЕННОЙ ТИПА РИМАНА-
ГИЛЬБЕРТА-ПРИВАЛОВА ЗАДАЧИ С РАЦИОНАЛЬНЫМИ КОЭФФИЦИЕНТАМИ

Полетаев Г.С., Войтик Т.Г.

Ключевые слова: Задача Римана, уравнение, кольцо, проектор, факторизационная пара.

AMS Subject Classification: 30E25, 45E10, 47A50, 47A68, 47B35

Сообщение основано на соответствующих результатах [1, 2]. Известно, что задача Римана-Гильберта возникает, например, в теории дифференциальных и интегральных уравнений, теории упругости [3-7]. Важен, частности, случай, когда коэффициенты являются рациональными функциями. В [5] этот случай возникает в связи с исследованием дифференциальных уравнений с кусочно-постоянными коэффициентами. Основанные на применении теории функции комплексной переменной, интеграла типа Коши подходы, в теории рассматриваемых уравнений и родственных задач [3, 4], могут приводить к значительным аналитическим трудностям.

Не всегда оправданным. Новые идеи и результаты других возможных подходов к исследованию, при иных общих предположениях и без требования гёльдеровости функций, впервые предложены в [3]. Считая известные и исковые принадлежащими подмножествам рациональных функций, бывает возможным перейти к родственной задаче. Ниже предложены формулы некото- рых из найденных специальных решений абстрактных уравнений, порожденных краевым условием рассматриваемой родственной задачи. Именно, задачи о нахождении рациональных функций с полюсами из разных полуплоскостей по линейному функциональному уравнению с рациональными коэффициентами на сомкнутой вещественной оси:

\[A(x)X^+(x)+Y_-(x)=B(x); x \in \{-\infty; \infty\}. \tag{1} \]

1. Обозначим через \(\mathcal{R}_r \) [1, 2] совокупность всех рациональных функций, вообще, комплексного переменного \(z \in C \), все полюсы которых, при существовании, конечны и невещественны. Пределы функций из \(\mathcal{R}_r \) на бесконечности существуют и конечны. Пусть \(\mathcal{R}_r^+ (\mathcal{R}_r^-) \) - совокупности функций из \(\mathcal{R}_r \), все полюсы которых, при существовании, расположены внутри нижней (верхней) полуплоскости \(\Pi_+ (\Pi_-) \), соответственно (Ср. [3]; с.13,14). Проверяется, что \(\mathcal{R}_r \) - кольцо с мультипликативной единицей \(e = f(z):=1, z \in C \), относительно обычных операций сложения и умножения функций, а \(\mathcal{R}_r^+, \mathcal{R}_r^- \) - его подкольца с единицей. Проекторы на подкольца: \(\mathcal{R}_r \rightarrow \mathcal{R}_r^+ \) обозначим \(p^+ \), соответственно. Эти проекторы коммутирующие. Проектор \(p^+ \) (проектор \(p^- \)) каждой функции из \(\mathcal{R}_r \) ставит в соответствие её часть, оставшуюся после удаления, из разложения этой функции в сумму константы и простейших дробей первого
И второго типов, всех слагаемых с полюсами из Π_+, (из Π_-), соответственно. Полагаем:

$$p^0 = p^+ p^-, p_+ = p^+ - p^0, p_- = p^- - p^0, R^0_+ = p^0 + (R_r), R^0_- = p^0 (R_r), R^0_r = p^0 (R_r),$$

где $R^0_r = R^+_r \cap R^-_r$. Устанавливается, что R_r - кольцо с $\Phi II (R^+_r, R^-_r)$ [1, 2, 8, 9].

2. Родственная задача ставится так: «Для заданных рациональных функций – коэффициентов $A(x), B(x), -\infty < x < \infty$ найти пару рациональных функций $X^+(z) \in R^+_r, Y_-(z) \in R^-_r$, все полюсы первой из которых, при существовании, расположены в нижней, а второй – в верхней полуплоскостях, соответственно, и удовлетворяющих на сомкнутой вещественной оси линейному уравнению (1), где все известные функции определены на сомкнутой вещественной оси, причём, при $x = +\infty$ и при $x = -\infty$ каждая из них имеет совпадающие между собой конечные значения, равные соответствующим пределам».

Под специальными решениями будем понимать такие для указанной задачи и соответствующего ей уравнения:

$$A(z)X^+(z) + Y_-(z) = B(z); z \in \mathbb{C},$$

(2)

через которые можно находить их решения при произвольных правых частях из весьма широкого подмножества рациональных функций. Например, решения задачи и уравнения (2), соответствующие каждой из правых частей (1) вида:

$$B(x) = 1; B(x) = B^0; B(x) = A^0; B(x) = A_+(x); B(x) = A_+(x) = A_+(x) + A_-(x).$$

(3)

3. При поиске специальных решений и, вообще, при изучении разрешимости задачи в \mathbb{R}_r, когда коэффициенты порождаются функциями из \mathbb{R}_r, распространяя (1) на всю расширенную комплексную плоскость, получаем (2), не выходя из \mathbb{R}_r. При этом, в силу предпоследний, $A(z), B(z) \in \mathbb{R}_r$ - известные функции; $X^+(z) \in \mathbb{R}_r^+, Y_-(z) \in \mathbb{R}_r^-$ - искомые. Допустим, что имеет место нормированная правильная факторизация в \mathbb{R}_r по подкольцам факторизационной пары: $A^{-1}(z) = I^+(z) S^0(z) T^-(z); z \in \mathbb{C}, S^0(z) = const$, а стало быть, и единственность решения $X^+(z) \in \mathbb{R}_r^+, Y_-(z) \in \mathbb{R}_r^-$, при его существовании в \mathbb{R}_r [1, 2]. Используя результаты [1, 2, 8] при соответствующих предположениях, установлено существование и единственность решений уравнения (2) и задачи в \mathbb{R}_r относительно неизвестных $X^+(z) \in \mathbb{R}_r^+; Y_-(z) \in \mathbb{R}_r^-$ при любой правой части $B(z) \in \mathbb{R}_r$. Это решение $(X^+(z), Y_-(z)), X^+(z) \in \mathbb{R}_r^+; Y_-(z) \in \mathbb{R}_r^-$, можно найти по формулам:

$$X^+(z) = T^+(z) S^0 p^+ [T^-(z) B^-(z)], Y_-(z) = B^-(z) + (T^-(z))^{-1} \cdot p_-(T^-(z) B^-(z)).$$

(4)

Для уравнений со специальными решениями:

$$A(z)X^+_c(z) + Y^-_c(z) = 1;$$

(5)

$$A(z)X^+_b(z) + Y^-_b(z) = B^0 \neq 0;$$

(6)

$$A(z)X^+_a(z) + Y^-_a(z) = A_+(z); z \in \mathbb{C};$$

(7)

где $A_+(z) = A_+(z) + A_-(z)$, получены их формулы, соответственно.
Установлены также формулы, связывающие эти специальные решения. В том числе,

\[
X^+_e(z) = \Gamma(z)S^0, \quad Y_{e-}(z) = 1 - (T^-(z))^{-1} = T_-(z)(T^-(z))^{-1}; \\
X^+_g(z) = \Gamma(z)S^0B^0, \quad Y_{g-}(z) = [1 - (T^-(z))^{-1}]B^0 = T_-(z)(T^-(z))^{-1}B^0; \\
X^+_A(z) = \Gamma(z)S^0\left[T^-(z)A_+(z)\right], Y_{A-}(z) = A_-(z) + ((T^-(z))^{-1}p_-\left[T^-(z)A_+(z)\right].
\]

(10)

а также аналогичные для специальных решений, соответствующих \[B(x) = A_+(x).\]

5. Попов Г.Я. Метод факторизации и его численная реализация / Г.Я. Попов, П.В. Керекеша, В.Е. Круглов; под редакцией профессора Г.Я. Попова. – Одесса: Одесский госуниверситет, 1976. – 82 с.

ПРО ЦІЛЬОВУ ФУНКЦІЮ В ЗАДАЧАХ ШТУЧНОГО ІНТЕЛЕКТУ

Тимофієва Н.К.

Ключові слова: цільова функція, штучний інтелект, комбінаторні конфігурації, комбінаторна оптимізація, розпізнавання мовлення, клінічна діагностика.

AMS 05

Вступ. Розглядаються особливості моделювання прикладних задач штучного інтелекту з використанням теорії комбінаторної оптимізації. Показано, що аргумент цільової функції в них є комбінаторні конфігурації різних типів.

Основна частина. За способом обчислення цільової функції виділяємо задачі, в яких для певного варіанту розв’язку її значення обчислюється одночасно. Такі задачі назвемо статичними. Задачі, в яких в процесі їхнього розв’язання генерується поточна інформація, за якою оцінюється результат, а пошук оптимального розв’язку проводиться постійно з обчисленням часткових сум цільової функції, назвемо динамічними.

Критерій – ознаки або властивості, які характеризують певний об’єкт або зв’язки між об’єктами та є вхідними даними.

Цільова функція – вираз, який формулюється на основі заданих критеріїв з урахуванням особливостей задачі, за яким обчислюється та оцінюється результат її розв’язку.

Як правило, цільову функцію ототожнюють з критеріями, а за її аргумент приймають вхідні дані. Але для одних і тих же критеріїв цільову функцію можна змоделювати по-різному, тобто вона може одержувати різні вирази або залежати від різних розв’язків. Якість задачі комбінаторної оптимізації розглядається на підставі вхідних даних.

В таких задачах штучного інтелекту як розпізнавання мовленнєвих сигналів та задача клінічної діагностики цільова функція залежить від кількості змінних, якими їй є різні типи комбінаторних конфігурацій, зокрема різні типи вибірок.

Комбінаторною конфігурацією називаємо будь-яку сукупність елементів, яка утворюється з усіх або з деяких елементів заданої множини \(A = \{a_1, ..., a_n\} \) [1]. Позначимо її впорядкованою множиною \(w = (w_1, ..., w_\eta) \). Множину \(A = \{a_1, ..., a_n\} \) назвемо базовою. Під символом \(w_j \in A \) розуміємо як окремі елементи, так і підмножини (блоки), \(\eta \in \{1,...,n\} \) – кількість елементів у \(w \in W \).

Оскільки в прикладних задачах штучного інтелекту аргументом цільової функції виступають різні типи вибірок, розглянемо цю комбінаторну конфігурацію. З поняттям євальдівських множин утворюється множина \(\gamma \). Множину \(\eta = \{1,...,n\} \) визначається множиною вибірок.

Нехай задано базову множину \(A = \{a_1, ..., a_n\} \). З неї одержимо \(\eta \)-вибірку. Число \(\eta \) називають об’ємом вибірки. В \(\eta \)-вибірках в залежності від умови задачі або ураховується порядок розташування в них елементів (тоді їх називають \(\eta \)-перестановками або \(\eta \)-розміщеннями) або не ураховують. У цьому випадку вони називаються \(\eta \)-сполученнями.
Існують такі типи вибірок: упорядковані та неупорядковані. Неупорядковані це – сполучення без повторень і сполучення з повтореннями. Упорядковані це – розміщення з повтореннями та розміщення без повторень. Множина будь-якого типу вибірок складається з підмножин ізоморфних вибірок. Нетотожні комбінаторні конфігурації \(w \) та \(\bar{w} \) –ізоморфні якщо кількість елементів у них – однакова.

Задача розпізнавання мовленневих сигналів полягає у знаходженні для вхідного сигналу найбільш правдоподібного еталонного з усіх можливих еталонних сигналів. Клінічна діагностика полягає у знаходженні для заданих вхідних ознак встановлюється одне або кілька захворювань. Ознаки в цій задачі відіграють роль критеріїв, за якими оцінюється її розв’язок. Ці задачі розділяються на такі підзадачі:

- пошук у бібліотеці еталонної інформації;
- задача порівняння еталонної та вхідної інформації.

Для обох класів задач аргументом цільової функції в першій підзадачі є розміщення без повторень, в другій підзадачі – сполучення без повторень.

Для свого розв’язання вони потребують наявність бібліотеки еталонів. Оскільки процес пошуку еталону в бібліотеці відноситься до \(NP \)-повних задач, то останню за певними правилами необхідно структурувати так, щоб першу задачу можна було звести до розв’язної. В процесі структуризації бібліотеки еталонів розв’язується задача кластеризації, аргументом цільової функції в якій є розбиття \(n \)-елементної множини на підмножини.

Для моделювання цільової функції в оговорених задачах необхідно використовувати міри подібності, які встановлюють подібність між вхідною інформацією та еталоном.

Обидві задачі задаються двома базовими множинами \(A = \{a_1,\ldots,a_n\} \) та \(B = \{b_1,\ldots,b_n\} \), елементи яких мають будь-яку природу. Одна з них описує вхідну інформацію, яку необхідно розпізнати, а друга задає еталонну. З використанням мір подібності між елементами цих множин встановлюються зв’язки, числове значення яких називає вагами \(c_{lt} \in R \), \(R = \text{множина дійсних чисел}; l \in \{1,\ldots,n\}, \ t \in \{1,\ldots,\bar{n}\}, \ n \) – кількість елементів множини \(A \), \(\bar{n} \) – кількість елементів множини \(B \). Тобто за способом задання вхідних даних оговорені задачі відносяться до першого типу. Величини \(c_{lt} \in R \) визначають значення цільової функції. Назовемо їх вхідними даними та задамо матрицями.

Із елементів обох базових множин шляхом вибирання утворюється комбінаторна множина \(W \) – сукупність комбінаторних конфігурацій (вибірок різних типів). На елементах \(w \) комбінаторної множини \(W \) вводиться цільова функція \(F(w) \). Необхідно знайти елемент \(w^* \) множини \(W \), для якого \(F(w) \) набуває екстремального значення при виконанні заданих обмежень.

Для задання цільової функції в явному вигляді вхідні дані моделюються скінченними послідовностями одна з яких – комбінаторна.

Висновок. Отже, особливістю моделювання цільової функції в задачах штучного інтелекту є уведення мір подібності, які визначають подібність між елементами вхідної множини та елементами множини еталонів. Комбінаторна конфігурація (аргумент), як правило, утворюється з елементів двох базових множин. Вхідні дані, за якими оцінюється результат, не задаються за умовою, а обчислюються в процесі розв’язання задачі з використанням мір подібності. Їхні числові значення представляються матрицями і моделюються числовими функціями.

1. Тимофієва Н.К. Теоретико-числові методи розв’язання задач комбінаторної оптимізації: автореф. дис... докт. техн. наук: 01.05.02. Київ, 2007. 32 с
Ткаченко Максим Васильович, кандидат технічних наук, Київський національний університет імені Тараса Шевченка, Київ, Україна, e-mail: tmhunter1111@gmail.com
Федоренко Руслан Миколайович, кандидат економічних наук, Київського національного університету імені Тараса Шевченка, Київ, Україна, e-mail: r_fedorenko@ukr.net

НЕЙРОМЕРЕЖЕВІ АЛГОРИТМИ РОЗПІЗНАВАННЯ ЗОБРАЖЕНЬ НА ОСНОВІ БІБЛІОТЕКИ PYTHON TENSORFLOW

Ткаченко М.В., Федоренко Р.М.

Ключові слова: нейронна мережа, розпізнавання зображень, мережа із згорткою, глибоке навчання мереж.

AMS Subject Classification: 82C32.

Виконано огляд нейромежевих алгоритмів, що використовуються при розпізнаванні графічного контенту сайтів. Нейромежеві алгоритми - це методи, що базуються на застосуванні різних типів нейронних мереж (НМ). Основні напрямки застосування різних НМ для розпізнавання графічного контенту сайтів:

• застосування для отримання ключових характеристик або ознак заданого графічного контенту;
• класифікація графічного контенту або вже витягнутих з них характеристик (в першому випадку витяг ключових характеристик відбувається неявно всередині мережі);
• рішення оптимізаційних завдань.

Архітектура штучних НМ має деяку схожість з природними нейронними мережами. НМ, призначені для вирішення різних завдань, можуть істотно відрізнятися алгоритмами функціонування, але їх основні характеристики вказані нижче [1-3].

НМ складається з елементів, які називаються формальними нейронами. Кожен нейрон перетворює набір сигналів, що надходять до нього на вхід у вихідний сигнал. Саме зв'язки між нейронах, які кодуються вагами, грають ключову роль. Одна з переваг НМ (а також недолік при реалізації їх на послідовній архітектурі) це те, що всі елементи можуть функціонувати паралельно, тим самим істотно підвищуючи ефективність вирішення завдань, особливо в обробці зображень. Крім того, НМ дозволяють ефективно вирішувати багато завдань, вони надають потужні гнучкі і універсальні механізми навчання, що є їх головною перевагою перед іншими методами [4,5] (імовірнісні методи, лінійні роздільники, вирішальні дерева тощо). Навчання позбавляє від необхідності вибирати ключові ознаки, їх значимість і відносини між ознаками. Але тим не менше вибір вихідного представлення вхідних даних (вектор в n-вимірному просторі, частотні характеристики, вейвлет тощо), істотно впливає на якість рішення і є окремою темою. НМ мають гарну узагальнюючу здатність (крим ніж у вирішальних дерев [5]), тобто можуть успішно поширювати досвід, отриманий на кінцевому навчальному наборі, на всю множину образів.

Однак найбільш ефективними НМ для розпізнавання зображень є нейронна мережа із згорткою, що була запропонована Яном Лекуном [6]. Особливістю цих мереж є використання деяких особливостей зорової кори, в якій були відкриті так звані прості клітини, що реагують на прямі лінії під різними кутами, і складні клітини, реакція яких пов'язана з активацією певного набору простих клітин. Структура мережі - односпрямована (без зворотних зв'язків), принципово багатошарова. Для навчання використовуються стандартизовані методи, найчастіше метод зворотного поширення помилки.
Особливістю мереж є використання операції згортки сутність якої в тому, що кожен фрагмент зображення множиться на матрицю (ядро) згортки, а результат підсумовується і записується в аналогічну позицію вихідного зображення.

Недоліком мереж є дуже велика варіативність параметрів. Так, до варійованих параметрів можна віднести: кількість шарів, розмірність ядра згортки для кожного з шарів, кількість ядер для кожного з шарів, крок зсуву ядра при обробці шару, необхідність шарів додаткової дискретизації, ступінь зменшення ними розмірності, функція по зменшенню розмірності (вибір максимуму, середнього і т. п.), передавальна функція нейронів, наявність і параметри вихідний повнозв’язної нейромережі на виході мережі із згорткою.

Для навчання таких НМ використовується спеціальне програмне забезпечення, наприклад TensorFlow.

TensorFlow - це нейронна мережа, яка вчиться вирішувати завдання шляхом позитивного посилення і обробляє дані на різних рівнях (вузлах), що допомагає знаходити вірний результат [7]. Бібліотеки TensorFlow помітно спрощують вбудовування в додатки елементів і функцій штучного інтелекту, призначених для розпізнавання мови, організації комп'ютерного зору або обробки природної мови.

Унікальність TensorFlow полягає в можливості проводити часткові графові обчислення. Ця особливість дозволяє зробити розбіття нейронної мережі, а значитъ можна використовувати розподілене навчання.

У TensorFlow за замовчуванням як режим виконання моделей використовується Eager execution. Тобто обчислення конкретних значень відбувається по ходу виконання, до побудови повного обчислювального графа. Це спрощує налагодження моделей і усусає необхідність в шаблонному коді.

Як структур даних використовуються стандартні структури Python, в яких можна швидко перевіряти гіпотези і легко налагоджувати код на невеликих моделях і малій кількості даних. Eager execution також підтримує прикрошення на GPU і розподілені обчислення на множених машин.

TensorFlow полегшує впровадження моделей, призначенням під розпізнавання зображень і мови, виявлення об’єктів, рекомендації, навчання з підкріпленням і т.д. Для зберігання навчених моделей використовується концепція SavedModel.

Розглянуто архітектури та особливості багатошарових НМ, мереж високого порядку, НМ Хопфілда, нейронних мереж Кохонена, когнітронів, мереж із згорткою, проведено аналіз переваг і недоліків розглянутих мереж при використанні їх щодо розпізнаванню графічного контенту сайтів.

Хорошун Анатолій Сергійович, кандидат фіз.-мат. наук, провідний науковий співробітник відділу стійкості процесів,
Інститут механіки ім. С.П. Тимошенка НАН України,
e-mail: khoroshunanatoliy@gmail.com

МЕТОД ФУНКЦІЙ ЛЯПУНОВА В ЗАДАЧАХ СТІЙКОСТІ, КЕРУВАННЯ ТА СТАБІЛІЗАЦІЇ НЕТОЧНИХ РІЗНОТЕМПОВИХ МЕХАНІЧНИХ СИСТЕМ
Хорошун А.С.

Ключові слова: різнометрові системи, метод функцій Ляпунова, параметрична стійкість, малоприводна механічна система.

AMS Subject Classification: 34D15, 37C75, 93D09, 93D30.

Сучасний рівень розвитку техніки та технологій формує нові вимоги до математичних моделей механічних систем. При побудові таких моделей зазвичай “спрощують” початкову задачу, наприклад, нехтуючи деякими доданками чи складовими руху, тобто понижаючи порядок системи, або припускаючи, що параметри моделі виміряні точно і не змінюються протягом усього часу її функціонування. Можливість такого спрощення випадково відбувається майже відкоченням доданків та несуттєвістю похибок при вимірюванні. Ряд отриманих при таких спрощеннях моделей, внаслідок тривалого та успішного використання, отримали аксіоматичний характер. Однак, не всякою малою величиною можливо знехтувати, не спотворюючи при цьому суті задачі. Деякі механічні системи демонструють це, не відпівдаючи поведінці, спрогнозованій за допомогою математичних моделей, отриманих при подбіні припущеннях.

Одним із видів залежності поведінки системи від параметра є наявність в математичній моделі системи, в який присутні процеси, що відбуваються у різних масштабах часу, параметрів, які задають вплив системи однієї частини руху відносно іншої, т.зв. “швидких” та “повільних” рухів. Також, зазначені параметри можуть з’являтися внаслідок застосування специфічних способів побудови керування в математичних моделях систем, рухи яких не відрізняються за швидкостями. Системи диференціальних рівнянь, що містять такі параметри, мають назву різнометрові системи диференціальних рівнянь, див. [1-4].

Однак, основні методи дослідження різнометрових систем, як то метод розділення змінних, метод усереднення, асимптотичні методи, мають ряд недоліків. По-перше, вони дають висновок про поведінку системи диференціальних рівнянь на кінцевому часовому інтервалі, що у випадку різнометрових систем, коли можливо явно звіть робити прогноз поведінки реальних механічних систем, які описуються за допомогою таких математичних моделей, обмеженим. Хоча, накладання додаткової умови для методу розділення змінних розшириє часовий інтервал дослідження на нескінчене інтервалі, проте, у випадку сильної нелінійності досліджуваної системи, випереджає позитивність можливої рівень інтервалів та її стійкості, були опубліковані в роботах [5-7]. Проте, деякі із цих публікацій присвячені випередженню лінійних систем, а ті, в яких акцент було зроблено на нелінійності, не дають відповіді на питання, зокрема, про глобальний характер стійкості, оцінку меж зміні параметра, тощо. По-друге, існують методи здебільшого зосереджені на аналізі краївих або початкових задач, у той час, як у багатьох випадках, потребує слідкувати за поведінкою всієї системи диференціальних рівнянь, а не окремих її траекторій. По-трете, існують складності із визначенням можливого інтервалом зміни величини параметра, який визначає вплив швидкостей “швидкого” та “повільного” рухів, що для більшості прикладних задач є важливим, оскільки цей параметр може явним чином входити в закон керування. Отже, актуальну розробка нових і вдосконалення існуючих методик, які б дозволили подолати існуючі недоліки при дослідженні різнометрових систем.
Ще одним варіантом залежності поведінки системи від параметрів є наявність у її складі неточних параметрів. Слід зауважити, що питання наявності неточних параметрів в математичних моделях реальних механічних систем виділяється природним, якщо врахувати, що параметри визначаються, зазвичай, за допомогою обчислень або експерименту, тобто, наближено, а тому теоретичні побудови, що вимагають точних значень параметрів, взагалі кажучи, є марними. Для дослідження динамічних характеристик систем такого класу групою авторів М. Ikeda, Y. Ohta, D.D. Siljak, див. [8], було запропоновано використовувати концепцію параметричної стійкості. Зауважимо, що при дослідженні нелінійних систем, які містять неточні параметри, однією з основних проблем є визначення стану рівноваги та врахування зміни його положення через зміну значень параметрів. Концепція параметричної стійкості дозволяє вирішити цю проблему, оськільки вона поєднує в одномірному існуванні стану рівноваги та його стійкість. Стан рівноваги при цьому розглядається, як дезята неперервна функція, що залежить від параметрів, які входять у систему. Відмітимо, що концепція параметричної стійкості, яка є ефективною при дослідженні неточних систем, має деякі труднощі в застосуванні. Це пов’язано, перш за все, з необхідністю при використанні теорему функції Ляпунова знати змінний стан рівноваги системи, що досліджується. Також, спосіб визначення області існування стану рівноваги в просторі параметрів є достатньо важким для застосування, особливо при дослідженні великомасштабних систем. Тому, незважаючи на наявні роботи в цій галузі, отримання нових результатів і покращення існуючих методик становить значний інтерес.

Запропоновано альтернативу стандартним методам дослідження різнотемпівих систем у вигляді методу функції Ляпунова. Цей метод розвинуто із урахуванням класу систем, що досліджується, та наявності неточності в параметрах системи. З його допомогою досліджено динамічні характеристики різних класів неточних різнотемпівих систем і побудовано відповідні функції Ляпунова в вигляді вигляді. Використовуючі отримані результати по дослідженню неточних різнотемпівих систем, розвинуто метод побудови керування, що забезпечує бажані динамічні характеристики малопродуктивних механічних систем, застосовуючи який отримано нові закони керування для конкретних робототехнічних систем з цього класу (IWP(Inertial Wheel Pendulum), TORA(Translational Oscillator with Rotational Actuator), одноелектровий маніпулятор із пружним зчленуванням). Отримані результати є інструментом аналізу практичних проблем, що виникають у різних галузях науки та техніки. Вони дозволяють робити висновки про якісну поведінку різних типів неточних різнотемпівих моделей механічних систем на нескінченному часовому інтервалі у випадку, якщо внаслідок, наприклад, звичайної нелінійності моделі, що розглядається, застосування, зокрема, методу розділення змінних ускладнене. Крім того, достатні умови параметричної стійкості дають можливість максимально врахувати вплив неточних параметрів на динамічні характеристики моделей механічних систем, тобто точніше моделювати реальні задачі і, відповідно, точніше прогнозувати поведінку реальних механічних систем.

6. Градштейн, И.С.: О решениях на временной полупрямой дифференциальных уравнений с малыми множителями при производных. Мат. сб. 32(3), 533-544 (1953)
7. Климучев, А.И., Красовский, Н.Н.: Равномерная асимптотическая устойчивость систем дифференциальных уравнений с малым параметром при производных. Прикл. мат. и мех. 25(4), 680-690 (1961)
Хусаинов Денис Яхьевич, доктор физ.-мат. наук, профессор кафедры моделирования сложных систем
Киевский национальный университет имени Тараса Шевченко, Киев, Украина,
e-mail: d.y.khusainov@gmail.com
Джалладова Ирада, доктор физ.-мат. наук, профессор кафедры компьютерной математики та информационной безопасности,
Киевский национальный экономический университет имени Вадима Гетьмана, Киев, Украина,
e-mail: idzhalladova@gmail.com

КОНСТРУКТИВНЫЕ УСЛОВИЯ И ОЦЕНКИ УСТОЙЧИВОСТИ ЛИНЕЙНЫХ СТАЦИОНАРНЫХ СИСТЕМ

Хусаинов Д.Я., Джалладова И.А.

Ключевые слова: система с запаздыванием, устойчивость в среднем квадратичном, винеровский процесс.

В докладе проведен обзор условий асимптотической устойчивости линейных стационарных систем с запаздыванием и стохастических систем с запаздыванием. Получены конструктивные условия асимптотической устойчивости и оценки сходимости решений к положению равновесия. Рассмотрены системы линейных стационарных уравнений уравнений с запаздыванием

\[\dot{x}(t) = Ax(t) + Bx(t-\tau), \quad t \geq 0, \quad x(t) \in \mathbb{R}^n \]

и стохастических уравнений с запаздыванием

\[dx(t) = \left[A_0 x(t) + A_1 x(t-\tau)\right]dt + \left[B_0 x(t) + B_1 x(t-\tau)\right]dw(t). \]

Исследование устойчивости систем с отклоняющимся аргументом с использованием второго метода Ляпунова проводится в двух направлениях.

1. Метод функционалов Ляпунова-Красовского. В этом методе было предложено рассматривать отрезок траектории \(x(t+s), -\tau \leq s \leq 0 \), как точку в банаховом пространстве. И исследование устойчивости нулевого решения \(x(t) \equiv 0 \) системы с последействием (с запаздыванием или нейтрального типа) рассматривать, как исследование устойчивости точки \(x(t) \equiv 0 \) системы дифференциальных уравнений, в функциональном пространстве. При использовании функционалов Ляпунова-Красовского для линейных стационарных систем наиболее естественно их брать в квадратичном виде

\[V[x(t)] = x^T(t)Hx(t) + \int_{-\tau}^{0} x^T(t+s)Gx(t+s)ds \]

с положительно определенными матрицами \(H \) и \(G \). Для производной функционала \(V[x(t)] \) в силу системы (2) справедливо соотношение

\[\frac{d}{dt} V[x(t)] \leq -\lambda_{\text{min}}(S[G,H])\left(|x(t)|^2 + |x(t-\tau)|^2\right), \quad S[G,H] = \begin{bmatrix} -A^T H - HA - G & -HB \\ -B^T H & G \end{bmatrix}. \]

Имеют место следующие условия асимптотической устойчивости.

Теорема 1. [1]. Пусть существуют положительно определенные матрицы \(H \) и \(G \), при которых матрица \(S[G,H] \) также положительно определена. Тогда линейная система (2) асимптотически устойчива при произвольном запаздывании \(\tau > 0 \).
2. Метод конечномерных функций Ляпунова с условием Б.С. Разумихина. Условие Б.С. Разумихина заключается в том, что полная производная функции Ляпунова в момент времени \(t > s \) на поверхности уровня функции вычисляется при условии, что в предшествующие моменты траектория находилась внутри нее, т.е. \(V(x(s)) < V(x(t)) \), \(t > s \). Для линейных систем (1) функция берется в виде квадратичной формы \(V(x) = x^T H x \). И условие Разумихина состоит в том, что полная производная функции Ляпунова \(V(x) = x^T H x \) вычисляется в предположении, что

\[
\lambda_{\text{min}}(H) x(s)^2 \leq V(x(s)) < V(x(t)) \leq \lambda_{\text{max}}(H) x(t)^2.
\]

Это условие можно переписать в более простом виде

\[
x(s) < \sqrt{\phi(H)} x(t), \quad \phi(H) = \lambda_{\text{max}}(H) / \lambda_{\text{min}}(H).
\]

Вывод об устойчивости системы (1) делается на основании «сравнения» ее с некоторой, так называемой «модельной» системой, обладающей «запасом устойчивости».

\[
\dot{x}(t) = (A + B)x(t)
\]

(3)

В этом случае в качестве симметричной, положительно определенной матрицы \(H \), входящей в функцию Ляпунова \(V(x) = x^T H x \), берется решение уравнения Ляпунова

\[
(A + B)^T H + H(A + B) = -C,
\]

(4)

которое при любой положительно определенной матрице \(C \) имеет единственное решение.

Имеют место следующие условия асимптотической устойчивости системы (1), не зависящие от запаздывания \(\tau > 0 \).

Теорема 2. Пусть система без запаздывания (3) асимптотически устойчива. Если существует положительно определенная матрица \(H \), являющаяся решением матричного уравнения (4), при которой выполняется неравенство

\[
\lambda_{\text{min}}(C) - 2|HB|\left(1 + \sqrt{\phi(H)}\right) > 0,
\]

(5)

то система с запаздыванием (1) асимптотически устойчива при любом запаздывании \(\tau > 0 \). Примеч для любого решения \(x(t) \) при \(t > 0 \) будет выполняться \(|x(t)| < \varepsilon \), лишь только \(\|x(0)\| < \delta(\varepsilon) \), где \(\delta(\varepsilon) = \varepsilon / \sqrt{\phi(H)} \).

Эти условия обеспечивают экспоненциальную сходимость. Используется уже неавтономной функцией Ляпунова \(V(x,t) = e^{\lambda t} x^T H x \). Имеют место более слабые условия асимптотической устойчивости. Однако они будут зависеть от величины запаздывания.

Теорема 3. Пусть система без запаздывания (3) асимптотически устойчива. Тогда при \(\tau < \tau_0 \), где \(\tau_0 = \lambda_{\text{min}}(C)/2|HB|\left(|A| + |B|\right)\sqrt{\phi(H)} \) будет асимптотически устойчивой и система с запаздыванием (1). При этом, для произвольного решения \(x(t) \) системы при \(t > 0 \) будет выполняться \(|x(t)| < \varepsilon \), лишь только \(\|x(0)\|_\varepsilon < \delta(\varepsilon, \tau) \), где \(\delta(\varepsilon, \tau) = e^{-\lambda \tau} \sqrt{\phi(H)} \). Здесь \(C \) - произвольная, положительно определенная матрица, \(H \) - решение матричного уравнения Ляпунова (4).

Рассматриваются также системы линейных стохастических дифференциально-разностных уравнений с одним постоянным запаздыванием

\[
dx(t) = [A_0 x(t) + A_1 x(t - \tau)] dt + [B_0 x(t) + B_1 x(t - \tau)] dw(t).
\]

(6)

127
Здесь A_0, A_1, B_0, B_1 постоянные квадратные матрицы, $\tau > 0$ постоянное запаздывание, $w(t)$ скалярный стандартный винеровский процесс. Известно, что, если стохастическая система без запаздывания
$$dx(t) = (A_0 + A_1)x(t)dt + (B_0 + B_1)x(t)dw(t)$$
асимптотически устойчива в среднеквадратичном, то при определенных условиях, накладываемых на параметры системы и запаздывание $\tau > 0$, асимптотически устойчивой будет и система с запаздыванием (6) [2]. Получены условия асимптотической устойчивости системы (1) для произвольного запаздывания $\tau > 0$ и для достаточно малого $\tau < \tau_0$, зависящего от параметров системы. При исследовании используется функция Ляпунова вида $V(x) = x^THx$, матрица H которой находится из матричного уравнения
$$(A_0 + A_1)^TH + H(A_0 + A_1) + (B_0 + B_1)^TH(B_0 + B_1) = -C.$$ (8)

Теорема 6. [4] Пусть существуют положительно определенные матрицы H и C, удовлетворяющие матричному уравнению Ляпунова (8). Если выполняется неравенство
$$\lambda_{\min}(C) > \|HA_1 + (B_0 + B_1)^THB_1\|\|3 + \phi(H)\| + 2\|B_1^THB_1\|\|1 + \phi(H)\|,$$ (9)
то система (6) асимптотически устойчива в среднеквадратичном при произвольном отклонении аргумента $\tau > 0$. При этом для произвольного решения $x(t)$ при $t > t_0$ будет выполняться $M\|x(t)\| < \epsilon$, лишь только $\|x(t_0)\| < \delta(\epsilon)$, где $\delta(\epsilon) = \epsilon/\phi(H)$.

Если система без запаздывания обладает «запасом устойчивости», то асимптотическая устойчивость сохраняется и для системы с запаздыванием без выполнения требований (9). **Теорема 7.** Пусть существуют положительно определенные матрицы H и C, удовлетворяющие уравнению (4). Тогда при $\tau < \tau_0$, где $\tau_0 = 2\lambda_{\min}(C)\sqrt{D_1^2 + 4D_2^2}\lambda_{\min}(C) + D_1$, $D_1 = \|HA_1 + (B_0 + B_1)^THB_1\|\|3 + \phi(H)\| + 2\|B_1^THB_1\|\|1 + \phi(H)\|$, $D_2 = \|B_1^THB_1\|\|A_1\|^2 + 2\|A_0^TA_1\| + \|A_1\|^2\phi(H)$, система (6) асимптотически устойчива в среднеквадратичном.

При этом для произвольного решения $x(t)$ при $t > t_0$ будет выполняться условие $M\|x(t)\| < \epsilon$, катъ только $\|x(t_0)\| < \delta(\epsilon, \tau)$, где
$$\delta(\epsilon) = e^{-(t_0^2 + 2t_0\tau)}\epsilon/(1 + K_1\tau + K_2\tau^2)\phi(H),$$
$$K_1 = \|A_0\| + 2\|A_1\| + \|B_0^TB_1\| + \|B_1^2\|,$$
$$K_2 = \|A_0^TA_1\| + \|A_1^2\|, \quad L_1 = \|A_0\| + \|B_0^2\| + \|B_0^TB_1\|, \quad L_2 = \|A_0^TA_1\| + \|A_0\|^2.$$

АНАЛИЗ ДИНАМИКИ НЕЛИНЕЙНОЙ МЕХАНИЧЕСКОЙ СИСТЕМЫ С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ, НАХОДЯЩЕЙСЯ ПОД ДЕЙСТВИЕМ ГАРМОНИЧЕСКОГО ВОЗБУЖДЕНИЯ

А.Х. Чейб, В.Е. Пузырев, Н.В. Савченко

Ключевые слова: периодическое возбуждение; метод усреднения; резонансная частота; устойчивость; нелинейная жесткость.

AMS Subject Classification: 34C46, 34D20, 70E50, 70E55, 70K20.

В данной работе рассматривается механическая система с 2 степенями свободы, находящаяся под действием внешнего периодического воздействия. Система состоит из вращающегося упруго установленного каркаса и прикрепленной массы (абсорбера) с вязким трением и нелинейной жесткостью. Исследуется задача устойчивости периодических режимов с помощью метода усреднения. Анализируется влияние нелинейной компоненты относительно откликов основной массы в окрестности резонансных частот.

Платформа вращается с постоянной угловой скоростью ω вокруг вертикальной оси. Рамка подвергается периодическому воздействию по закону $F_r = P\cos\Omega t$.

Уравнения движения рассматриваемой механической системы имеют вид

$$(m_1 + m_a)\ddot{y}_1 + m_a\ddot{y} + [k_1 - (m_1 + m_a)\omega^2]y_1 - m_a\omega^2 \ddot{y} = P\cos\Omega t,$$

$$m_a\ddot{y}_1 + m_a\ddot{y} + h_a\ddot{y} - m_a\omega^2 y_1 + (k_a - m_a\omega^2)\ddot{y} - k_3\ddot{y}^3 = 0.$$

Координата y представляет собой смещение основной массы m_1 относительно ее рамки, в то время как \ddot{y} обозначает относительное смещение массы абсорбера m_a по отношению к массе m_1. Жесткость основной массы обозначена k_1, восстанавливающая сила абсорбера равняется $k_a\ddot{y} - k_3\ddot{y}^3$; h_a – коэффициент вязкого трения.

С помощью введения безразмерных параметров

$$\mu = \sqrt{\frac{m_a}{m_1}}, \ \kappa_1 = \frac{k_1 - (m_1 + m_a)\omega^2}{m_1\Omega^2}, \ \alpha = \frac{\omega^2}{\Omega^2}, \ \beta = \frac{P}{m_1\Omega^2}, \ \kappa_2 = \frac{k_a - m_a\omega^2}{m_a\Omega^2}, \ \kappa_3 = \frac{3m_1k_3}{4m_a\Omega^2};$$

$$\tau = \Omega t$$ и переобозначения переменной \ddot{y} на μy_1 уравнения движения переписаны в виде

$$My'' + Dy' + Ky = F.$$

Здесь

$$y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \ \ M = \begin{pmatrix} 1 + \mu^2 & \mu \\ \mu & 1 \end{pmatrix}, \ \ D = diag(0, h), \ \ K = \begin{pmatrix} \kappa_1 & -\mu\alpha \\ -\mu\alpha & \kappa_2 \end{pmatrix}, \ \ F = \begin{pmatrix} p\cos\tau \gamma_1^2 \\ \frac{1}{\kappa_3}y_2^2 \end{pmatrix}.$$

Штрих означает производную по времени τ.

129
Введены комплексные переменные по формуле
\[z = \text{col}(z_1, z_2), \quad z_j = (y_j + iy_j)e^{i\tau}, \quad j = 1, 2. \]

В предположении, что \(z_1, z_2 \) являются медленными функциями по времени \(\tau \), применяя метод усреднения [1], получена система
\[
2M \ddot{z} + (D + IC)z = iF_1, \quad 2M \ddot{\bar{z}} + (D - IC)\bar{z} = -i\bar{F}_1,
\]

\[
C = K - M = \begin{pmatrix} c_{11} & c_{12} \\ c_{12} & c_{22} \end{pmatrix}, \quad F_1 = \begin{pmatrix} p \\ \kappa_3 z_2^2 \bar{z}_2 \end{pmatrix}.
\]

(1)

Периодическому движению исходной системы соответствуют стационарные точки системы (1), которые находятся из условий
\[
c_{11}z_1 + c_{12}z_2 = p, \quad c_{12}z_1 + (c_{22} - ih)z_2 = \kappa_3 z_2^2 \bar{z}_2
\]

и их сопряженных аналогов для \(\bar{z}_1, \bar{z}_2 \). В зависимости от значения \(c_{11} \), рассмотрено и проанализировано два случая \(c_{11} = 0 \) и \(c_{11} \neq 0 \).

Чтобы определить устойчивость периодического решения усредненных уравнений (1) мальные возмущения решений введены в виде \(z(\tau) = z_0 + \bar{z}(\tau) \), где \(z_0 \) решение системы (2). Принимая во внимание, что
\[
\frac{\partial F_1}{\partial z} = \kappa_3 \begin{pmatrix} 0 & 0 \\ 0 & 2z_2 \bar{z}_2 \end{pmatrix}, \quad \frac{\partial F_1}{\partial \bar{z}} = \kappa_3 \begin{pmatrix} 0 & 0 \\ 0 & z_2^2 \end{pmatrix},
\]

характеристический многочлен имеет следующий вид
\[
f(\lambda) = a_4\lambda^4 + a_3\lambda^3 + a_2\lambda^2 + a_1\lambda + a_0,
\]

где
\[
a_4 = 16, \quad a_3 = 16h(1 + \mu^2), \quad a_2 = 4[c_1^2 + 2c_1^2 + c_2^2 - 4\mu c_2[c_1 + c_2^2(1 + \mu^2)]] +
2\mu^2[c_1 c_2^2 + c_2^2 + 2c_2^2] + \mu^2 c_2^2 + h^2[1 + \mu^2)] - 8a\mu^2 c_1 - 2\mu(1 + \mu^2)c_1 +
+(1 + \mu^2)^2 c_{22}] + 3(1 + \mu^2)^2 a^2, \quad a_1 = 4h[(c_{11} - \mu c_{12})^2 + c_{12}^2],
\]
\[
a_0 = \delta^2 + h^2 c_{11}^2 - 2c_1 \sigma + \frac{3}{4} c_{11}^2 \sigma^2, \quad \sigma = \kappa_3 z_{20} \bar{z}_{20} = \kappa_3 (u_0^2 + v_0^2).
\]

Исследуемое решение асимптотически устойчиво, если все корни многочлена \(f(\lambda) \) имеют отрицательные вещественные части. На основе критерия Льенара – Шипара [2], получены условия отрицательности вещественных частей корней данного многочлена и проведен их анализ. Построены бифуркационные поверхности.

В качестве примеров приведены графики, полученные путем численного интегрирования, которые наглядно демонстрируют зависимость от выбранных параметров системы. Например, колебания основной массы в зависимости от коэффициента затухания \(h \), влияние нелинейной жесткости и жесткости абсорбера на отклики основной массы и прочее. Численные расчеты показали, что усредненные уравнения хорошо коррелируют с уравнениями движения.

Также рассмотрен вопрос о подходящем выборе параметров абсорбера (линейной и нелинейной жесткости и коэффициента затухания) в окрестности резонансных частот. В частности, было показано, что нелинейная пружина абсорбера может существенно улучшить отклики основной массы (противодействовать росту амплитуды), вызванные внешним возбуждением.

1. Митрояльский Ю.А., Метод усреднения в исследованиях резонансных систем, Наука, Москва, 1992.
Черниенко Валерий Александрович, аспирант

Институт механики им. С.П. Тимошенко НАН Украины, Киев, Украина
e-mail: center@inmech.kiev.ua

ОБ ОЦЕНКЕ ФУНКЦИЙ ЛЯПУНОВА НА РЕШЕНИЯХ ПОЛИНОМИАЛЬНОЙ СИСТЕМЫ

Черниенко В.А.

Ключевые слова: полиномиальная система, оценка функции Ляпунова, устойчивость по Ляпунову, практическая устойчивость, устойчивость на конечном интервале.

AMS Subject Classification: 34D20, 70K20, 93D30

Известно, что для ряда механических систем (низко-орбитальных искусственных спутников), в задачах небесной механики (задача трех тел), при исследовании устойчивости движения гиперзвуковых летательных аппаратов в режиме полета на больших балансировочных углах атаки, удовлетворительными моделями являются системы обыкновенных дифференциальных уравнений с полиномиальной правой частью (см. [2, 4, 8] и библиографию там). А.Пуанкаре (см. [7], Гл. XVI, XVII) показал, что всякое дифференциальное уравнение, при определенных условиях, может быть сведено к полиномиальной форме при помощи введения дополнительных переменных.

При исследовании полиномиальных систем прямым методом Ляпунова центральной является проблема оценки изменения вспомогательной функции вдоль решений рассматриваемых уравнений. Доклад посвящен одному из вариантов решения этой проблемы.

Рассмотрим уравнения возмущенного движения некоторой механической системы в форме (см. [1] и библиографию там)

$$\frac{dx_{\beta}}{dt} = \sum_{s=2h-1}^{2l-1} X^{(s)}(x, a_{i_1,i_2,\ldots,i_s}(t)),$$

(1)

$$x_{\beta}(t_0) = x_{\beta 0}, \quad \beta = 1, 2, \ldots, n,$$

(2)

где $x_{\beta} \in \mathbb{R}$, $x \in \mathbb{R}^n$, $a_{i_1,i_2,\ldots,i_s}(t)$ — вещественные ограниченные на любом конечном интервале функции времени, x_1,\ldots,x_n — отклонения переменных $x_{\beta}(t)$ от состояния $x(t) = 0$ при любом $t \in \mathbb{R}_+, 0 < h \leq l$ — целые положительные числа,
однородный полином от \(n \) переменных \(x_1, x_2, \ldots, x_n \) с приведенными подобными членами, которые расположены в лексикографическом порядке.

Предположим, что некоторым способом для системы уравнений (1) построена функция \(V(t, x) > 0 \) при всех \(x \in \mathbb{R}^n \setminus 0 \) и \(t \in \mathbb{R}_+ \).

Поставим задачу определения границы изменения функции \(V(t, x) \) вдоль решений системы (1) при всех \(t \in \mathbb{R}_+ \).

Для полной производной функции \(V(t, x) \) по времени в силу системы (1)

\[
\frac{dV}{dt} = \frac{\partial V}{\partial t} + \sum_{\beta=1}^{n} \frac{\partial V}{\partial x_\beta} \cdot \frac{dx_\beta}{dt}
\]

предположим существование непрерывных неотрицательных функций \(\psi_i(t) \), \(i = 1, 2, \ldots, m \) таких, что

\[
\frac{dV(t, x)}{dt} \leq \sum_{i=1}^{m} (\psi_i(t)V^i(t, x))
\]

при всех \((t, x) \in \mathbb{R}_+ \times \mathbb{R}^n \). Из неравенства (4) следует, что для функции \(V(t, x) > 0 \) верно неравенство

\[
V(t, x(t)) \leq V(t_0, x_0) + \int_{t_0}^{t} \left(\sum_{i=1}^{m} (\psi_i(s)V^i(s, x(s)))ds \right)
\]

при всех \(t \in \mathbb{R}_+ \). Имеет место следующее утверждение.

Лемма 1. Пусть для системы (1) существует определенно положительная функция \(V(t, x) \), и интегрируемые на \(\mathbb{R}_+ \) неотрицательные функции \(\psi_i(t) \), \(i = 1, 2, \ldots, m \) такие, что при всех \((t, x) \in \mathbb{R}_+ \times \mathbb{R}^n \) выполняется оценка (4).

Тогда граница изменения функции \(V(t, x) \) вдоль решений полиномиальной системы (1) оценивается неравенством

\[
V(t, x(t)) \leq V(t_0, x_0) \exp \left(\int_{t_0}^{t} \psi_1(s)ds \right)
\]

\[
\frac{1}{1 - (m - 1) \int_{t_0}^{t} \sum_{i=1}^{m} V^{i-1}(t_0, x_0)\psi_i(s) \exp \left(\int_{t_0}^{t} (m - 1)\psi_1(\tau)d\tau \right)ds}
\]

(6)
для всех $t \in \mathbb{R}_+$ для которых

$$N(t) = (m - 1) \int_{t_0}^{t} \sum_{i=2}^{m} V^{i-1}(t_0, x_0) \psi_1(s) \exp \left(\int_{t_0}^{t} (m - 1) \psi_1(\tau) d\tau \right) ds < 1. \quad (7)$$

Доказательство оценки (6) основано на применении модифицированного варианта доказательства оценок нормы решений (см. [10]) и изменения функций Ляпунова для систем с квадратичной нелинейностью (см. [6]).

В качестве приложений полученной оценки (6) рассматриваются задачи об устойчивости полиномиальной системы (1): в смысле Ляпунова [5], практической устойчивости [9], и устойчивости на конечном интервале [3].

УЗАГАЛЬНЕННИЙ ОПЕРАТОР ГРІНА МАТРИЧНОЇ ІНТЕГРАЛЬНО-ДИФЕРЕНЦІАЛЬНОЇ КРАЙОВОЇ ЗАДАЧІ

Чуйко О.С., Чечетенко В.О.

Ключові слова: матричні рівняння, оператор Гріна, інтегрально-диференціальні крайові задачі.

AMS Subject Classification: 34K10, 45J05.

Досліджуємо задачу про побудову розв'язку [1,2]

$$Z(t) \in D_{\alpha \times \beta}^2[a;b] := D^2[a;b] \otimes \mathbb{R}^{\alpha \times \beta}, \quad Z'(t) \in L_{\alpha \times \beta}^2[a;b] := L^2[a;b] \otimes \mathbb{R}^{\alpha \times \beta}$$

матричної інтегрально-диференціальні системи типу Фредгольма з вирожденим ядром

$$Z'(t) = \Phi(t) \int_a^b [A(s)Z(s) + B(s)Z'(s)]\Psi(t) \, ds + F(t),$$

підпорядкованих крайовій умові

$$L Z(\cdot) = A, \quad A \in \mathbb{R}^{\mu \times \nu}.$$ \hspace{1cm} (2)

Тут

$$\Phi(t) \in L_{\alpha \times \gamma}^2[a;b], \quad A(t), B(t) \in L_{\beta \times \alpha}^2[a;b], \quad \Psi(t) \in L_{\beta \times \beta}^2[a;b], \quad F(t) \in L_{\alpha \times \beta}^2[a;b];$$

$$L Z(\cdot)$$ — лінійний обмежений матричний функціонал: $L Z(\cdot) : D_{\alpha \times \beta}^2[a;b] \to \mathbb{R}^{\mu \times \nu}$. Взагалі кажучи, вважаємо $\alpha, \beta, \gamma, \mu, \nu \in \mathbb{N}$ — довільні натуральні числа. Матрична крайова задача (1), (2) узагальнює традиційні постановки задач для інтегрально-диференціальної системи типу Фредгольма [1,2]. Розв'язок системи (1) зображимо у вигляді

$$Z(t) = \int_a^t \Phi(s) C_0 \Psi(s) \, ds + C_1 + \mathcal{F}(t), \quad \mathcal{F}(t) := \int_a^t F(s) \, ds,$$

де

$$C_0 := \int_a^b [A(s)Z(s) + B(s)Z'(s)]ds \in \mathbb{R}^{\gamma \times \beta}, \quad C_1 \in \mathbb{R}^{\alpha \times \beta}$$

— невідомі сталі матриці, для знаходження яких приходимо до матричного рівняння типу Сильвестра [3]

$$C_0 - \int_a^b A(t) \int_a^t \Phi(s) C_0 \Psi(s) \, ds \, dt - \int_a^b A(t) C_1 \, dt - \int_a^b A(s) \Phi(s) C_0 \Psi(s) \, ds = B; \quad \hspace{0.5cm} (3)$$

тут

$$B := \int_a^b [A(s)F(s) + B(s)F(s)] \, ds \in \mathbb{R}^{\gamma \times \beta}$$

— стала матриця. Визначимо оператор [3] $A = MB : \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$, як оператор, який ставить у відповідність матриці $B \in \mathbb{R}^{m \times n}$ вектор-стовпець $MB \in \mathbb{R}^{m \times n}$, утворений з n
стовпців матриці B, а також обернені оператор $M^{-1}A : \mathbb{R}^{m,n} \to \mathbb{R}^{m,n}$, який ставить у відповідність вектору $A \in \mathbb{R}^{m,n}$ матрицю $B \in \mathbb{R}^{m,n}$. Позначимо $\Theta(j) \in \mathbb{R}^{1 \times \beta}$, $j = 1, 2, \ldots$, $\beta \cdot \gamma$ — природний базис $[4]$ простору $\mathbb{R}^{\beta \times \gamma}$, а також $\Xi(j) \in \mathbb{R}^{\alpha \times \beta}$, $j = 1, 2, \ldots$, $\alpha \cdot \beta$ — природний базис простору $\mathbb{R}^{\alpha \times \beta}$, при цьому задача про знаходження розв'язку рівняння (1) приводить до задачі про знаходження векторів $\xi \in \mathbb{R}^{\beta \gamma}$ і $\zeta \in \mathbb{R}^{\alpha \beta}$, компоненти яких визначають розв'язання матриць

$$C_0 = \sum_{j=1}^{\beta \gamma} \Theta(j) \xi_j, \quad C_1 = \sum_{j=1}^{\alpha \beta} \Xi(j) \zeta_j, \quad \xi_j, \zeta_j \in \mathbb{R}^1, \quad c := \left(\begin{array}{c} \xi \\ \zeta \end{array} \right) \in \mathbb{R}^{\alpha \beta + \beta \gamma}.$$

У нових позначеннях, рівняння (3) набуває вигляду

$$Dc = MB, \quad D := [D_0; D_1],$$

де

$$D_0 := \left[D_0^{(j)} \right]_{j=1}^{\beta \gamma} \in \mathbb{R}^{\beta \gamma \times \beta \gamma}, \quad D_0^{(j)} := M \Theta(j) - \int_a^b A(s) \Phi(s) \Theta(j) \Psi(s) ds -$$

$$- M \int_a^b A(t) \int_a^t \Phi(s) \Theta(j) \Psi(s) ds dt, \quad D_0 := \left[D_0^{(j)} \right]_{j=1}^{\alpha \beta} \in \mathbb{R}^{\alpha \beta \times \alpha \beta}, \quad D_1^{(j)} := - M \int_a^b A(t) \Xi(j) dt$$

— сталі матриці. Позначимо $P_{D*} \in \mathbb{R}^{\beta \gamma \times \beta \gamma}$ і $P_D \in \mathbb{R}^{(\alpha+\beta)\beta \times (\alpha+\gamma)\beta}$ матриці-ортопроектори: $P_{D*} : \mathbb{R}^{\beta \gamma} \to N(D^*), \quad P_D : \mathbb{R}^{\alpha \beta + \beta \gamma} \to N(D^*)$. За умови [1,5]

$$P_D MB = 0$$ (5)

і тільки за неї загальний розв'язок $c = D^{+} MB + P_D c_\rho$, $c_\rho \in \mathbb{R}^\rho$ рівняння (4) визначає загальний розв'язок

$$C_0 = C_0(B) + C_0(c_\rho), \quad C_0(B) := M^{-1}[\xi(B)], \quad C_0(c_\rho) := M^{-1}[\xi(c_\rho)],$$

$$C_1 = C_1(B) + C_1(c_\rho), \quad C_1(B) := M^{-1}[\zeta(B)], \quad C_1(c_\rho) := M^{-1}[\zeta(c_\rho)]$$
 матричного рівняння типу Сильвестра (3); тут

$$\xi(B) := (I_{\beta \gamma} \quad 0) D^{+} MB, \quad \xi(c_\rho) := (I_{\beta \gamma} \quad 0) P_D c_\rho,$$

$$\zeta(B) := (0 \quad I_{\alpha \beta}) D^{+} MB, \quad \zeta(c_\rho) := (0 \quad I_{\alpha \beta}) P_D c_\rho;$$

матриця $P_D \in \mathbb{R}^{(\alpha+\gamma)\beta \times \rho}$ утворена з ρ лінійно незалежних стовпців ортогоналектора P_D.

Лема. За умови (5) загальний розв'язок $Z(t, c_\rho) = W(t, c_\rho) + K[F(s)](t)$, $c_\rho \in \mathbb{R}^\rho$ задачи Коші $Z(a) = C_1(c_\rho)$ для рівняння (1) визначає оператор Гріна задачи Коші

$$K[F(s)](t) := \int_a^t \Phi(s) C_0(B) \Psi(s) ds + C_1(B) + F(t);$$

тут

$$W(t, c_\rho) := C_1(c_\rho) + \int_a^t A(s) \Phi(s) C_0(c_\rho) \Psi(s) ds, \quad c_\rho \in \mathbb{R}^\rho$$

— загальний розв'язок задачи Коші $Z(a) = 0$ для однорідної частини рівняння (1).
Позначимо $\Theta_{\rho}^{(j)} \in \mathbb{R}^\rho, j = 1, 2, \ldots, \rho$ — природный базис пространства \mathbb{R}^ρ. Підставляючи розв'язок рівняння (1) у краєву умову (2), приходимо до задачі про знаходження розв'язку матричного рівняння типу Сильвестра [2,3]

$$LW(\cdot, \xi(t)) + L\mathcal{K}[F(s)](\cdot) = \mathcal{A} \in \mathbb{R}^{\mu \times \nu}.$$

(6)

В критичному випадку ($P_{Q^*} \neq 0$) за умови (5) та [3,5]

$$P_{Q^*}M\{\mathcal{A} - L\mathcal{K}[F(s)](\cdot)\} = 0.$$

(7)

розв'язок матричного рівняння (5) визначає вектор $c_\rho = c_\rho(c_r) + c_\rho(A, F)$, де

$$c_\rho(A, F) := Q_+^j\mathcal{M}\{\mathcal{A} - L\mathcal{K}[F(s)](\cdot)\}, c_\rho(c_r) := P_{Q^*}c_r, c_r \in \mathbb{R}^r.$$

Тут $P_{Q^*} - (\mu \cdot \nu \times \mu \cdot \nu)$ — матриця-ортопроектор $P_{Q^*} : \mathbb{R}^{\mu \times \nu} \rightarrow N(Q^*)$, де

$$Q := \left[Q_j \right]_{j=1}^{\rho} \in \mathbb{R}^{\mu \times \nu \times \rho}, Q_j := \mathcal{M}\left\{LM^{-1}\left[W(\cdot, \Theta_{\rho}^{(j)}) \right] \right\}, j = 1, 2, \ldots, \rho;$$

матриця P_{Q^*}, утворена з г лінійно-незалежних стовпців $(\rho \times \rho)$ — матриці-ортопроектора P_{Q^*}; матриця P_{Q^*} утворена з d лінійно незалежних рядків матриці-ортопроектора P_{Q^*}.

Теорема. У критичному випадку ($P_{Q^*} \neq 0$) за умов (5) та (7), розв'язок матричної інтегрально-диференційної краєвої задачі (1), (2)

$$Z(t, c_r) = W(t, c_r) + G[F(s); \mathcal{A}](t), c_r \in \mathbb{R}^r$$

визначає узагальнений оператор Гріна

$$G[F(s); \mathcal{A}](t) := W(t, c_\rho(A, F)) + \mathcal{K}[F(s)](t)$$

і загальний розв'язок однорідної частини краєвої задачі (1), (2)

$$W(t, c_r) := C_1(c_\rho(c_r)) + \int_a^t A(s)\Phi(s)C_0(c_\rho)\Psi(s) ds;$$

тут

$$W(t, c_\rho(A, F)) := C_1(c_\rho(A, F)) + \int_a^t A(s)\Phi(s)C_0(c_\rho(A, F))\Psi(s) ds,$$

— загальний розв'язок однорідної частини краєвої задачі (1), (2) та

$$\mathcal{K}[F(s)](t) := \int_a^t \Phi(s)C_0(B)\Psi(s) ds + C_1(B) + \mathcal{F}(t);$$

— узагальнений оператор Гріна матричної задачі Коши $Z(a) = 0$ для системи (1).

К ВОПРОСУ О РЕГУЛЯРИЗАЦИИ ЛИНЕЙНОЙ НЕТЕРОВОЙ КРАЕВОЙ ЗАДАЧИ ДЛЯ СИСТЕМЫ РАЗНОСТНЫХ УРАВНЕНИЙ

Чуйко С.М., Калинченко Я.В.

Ключевые слова: нетеровы краевые задачи, техника регуляризации, системы разностных уравнений.

AMS Subject Classification: 34B15.

Исследована задача о нахождении ограниченных решений $z(k) \in \mathbb{R}^n$ системы линейных разностных уравнений [1,2]

$$z(k + 1) = A(k)z(k) + f(k), \ k = 0, 1, 2, \ldots ;$$

(1)

здесь $A(k) \in \mathbb{R}^{n \times n}$ — ограниченные матрицы и $f(k)$ — действительные ограниченные вектор-столбцы. Как известно [2], общее решение задачи Коши $z(0) = c \in \mathbb{R}^n$ для однородной части невырожденной $(\det A(k) \neq 0)$ системы разностных уравнений (1) представимо в виде: $z(k) = X(k)c$, $c \in \mathbb{R}^n$; здесь $X(k)$ — нормальная фундаментальная матрица. Общее решение задачи Коши $z(0) = c \in \mathbb{R}^n$ для неоднородной части невырожденной $(\det A(k) \neq 0)$ системы разностных уравнений (1) представимо в виде:

$$z(k) = X(k)c + K[f(j)](k), \ c \in \mathbb{R}^n;$$

здесь

$$K[f(j)](k) := X(k) \sum_{j=0}^{k-1} X^{-1}(j + 1)f(j)$$

— оператор Грина задачи Коши для системы разностных уравнений (1). Задача о нахождении ограниченных решений системы линейных разностных уравнений (1) существенно усложняется в случае ее выражения, а именно: при условии $\det A(k) = 0$ хотя бы для некоторых $k = 0, 1, 2, \ldots$. В этом случае для нахождения ограниченных решений системы линейных разностных уравнений (1) можно использовать технику регуляризации [3 - 5]. Возмущение квадратной, но выраженной матрицы $A(k)$ будем искать в виде

$$\mathcal{A}(k, \varepsilon) := A(k) + \varepsilon \Omega(k), \quad \Omega(k) \in \mathbb{R}^{n \times n}, \ k = 0, 1, 2, \ldots ,$$

предполагая матрицу $\mathcal{A}(k, \varepsilon)$ невырожденной и ограниченной. Таким образом, приходим к задаче о нахождении ограниченных решений $z(k, \varepsilon) \in \mathbb{R}^n$, $k = 0, 1, 2, \ldots$ регуляризованной системы линейных разностных уравнений

$$z(k + 1, \varepsilon) = \mathcal{A}(k, \varepsilon)z(k, \varepsilon) + f(k), \ k = 0, 1, 2, \ldots .$$

(2)
Поскольку любая \((n \times n)\) матрица \(A(k)\) постоянного ранга \(\sigma\) в определенном базисе может быть представлена в виде стандартного разложения [5]

\[
A(k) = R(k) \cdot J_\sigma \cdot S(k), \quad J_\sigma := \begin{pmatrix} I_\sigma & O \\ O & O \end{pmatrix},
\]

постольку возмущение матрицы \(A(k)\) представимо в виде

\[
\Omega(k) = R(k) \cdot J_\sigma \cdot S(k), \quad J_\sigma := \begin{pmatrix} O & O \\ O & I_{n-\sigma} \end{pmatrix};
\]

здесь \(R(k)\) и \(S(k)\) — ограниченные невырожденные матрицы. Общее решение задачи Коши \(z(0, \varepsilon) = c \in \mathbb{R}^n\) для однородной части невырожденной \((\det A(k, \varepsilon) \neq 0)\) системы разностных уравнений (2) представимо в виде:

\[
z(k, \varepsilon) = X(k, \varepsilon)c, \quad c \in \mathbb{R}^n;
\]

здесь \(X(k, \varepsilon)\) — нормальная фундаментальная матрица:

\[
X(k + 1, \varepsilon) = A(k, \varepsilon)X(k, \varepsilon), \quad X(0, \varepsilon) = I_n.
\]

Общее решение задачи Коши \(z(0, \varepsilon) = c \in \mathbb{R}^n\) для неоднородной регуляризованной системы разностных уравнений (2) представимо в виде:

\[
z(k, \varepsilon) = X(k, \varepsilon)c + X(k, \varepsilon) \sum_{j=0}^{k-1} X^{-1}(j + 1, \varepsilon)f(j), \quad c \in \mathbb{R}^n.
\]

Таким образом, доказана следующая лемма [6].

Лемма. Предположим, что \((n \times n)\) матрица \(A(k)\) имеет постоянный ранг, а именно: \(1 \leq \text{rank } A(k) = \sigma < n\). Тогда общее решение задачи Коши \(z(0, \varepsilon) = c \in \mathbb{R}^n\) для неоднородной регуляризованной системы разностных уравнений (2) представимо в виде:

\[
z(k, \varepsilon) = X(k, \varepsilon)c + K[f(j)](k, \varepsilon), \quad c \in \mathbb{R}^n, \quad K[f(j)](k, \varepsilon) := X(k, \varepsilon) \sum_{j=0}^{k-1} X^{-1}(j + 1, \varepsilon)f(j).
\]

Задача о нахождении ограниченных решений \(z(k)\) линейной нечетверовой \((m \neq n)\) краевой задачи для линейной невырожденной системы разностных уравнений первого порядка

\[
z(k + 1) = A(k)z(k) + f(k), \quad \ell z(\cdot) = \alpha \in \mathbb{R}^m
\]

была решена А.А. Бойчуком [2]; здесь \(\ell z(\cdot) : \mathbb{R}^n \to \mathbb{R}^m\) — линейный ограниченный векторный функционал, определенный на пространстве ограниченных функций. Обозначим матрицу \(Q := \ell X(\cdot) \in \mathbb{R}^{m \times n}\), а также \(P_Q : \mathbb{R}^n \to N(Q), \quad P_{Q^*} : \mathbb{R}^m \to N(Q^*)\) — матрицы-ортопроекции. Подставляя общее решение задачи Коши \(z(0) = c \in \mathbb{R}^n\) неоднородного линейного разностного уравнения (3) в краевое условие (3) при условии \(\det A(k) \neq 0\) приходим к уравнению, разрешимому тогда и только тогда, когда [2]

\[
P_{Q^*} \alpha - \ell K[f(s)](\cdot) = 0.
\]

Следуя традиционной классификации краевых задач [1,2], случай \(P_{Q^*} \neq 0\) назовем критическим. Случай \(P_{Q^*} = 0\) назовем некритическим. Поставим задачу о регуляризации [3 –
5] краевой задачи (3), а именно: поставим задачу о нахождении малого возмущения краевого условия (3) таким образом, чтобы линейная краевая задача (3) стала разрешимой для любых неоднородностей краевой задачи для системы разностных уравнений (3). Возмущение функционала $\ell z(\cdot) : \mathbb{R}^n \to \mathbb{R}^m$, определяющего вид краевого условия (3) будем искать в виде $Lz(z, \varepsilon) := \ell z(\cdot) + \varepsilon z(0, \varepsilon)$ линейного ограниченного векторного функционала, определенного на пространстве ограниченных функций $z(k, \varepsilon)$. Таким образом, возмущение матрицы \mathcal{Q} будем искать в виде $\mathcal{Q}(\varepsilon) := Q + \varepsilon \Xi, \ 0 < \varepsilon \ll 1$, предполагая матрицу $\mathcal{Q}(\varepsilon)$ матрицей полного ранга. В случае негеройной ($m \neq n$) краевой задачи (3) условие полноты ранга матрицы $\mathcal{Q}(\varepsilon)$ равносильно уравнению

$$(Q + \varepsilon \Xi) \cdot (Q + \varepsilon \Xi)^\dagger = I_m, \quad \Xi \in \mathbb{R}^{m \times n}.\tag{5}$$

Заметим, что в случае $P_{Q^*} \neq 0$ уравнение (5) разрешимо лишь для $m = n$, либо $m < n$. Поскольку любая ($m \times n$) - матрица Q в определенном базисе может быть представлена в виде стандартного разложения $Q = R \cdot J_a \cdot S$, постольку возмущение матрицы Ξ представимо в виде

$$\Xi = R \cdot \tilde{J} \cdot S, \quad \tilde{J} := \begin{pmatrix} O & O \\ O & J_{(m-n)\times(n-m)} \end{pmatrix} \in \mathbb{R}^{m \times n};$$

здесь $J_{(m-n)\times(n-m)} \in \mathbb{R}^{(m-n)\times(n-m)}$ - любая постоянная матрица полного ранга. Таким образом, приходим к задаче о нахождении ограниченных решений $z(k, \varepsilon) \in \mathbb{R}^n, \ k = 0, 1, 2, ..., $ регуляризованной краевой задачи для системы линейных разностных уравнений

$$z(k + 1, \varepsilon) = A z(k, \varepsilon) + f(k), \ \mathcal{L}z(\cdot, \varepsilon) = \alpha. \tag{6}$$

В силу равенства $P_{Q^*}(\varepsilon) = 0$, регуляризованная краевая задача (6) разрешима для любых неоднородностей краевой задачи (6). Таким образом, доказана следующая теорема [6].

Теорема. Линейная негерой краевая задача для линейной системы разностных уравнений первого порядка (3) при условии $\det A(k) \neq 0, m \leq n$ в критическом случае может быть регуляризовано возмущением краевого условия:

$$\mathcal{L}z(\cdot, \varepsilon) := \ell z(\cdot, \varepsilon) + \varepsilon z(0, \varepsilon), \quad \Xi = R \cdot \tilde{J} \cdot S.$$

Регуляризованная краевая задача (6) разрешима для любых неоднородностей краевой задачи для системы разностных уравнений (6), при этом решение $z(k)$ линейной негерой краевой задачи (6) представимо в виде: $z(k) = X_r(k) c_r + G[f(s); \alpha](k, \varepsilon), c_r \in \mathbb{R}^r$; здесь $X_r(k) = X(k)P_{Q^*}(\varepsilon), X(k) -$ нормальная ($X(0) = I_n$) фундаментальная матрица,

$$G[f(s); \alpha](k, \varepsilon) = X(k)Q^+\alpha (\varepsilon) \{\alpha - \mathcal{L}K[f(s)](\cdot) + K[f(s)](k)\} = \text{обобщённый оператор Грина регуляризованной краевой задачи (6)}.$$

Здесь $Q^+\alpha (\varepsilon) \in \mathbb{R}^{n \times m} -$ псевдообратная по Мурру – Пенроузу матрица [1].

ДИФФЕРЕНЦИАЛЬНО-АЛГЕБРАИЧЕСКАЯ КРАЕВАЯ ЗАДАЧА С СОСРЕДОТОЧЕННЫМ ЗАПАЗДЫВАНИЕМ

Чуйко С.М., Чуйко Е.В.

Ключевые слова: краевые задачи, дифференциально-алгебраические системы, сосредоточенное запаздывание.

AMS Subject Classification: 34A09, 34A30.

Исследована задача о построении решения

$$z(t) \in \mathbb{C}[0, T], \quad z(t) \in \mathbb{C}^1\{[0, T] \setminus \{k\Delta\}_I\}, \quad k = 1, 2, \ldots, q$$

линейной нетеровой ($k \neq m$) дифференциально-алгебраической краевой задачи с сосредоточенным запаздыванием

$$A(t)z'(t) = B(t)z(t) + C(t)z(t - \Delta) + f(t), \quad t \in [\Delta, T], \quad \ell z(\cdot) = \alpha \in \mathbb{R}^k, \quad (1)$$

непрерывного в точках $t = k\Delta$ с начальной функцией $z(t) = \varphi(t) \in \mathbb{C}^1[0, \Delta]$. В точках $t = k\Delta$, $k = 1, 2, \ldots, q$ искомое решение краевой задачи (1), возможно, претерпевает ограниченный разрыв произвольной. Здесь

$$A(t), B(t), C(t) \in \mathbb{C}_{m \times n}[0, T], \quad f(t) \in \mathbb{C}[0, T], \quad T := (q + 1)\Delta$$

— непрерывные матрицы. Матрицу $A(t)$ предполагаем, вообще говоря, прямоугольной, либо квадратной, но выраженной; $\ell z(\cdot)$ — линейный ограниченный вектор-функционал:

$$\ell z(\cdot) : \mathbb{C}^1\{[0, T] \setminus \{k\Delta\}_I\} \cap \mathbb{C}[0, T] \rightarrow \mathbb{R}^k.$$

При условии [3]

$$P_{A^*(t)} = 0, \quad A^+(t)B(t) \in \mathbb{C}_{n \times n}[0, T], \quad A^+(t)C(t) \in \mathbb{C}_{m \times n}[0, T], \quad A^+(t)f(t) \in \mathbb{C}[0, T] \quad (2)$$

система (1) разрешима относительно произвольной

$$z'(t) = A^+(t)B(t)z + A^+(t)C(t)z(t - \Delta) + F_0(t, \nu_0(t)); \quad (3)$$

здесь

$$\text{rank } A(t) := \sigma_0 = m \leq n, \quad F_0(t, \nu_0(t)) := A^+(t)f(t) + P_{A_{\nu_0}}(t)\nu_0(t),$$

$A^+(t)$ — псевдообразная (по Муру — Пенроузу), $P_{A^*}(t)$ — матрица-ортопроектор [2]:

$$P_{A^*}(t) : \mathbb{R}^m \rightarrow \mathbb{N}(A^*(t)),$$

$$P_{A_{\nu_0}}(t) : \mathbb{R}^n \rightarrow \mathbb{N}(A(t)).$$
Таким образом, при условии \(\rho_0 \neq 0 \) система (3), разрешенная относительно производной, зависит от произвольной непрерывной вектор-функции \(\nu_0(t) \). Положим вектор-функцию \(\nu_0(t) \) фиксированной. Обозначим \(X_0(t) \) нормальную фундаментальную матрицу

\[
X_0'(t) = A^+(t)B(t)X_0(t), \quad X_0(a) = I_n, \quad t \in [0, T]
\]

традиционной системы обыкновенных дифференциальных уравнений \(z' = A^+(t)B(t)z \) без запаздывания. Заметим, что при условии разрешимости системы (1) относительно производной нормальная фундаментальная матрица \(X_0(t) \) не выражена. Для решения системы (3) используем классический метод шагов [1]. На отрезке \([\Delta, 2\Delta]\) система (3), разрешенная относительно производной,

\[
z' = A^+(t)B(t)z + A^+(t)C(t)\varphi(t - \Delta) + \tilde{\Phi}_0(t, \nu_0(t)),
\]

а значит, и система (1), имеет решение

\[
z(t, c_1) = X_0(t)c_1 + X_0(t) \int_\Delta^t X_0^{-1}(s)[A^+(s)C(s)\varphi(s - \Delta) + \tilde{\Phi}_0(s, \nu_0(s))]ds, \quad c_1 \in \mathbb{R}^n.
\]

Таким образом, при условии \(\det X_0(t) \neq 0 \) найдено решение

\[
z(t) \in C^1\{[0, 2\Delta] \setminus \{\Delta\}t\} \cap C[0, 2\Delta], \quad z(t) = \varphi(t) \in C^1[0, \Delta]
\]

системы (1)

\[
z(t) = K_1\left[f(s), \varphi(s), \nu_0(s)\right](t) := X_0(t)X_0^{-1}(\Delta)\varphi(\Delta) + X_0(t) \times \int_\Delta^t X_0^{-1}(s)\left[A^+(s)C(s)\varphi(s - \Delta) + \tilde{\Phi}_0(s, \nu_0(s))\right]ds, \quad t \in [\Delta, 2\Delta].
\]

Аналогично, в силу неравенства \(\det X_0(t) \neq 0 \), находим решение

\[
z(t) \in C^1\{[0, 3\Delta] \setminus \{\Delta, 2\Delta\}t\} \cap C[0, 3\Delta], \quad z(t) = \varphi(t) \in C^1[0, \Delta]
\]

системы (1)

\[
z(t) = K_2\left[f(s), \varphi(s), \nu_0(s)\right](t) := X_0(t)X_0^{-1}(2\Delta)K\left[f(s), \varphi(s)\right](2\Delta) + X_0(t) \int_{2\Delta}^t X_0^{-1}(s)\left[A^+(s)C(s)K\left[f(s), \varphi(s)\right]\left(s - \Delta\right) + \tilde{\Phi}_0(s, \nu_0(s))\right]ds, \quad t \in [2\Delta, 3\Delta].
\]

Продолжая рассуждения, приходим к следующему утверждению.

Лемма. При условии (2) для фиксированной непрерывной вектор-функции \(\nu_0(t) \) система с сосредоточенным запаздыванием (1) имеет единственное решение вида

\[
z(t) = \mathcal{K}\left[f(s), \varphi(s), \nu_0(s)\right](t) := \begin{cases}
\varphi(t), & t \in [0, \Delta], \\
K_1[f, \varphi, \nu_0](t), & t \in [\Delta, 2\Delta], \\
.. \\
K_q[f, \varphi, \nu_0](t), & t \in [q\Delta, T].
\end{cases}
\]
Положим $\nu_0(t) := \Psi(t)\gamma$, $\gamma \in \mathbb{R}^w$; здесь $\Psi(t) \in C_{\rho_0 \times w}[\Delta, T]$ — произвольная непрерывная матрица полного ранга. В силу линейности, оператор

$$\mathcal{K}[f(s), \varphi(s), \nu_0(s)](t), \ t \in [\Delta, T]$$

представим в виде

$$\mathcal{K}[f(s), \varphi(s), \nu_0(s)](t) = \mathcal{K}[f(s), \varphi(s)](t) + \mathcal{K}[\nu_0(s)](t).$$

Обозначим матрицу $\mathcal{D} := \ell\mathcal{K}[\Psi(s)](\cdot) \in \mathbb{R}^{k \times w}$ и $P_\mathcal{D}$ — матрицу-ортопроектор: $\mathbb{R}^w \rightarrow N(\mathcal{D})$.

Теорема. Предположим, что дифференциально-алгебраическая система с сосредоточенным запаздыванием (1) удовлетворяет требованиям леммы, причем имеют место равенства

$$P_{X_0(k\Delta)}\{\varphi(k\Delta) - K_{k\Delta}[f(s), \nu_0(s)](k\Delta)\} = 0, \ P_{X_0(k\Delta)} = 0, \ k = 1, 2, \ldots, q.$$

Для фиксированной непрерывной матрицы полного ранга $\Psi(t)$ дифференциально-алгебраическая задача с сосредоточенным запаздыванием (1) разрешима при условии

$$P_{\mathcal{D}}\{\alpha - \ell\mathcal{K}[f(s), \varphi(s)](\cdot)\} = 0,$$

и только при нем. Общее решение дифференциально-алгебраической краевой задачи с запаздыванием (1)

$$z(t, c_\delta) = X_\delta(t)c_\delta + G[f(s); \varphi(s); \alpha](t), \ X_\delta(t) := \mathcal{K}[\Psi(s)P_{\mathcal{D}}](t) \ c_\delta \in \mathbb{R}^\delta$$

определяет обобщенный оператор Грина

$$G[f(s); \varphi(s); \alpha](t) := \mathcal{K}[f(s), \varphi(s)](t) + \mathcal{K}[\Psi(s)\mathcal{D}^\perp\{\alpha - \ell\mathcal{K}[f(s), \varphi(s)](\cdot)\}](t),$$

а также общее решение однородной части краевой задачи (1).

Заметим, что найденные достаточные условия разрешимости, а также конструкция обобщенного оператора Грина дифференциально-алгебраической краевой задачи с запаздыванием (1) получены без использования центральной канонической формы и совершенных пар и троек матриц [4,5].

Если дифференциально-алгебраическая задача с сосредоточенным запаздыванием (1) не разрешима для любых неоднородностей $f(t)$ и α, а также начальной функции $\varphi(t)$, она может быть регуляризованна аналогично [6]. Для приближенного нахождения решений дифференциально-алгебраической задачи с сосредоточенным запаздыванием (1) можно использовать метод напиленных квадратов [7].

2. Methods and technologies of computer modeling

MODELLING
&
STABILITY
Delay effects widely arise in a variety of areas of science and engineering, in particular physics, biology, chemistry, ecology, material engineering, mechanism design, etc. Such phenomena are commonly modeled by ordinary and partial delay differential equations. To study these problems mathematically, a new area of analysis and control of delay differential equations has emerged [1]. Consider a viscoelastic body occupying in its reference configuration, in which renders the body is free of any stresses, a bounded Lipschitz domain $\Omega \subset \mathbb{R}^d$, $d \in \mathbb{N}$. We further consider an initial-boundary value problem for a viscoelastic wave equation subject to a strong time-localized delay in the Kelvin & Voigt-type material law. Imposing mixed homogeneous Dirichlet–Neumann boundary conditions on y and usual initial conditions, the system of partial delay differential equations reads as

$$
\partial_t y(t, x) - c_1 \Delta y(t, x) - c_2 \Delta y(t - \tau, x) - d_1 \partial_t \Delta y(t, x) - d_2 \partial_t \Delta y(t - \tau, x) = 0 \quad \text{for } t > 0, \quad x \in \Omega,
$$

$$
y(t, x) = 0 \quad \text{for } t > 0, \quad x \in \Gamma_0,
$$

$$
\frac{\partial y(t, x)}{\partial \nu} = 0 \quad \text{for } t > 0, \quad x \in \Gamma_1,
$$

$$
y(0^+, x) = y^0, \quad \partial_t y(0^+, x) = y^1 \quad \text{for } x \in \Omega,
$$

where $\nu : \Gamma \to \mathbb{R}^3$ stands for the outer unit normal vector to the boundary Γ and $\frac{\partial}{\partial \nu}$ is the normal derivative, $\tau > 0$ is a delay time, and c_1, c_2, d_1, d_2 are positive real numbers.

Introducing the ‘history variable’

$$
z(s, t, x) = y(t - \tau s, x), \quad s \in (0, 1), \quad t > 0,
$$

we define the extended phase space

$$
\mathcal{H} = H^1_{\Gamma_0}(\Omega) \times L^2(\Omega) \times L^2_1(0, 1; H^1_{\Gamma_0}(\Omega)) \times L^2_1(0, 1; H^1_{\Gamma_0}(\Omega))
$$

equipped with the inner product

$$
\langle U, V \rangle_{\mathcal{H}} = \int_G \left(c_1 \nabla u_1 \cdot \nabla v_1 + u_2 v_2 + \tau d_1 \int_0^1 \nabla u_3 \cdot \nabla v_3 \, ds + \tau d_2 \int_0^1 \nabla u_4 \cdot \nabla v_4 \, ds \right) \, dx,
$$

for $U = (u_1, u_2, u_3, u_4)^T, V = (v_1, v_2, v_3, v_4)^T \in \mathcal{H}$, where $H^1_{\Gamma_0}(\Omega) = \{ u \in H^1(\Omega) \mid u|_{\Gamma_0} = 0 \}$. It is easy to verify that the topology induced by the inner product is equivalent with the standard product topology on \mathcal{H}.

Consider the linear operator $A : D(A) \subset \mathcal{H} \to \mathcal{H}$ defined via

$$
A V = \begin{pmatrix} v_2 \\
-c_1 \Delta v_1 + c_2 \Delta v_3 |_{s=1} + d_1 \Delta v_2 + d_2 \Delta v_4 |_{s=1} \\
-\tau^{-1} \partial_s v_3 \\
-\tau^{-1} \partial_s v_4 \end{pmatrix}
$$

for $V = (v_1, v_2, v_3, v_4)^T$.

Key words: wave equation, Kelvin-Voigt damping, time-localized delay, well-posedness.

AMS Subject Classification: 35Q74, 74D05, 74H20, 74H25.
where
\[D(\mathcal{A}) = \{ V = (v_1, v_2, v_3, v_4)^T \in \mathcal{H} \mid \mathcal{A}V \in \mathcal{H} \text{ such that } v_3|_{s=0} = v_1, v_4|_{s=0} = v_2 \} \]
where
\[\mathcal{A} \] is such that \(v_3|_{s=0} = v_1, v_4|_{s=0} = v_2 \) and Green’s formula \([8]\) holds true

with the Green’s formula
\[
\int_{\Omega} \left(c_1 \Delta v_1 + c_2 \Delta v_3|_{s=1} + d_1 \Delta v_2 + d_2 \Delta v_4|_{s=1} \right) \psi \, dx \\
= - \int_{\Omega} \left(c_1 \nabla v_1 + c_2 \nabla v_3|_{s=1} + d_1 \nabla v_2 + d_2 \nabla v_4|_{s=1} \right) \cdot \nabla \psi \, dx
\]
for any \(\psi \in H^1_{\Gamma_0}(\Omega) \).

Then Equations \((1)-(3)\) can be transformed to an abstract Cauchy problem on the extended phase space \(\mathcal{H} \)
\[
\dot{V}(t) = \mathcal{A}V(t) \quad \text{for} \quad t > 0, \quad V(0) = V^0
\]
with \(V = (v_1, v_2, v_3, v_4)^T \) and \(V^0 := (y_0, y_1, \varphi_0, \varphi_1)^T \), where \(\varphi_0 := \varphi(\cdot - \frac{\cdot}{\tau}), \varphi_1 := (\partial_t \varphi)(\cdot - \frac{\cdot}{\tau}) \).

Assumption. Suppose the coefficients \(c_1, c_2, d_1, d_2 > 0 \) satisfy the condition
\[
2d_1 \geq d_2 + \sqrt{d_2^2 + 2c_2^2}.
\]

The following auxiliary lemm characterizes \(\mathcal{A} \) as an \(m \)-dissipative operator on \(\mathcal{H} \).

Lemma. The operator \(\mathcal{A} \) defined in Equations \((6)-(7)\) is an infinitesimal generator of a \(C_0 \)-semigroup on \(\mathcal{H} \).

The proof is based on straightforward checking of density, dissipativity, surjectivity of corresponding operators and application of Lumer-Phillips’ Theorem [2].

Now, by virtue of [3], it follows the abstract formulation \((9)\) of Equations \((1)-(3)\) is Hadamard well-posed.

Theorem. For any \(V^0 \in \mathcal{H} \) and \(F \in L^2_{\text{loc}}(0, \infty; \mathcal{H}) \), there exists a unique mild solution \(V \in C^0([0, \infty), \mathcal{H}) \) to Equation \((9)\). Moreover, if \(V^0 \in D(\mathcal{A}) \) and
\[
F \in C^1([0, \infty), \mathcal{H}) \cup C^0([0, \infty), D(\mathcal{A})),
\]
the mild solution is classical:
\[
V \in C^1([0, \infty), \mathcal{H}) \cap C^0([0, \infty), D(\mathcal{A})).
\]

Acknowledgment. This is a joint work with Anna Demchenko (Department of Applied Mathematics & Computer Science, Masaryk University, Brno, Czech Republic) and Michael Pokojovy (Department of Mathematical Sciences, The University of Texas at El Paso, TX, USA).

The purpose of the paper is to present a model allowing the retailer to determine the optimal price of three kinds of items in a situation where the supplier provides the retailer with an interest-free loan for a contractually agreed period. The scientific aim is to verify whether an optimization problem is solvable, and determine the maximum length of the interval over which the goods can be sold with a profit in a situation where the model features two kinds of deteriorating items and one non-deteriorating item. The economic theory is explained in the introductory section and serves as a basis for the drawing up of the model. Methods of analysis, synthesis, dynamic modelling and differential calculus of multivariate functions are also used.

Model Construction

The model which is constructed in this section is based on the assumption that there are two kinds of rapidly deteriorating items supplied and one kind of non-deteriorating item by a one supplier. Demand for these items is time-dependent and inventory is drawn on the basis of demand only. The model permits the retailer to optimize the selling price for the items in a situation where the supplier offers a permissible delay in payment, and determine the maximum possible payback period.

In addition, the following assumptions are made, that the demand for the items is a strictly decreasing function of the price and the time variable, no shortages are allowed and we have infinite planning horizon.

In the sequel, the following variables will be used:

\(c_i \): purchasing cost per unit of first kind of item, \(c_i > 0, i = 1,2,3 \),

\(p_i \): selling price per unit of first kind of item, \(c_i < p_i, i = 1,2,3 \),

\(\theta_i \): deterioration rate; \(0 < \theta_i < 1, i = 1,2 \),

\(I_d \): interest received per currency unit per year,

\(I_c \): annual interest charges on overdue payment per currency unit per year,

\(I_i(t) \): inventory level at time \(t \) \((0 \leq t \leq T)\) for item \(i, i = 1,2,3 \),

\(T \): reorder point \(T > 0 \),

\(D_i \): annual demand, depending on time and price per unit, where \(D_i(p_i, t) = \alpha_i p_i^{-\beta_i t}, i = 1,2,3, \)

for the demand, it is assumed that \(\alpha_i > 0 \) and \(\beta_i > 1 \), where \(\alpha_i \) is a scaling factor and \(\beta_i \) is a price-elasticity coefficient, the simplified notation \(\alpha_i = \alpha_i p_i^{\beta_i} i = 1,2,3, \)

It follows from our initial assumptions that the inventory level of one kind of deteriorating items \(I_i(t), i = 1,2 \) is a strictly decreasing function of time in accordance with how the demand is satisfied. The change in inventory level in time can be described by the following differential equations:

\[
\frac{dI_i(t)}{dt} + \theta I_i(t) = -D_i(p_i, t), \quad 0 \leq t \leq T
\]
where \(i = 1, 2 \).

Assuming that at the end of the order cycle all the items have been drawn, we define the initial condition as \(I_i(T) = 0 \).

In the course of one year the retailer sells \(\frac{a_iT}{2} \) units of items and purchases a total of \(\frac{a_i(-e^\theta_iT + \theta_iTe^\theta_i(T+1)}{T \theta_i^2} \) units of items.

He must pay back the full amount of his trade credit, which is \(c_i a_i(-e^\theta_iT + \theta_iTe^\theta_i(T+1)}{T \theta_i^2} \) annually.

Assumptions similar to the previous case can be formulated for non-deteriorating goods. The inventory lever \((T) \) is decreasing in order to meet the demand. Therefore, a change in inventory in dependence on time can be expressed by the following differential equations:

\[
\frac{dI_i(t)}{dt} = -D_i(p, t), \quad 0 \leq t \leq T
\]

the initial condition is defined as \(I_i(T) = 0 \).

Within one business cycle a retailer sells in total \(\frac{a_iT^2}{2} \) items of goods, and \(\frac{a_iT}{2} \) per year. The retailer has to pay the whole supplier's credit in full, the payment of \(\frac{c_i a_iT^2}{2} \), which is the total of \(\frac{c_i a_iT}{2} \) per year.

There are several approaches to the determination of the cost interest and yield interest. To simplify the computations, the (Goyal, 1985) approach published will be used in the following section.

Total annual variable costs consist of the following items:
- ordering costs,
- warehousing costs,
- interest costs for stocking items,
- interest gained during the settlement period.

When modelling complex economic problems we are often faced with the fact that relations of individual quantities change in time. One of way to comprise the dynamism of processes in the model is to regard time a continuous quantity and to use mathematical analysis for solving problems.

This paper introduced a model that deals with the calculation of an optimum price and the maximum credit repayment period in situation in which both deteriorating and non-deteriorating goods are delivered to the warehouse, and if the supplier allows delayed payments. Using differential calculus of functions of more variables, we analyzed situation in which the credit payback period was not meet. The calculations were made by means of the theory of functions of more variables and approximation by Taylor polynomials (the first three terms of the series were used).

Theoretical findings were shown in the application part, which also demonstrated construction of the model and ways of solving a specific case. The data were provided by a real company and the goods considered were two kinds of deteriorating goods and one kind of non-deteriorating goods. When modelling various situations, the authors respected limitations imposed on price, following from the company’s experience. The situations, which were modelled, are described in the theoretical part, and the solutions are presented graphically using simulations in Maple.
BOUNDARY VALUE PROBLEM FOR LINEAR INTEGRO-DIFFERENTIAL EQUATIONS WITH MANY DELAYS

Dorosh A., Haiuk I.

Key words: boundary value problems, integro-differential equations, delay, solution existence.
AMS Subject Classification: 34k06, 34k10.

Boundary value problems for differential and integro-differential equations with delay are an important part of the modern theory of differential-functional equations. Analytical solutions for such problems can only be found for the simplest types of equations, therefore the problem of finding approximate solutions is relevant. At the same time, it is important to study the solvability of boundary value problems with delay and properties of their solutions.

Let us consider the following boundary value problem

\[
y''(x) = \sum_{i=0}^{n} \left(a_i(x) y(x - \tau_i(x)) + b_i(x) y'(x - \tau_i(x)) \right) + \sum_{j=0}^{b} K_{ij}(x,s) y^{(j)}(s - \tau_i(s)) ds + f(x),
\]

\[
y^{(j)}(x) = \varphi^{(j)}(x), \quad j = 0, 1, \quad x \in [a^*; a], \quad y(b) = \gamma,
\]

where \(\tau_0(x) = 0 \) and \(\tau_i(x), \quad i = 1, \ldots, n \) are continuous nonnegative functions defined on \([a,b] \), \(\varphi(x) \) is a continuously differentiable function given on \([a^*; a], \gamma \in \mathbb{R}, \)

\[
a^* = \min_{0 \leq i < n} \left\{ \inf_{x \in [a,b]} (x - \tau_i(x)) \right\}.
\]

Boundary value problems for differential and integro-differential equations with delay are investigated in [1, 2, 3].

In this paper, the coefficient conditions for the existence of a solution of the boundary value problem for linear integro-differential equations with many delays, which are efficient for verification in practice, are investigated.

We introduce the sets of points determined by the delays \(\tau_1(x), \ldots, \tau_n(x) \):

\[
E_i = \left\{ x_j \in [a,b] : x_j - \tau_i(x_j) = 0, \quad j = 1, 2, \ldots \right\}, \quad E = \bigcup_{i=1}^{n} E_i.
\]

Let the delays \(\tau_i(x), \quad i = 1, \ldots, n \) be such that the sets \(E_i, \quad i = 1, \ldots, n \) are finite. We number the points of the set \(E \) in ascending order and introduce the notations:
\[J = [a^*; a], \ I = [a, b], \ I_1 = [a, x_1], \ I_2 = [x_1, x_2], \ldots, \ I_k = [x_{k-1}, x_k], \ I_{k+1} = [x_k, b], \]

\[B(J \cup I) = \left\{ y(x) : y(x) \in \left(C(J \cup I) \cap \left(C^1(J) \cup C^1(I) \right) \cap \left(\bigcup_{j=1}^{k+1} C^2(I_j) \right) \right), \right. \]

\[|y(x)| \leq P_1, \ |y'(x)| \leq P_2 \right\}, \]

where \(P_1, P_2 \) are positive constants.

A function \(y = y(x) \) from the space \(B(J \cup I) \) is called a solution of the problem (1)-(2) if it satisfies the equation (1) on \([a; b] \) (with the possible exception of the set \(E \)) and the boundary conditions (2).

It follows from the definition of the space \(B(J \cup I) \) that the solution of the problem (1)-(2) is continuously differentiable for any \(x \in [a, b] \) where \(y'(a) \) is the right derivative.

Let the coefficients in the equation (1) be such that the following inequalities are true:
\[|a_i(x)| \leq A_i, \ |b_i(x)| \leq B_i, \ |K_{ij}(x, s)| \leq K_{ij}, i = 0, n, j = 0, 1, \ |f(x)| \leq F, x \in [a; b]. \]

We denote \(P = \sum_{i=0}^{n} \left(A_iP_1 + B_iP_2 + (b-a) \sum_{j=0}^{1} K_{ij}P_{j+1} \right) + F, \) where \(P_1, P_2 \) are the positive constants which are included in the definition of space \(B(J \cup I). \)

Theorem. Let the following conditions hold [3]:

1) \(\max \left\{ \max_{x \in J} |\phi(x)|, \left(\frac{(b-a)^2}{8} P + \max(|\phi(a)|, |\gamma|) \right) \right\} \leq P_1, \)

2) \(\max \left\{ \max_{x \in J} |\phi'(x)|, \left(\frac{b-a}{2} P + \left(\frac{2-\phi(a)}{b-a} \right) \right) \right\} \leq P_2, \)

3) \(\frac{(b-a)^2}{8} \sum_{i=0}^{n} \left(A_i + (b-a)K_{i0} \right) + \frac{b-a}{2} \sum_{i=0}^{n} \left(B_i + (b-a)K_{i1} \right) < 1. \)

Then there exists a unique solution of the problem (1)-(2) in \(B(J \cup I). \)

Remark. An efficient algorithm for finding an approximate solution of the boundary value problem (1)-(2) is the spline approximation method using cubic splines with defect 2, which is considered in the paper [4].

References

Researchers sometimes meet the problem of model reconstruction that is the problem of identification of a system of ordinary differential equations (ODE) by use of time series of one observable variable. This problem does not have a unique solution, since in the general case an ODE system has an infinite number of sets of coefficients for which the time series of the observed variable is identical [1]. At the same time, the number of structures (general forms of equations) of ODE systems that can reproduce a given time series is finite, because the number of terms in the equations of the system is finite. The search for different ODE system structures which can reproduce exactly the same observable is of research interest, since different ODE structures may correspond to different processes under investigation.

The solution of the problem is based on a use of a combination of numerical and analytical methods proposed in [2, 3]. According to [3] we will call the original system (OS) an ODE system, which precisely describes the dynamics of the process under study, and we’ll call the standard system (SS) the system of ODE, containing a function with several terms only in one equation. Besides, the observed variables of the OS \(x(t) \) and SS \(y(t) \) must coincide (i.e. \(x(t) \equiv y(t) \)). The third-order SS will have the form

\[
\begin{cases}
\dot{y}_1 = y_2, \\
\dot{y}_2 = y_3, \\
\dot{y}_3 = F(y_1, y_2, y_3),
\end{cases}
\]

where \(F \) is a polynomial or rational function. There is a numerical method [2], which allows to determine the SS coefficients from a time series. In addition, all SS coefficients can be analytically expressed in terms of the OS coefficients.

In cases where only the time series is available for research and there is no additional information about the ODE system, the search for alternative structures of the system can be performed using the perspective coefficients method [4], which is as follows. First, the SS is reconstructed from a time series using a numerical method. Further, we use the structure of the SS and the analytical relationship between the coefficients of the OS and the SS to determine which of the OS coefficients are definitely zero and which of them are definitely non-zero. A simplified initial system (IS) is formed from the non-zero OS coefficients, and the OS coefficients are added to it until the SS corresponding to the OS coincides with the SS obtained by a numerical method. It is obvious, that if two different OS's, which have the same observable variable, have the same SS that was obtained from this observable. This statement permits to vary coefficients of the OS in such a way that the coefficients of the SS would remain unchanged.

The perspective coefficients method was applied to search for structures of ODE systems that are capable of reproducing the time series of variable X of the Lorentz system [5]. In our notation this system has the form
\[
\begin{align*}
\dot{x}_1 &= a_1 x_1 + a_2 x_2, \\
\dot{x}_2 &= b_1 x_1 + b_2 x_2 + b_6 x_1 x_3, \\
\dot{x}_3 &= c_3 x_1 + c_5 x_1 x_2,
\end{align*}
\] (2)

where \(x_i(t) \) is the observed variable. Search for alternative models was carried out among particular cases of the system

\[
\begin{align*}
\dot{x}_1 &= a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_1^2 + a_5 x_1 x_2 + a_6 x_1 x_3, \\
\dot{x}_2 &= b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_1^2 + b_5 x_1 x_2 + b_6 x_1 x_3, \\
\dot{x}_3 &= c_0 + c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_1^2 + c_5 x_1 x_2 + c_6 x_1 x_3,
\end{align*}
\] (3)

which contains nonlinear terms of the second order without products of unobservable variables. The SS corresponding to system (3), contains 34 nonzero coefficients, which is greater than in the SS corresponding to the Lorentz system (2). Therefore, it is necessary to set to zero part of the coefficients in (3). The analysis carried out in [6] showed that there is only one special case of the OS (3)

\[
\begin{align*}
\dot{x}_1 &= a_1 x_1 + a_2 x_2, \\
\dot{x}_2 &= b_1 x_1 + b_2 x_2 + b_3 x_3, \\
\dot{x}_3 &= c_0 + c_3 x_1 + c_4 x_1^2 + c_5 x_1 x_2,
\end{align*}
\] (4)

which corresponds to the same SS as system (2) corresponds, and in (4) the coefficients \(a_2, b_6, c_5 \) are non-zero. Further application of the perspective coefficients method showed that there are 5 special cases of OS (4), which contain 7 non-zero coefficients each, and all of them are able to reproduce the time series of the observed variable of system (2). Each of these systems contains coefficients \(a_1, a_2, b_6, c_3, c_5 \) and one of the pairs of coefficients \(b_2, c_0; c_0, c_4; b_1, b_2; b_1, c_4; b_2, c_4 \). Structures of 4 out of 5 systems differ from the structure of the system (2). Although it is impossible to determine values of all OS coefficients from one observable variable, it is possible, for each of the 5 OS found, to unambiguously determine the values of a part of the coefficients using the values of the SS coefficients. In this way, one can uniquely determine the values of the OS coefficients \(a_1, b_2, c_3 \).

The results show that the perspective coefficients method can be used for the reconstruction of the system of ODE's to search for alternative models. To apply the method, it is necessary to have analytical relations between the coefficients of the OS and the SS.

CROSS-PLATFORM SOFTWARE FOR DACTYL LANGUAGE MODELING AND RECOGNITION

Kondratiuk S.S.

Key words: cross platform, dactyl modeling, gesture recognition

AMS Subject Classification: 68T10 Pattern recognition, speech recognition; 68T45 Machine vision and scene understanding

The technology, which is implemented with cross platform tools, is proposed for modeling of gesture units of sign language, animation between states of gesture units with a combination of gestures (words). Implemented technology simulates sequence of gestures using virtual spatial hand model and performs recognition of dactyl items from camera input. With the cross platform means technology achieves the ability to run on multiple platforms without re-implementing for each platform.

Communication via gestures is one of the three main means of transmission of information between people, among character (text) and voice (speech) communication. Sign language is usually used by people with hearing disabilities to communicate with each other and with their environment, increasing the number of people who need to know sing language. Sign modeling is a problem that is considered both independently and as part of the problem of modeling and recognition of gestures and thus as a technology learning and evaluating sign language.

Creating a model hand is the first step in the task of sign language modeling. In their work [1], authors analyze existing approaches of hand modeling, which are divided into two main groups: spatial and temporal. In [2], authors developed a system of signed language training, which consists of two modules - gesture demonstration module via video and gesture recognition module (required gloves), based on Hidden Markov Model. Gesture recognition for mobile platforms is developed in [3], but gesture modeling on mobile devices is not performed.

To address the modeling of sign language and perform animation of sign structures using spatial virtual model hand the cross platform technology based on cross platform framework Unity3D [4] is proposed. Cross platform framework Unity3D is also used for the user interface, both libraries and technology are implemented with programming language C#. Proposed tools can solve the problem of running the technology on multiple existing platforms. Unity3D framework is able to effectively reproduce a realistic hand model which consists of more than 70,000 polygons.

Gesture learning and gesture recognition modules, developed with cross platform tools (frameworks based on Python, C++) can be embedded into information and gesture communication cross platform technology. Convolutional Neural Networks (CNNs) have shown robust results in image classification and recognition problems, and have been successfully implemented for gesture recognition in recent years. With the use of depth sense cameras, the process is made much easier via developing characteristic depth and motion profiles for each sign language gesture [5]. Multiple existing researches done over various sign languages show that CNNs achieve state-of-the-art accuracy for gesture recognition [6, 7, 8].

Convolutional neural networks have such advantages: no need in hand crafted features of gestures on images; predictive model is able to generalize on users and surrounding not occurring during training; robustness to different scales, lightning conditions and occlusions. Although, selected approach has couple of disadvantages, which may be overcome with a relatively big dataset: need to collect a rather big and labeled gesture images dataset; black-box approach which is harder to interpret.
For experiment there was collected a dataset with Ukrainian dactyl language letters. Each gesture consists of 1000 sample images, and 50 different people hands were showing gestures, with distribution of 70% male and 30% female hands. Different light conditions were used (with distribution of 20% images in bad light conditions, 30% in mediocre light conditions and 50% in good light conditions). About 10% of images were distorted with noise and blur.

MobileNet[9] architecture was used as a CNN architecture. It has multiple advantages, such as good trade-off on accuracy and performance, especially on mobile devices, which are aimed to use, as the technology is cross-platform. The MobileNet model is based on depth wise separable convolutions which is a form of factorized convolutions which factorize a standard convolution into a depth wise convolution and a 1×1 convolution called a point wise convolution. For MobileNets the depth wise convolution applies a single filter to each input channel. The point wise convolution then applies a 1×1 convolution to combine the outputs the depth wise convolution. A standard convolution both filters and combines inputs into a new set of outputs in one step. The depth wise separable convolution splits this into two layers, a separate layer for filtering and a separate layer for combining. This factorization has the effect of drastically reducing computation and model size.

Usage of cross platform neural network framework such as Tensorflow allows to implement gesture recognition as a cross platform module of proposed technology and serve trained recognition model on server or transfer it to the device.

The proposed technology is built with cross platform tools for gesture modeling, gesture transitions animation and gesture recognition. The technology uses virtual spatial model of hand. With the help of cross platform development, the technology solves the problem of execution on the existing multiple platforms without implementing functionality under each platform separately. Thus, it was shown the effectiveness of the technologies built using cross platform tools, for example modeling and recognition elements of dactyl Ukrainian alphabet sign language. Information and gesture communication technology was developed with further scaling capabilities in mind for gestures of other languages alphabets.

2. Sing language tutoring tool, Oya Aran, 2006 eNTERFACE’06, July 17th – August 11th, Dubrovnik, Croatia Final Project Report
4. Unity3D framework www.unity3d.com
6. Italian Sign language: Sign Language Recognition Using Convolutional Neural Networks Lionel Pigou(B), Sander Dieleman, Pieter-Jan Kindermans, and Benjamin Schrauwen ELIS, Ghent University, Ghent, Belgium, 2015
8. Hand gesture recognition using neural network based techniques, Vladislav Bobic, School of Electrical Engineering, University of Belgrade, 2016
One of the effective ways to prevent the negative effects of industrial and domestic waste accumulation on the environment is the construction of various types of protective anti-filtering structures. In particular, this problem can be solved by creating in the underlying array rocks antifiltration collector screen, which has the necessary strength characteristics and allows directional collection of filtrates. The arrangement of the screen involves the creation in the array of technological cavity rocks and filling it with hardening barrier material. In the case of reinforcing the cutting edge of the rock-cutting tool, its immersion in the array occurs from the initial moment of impact - the arrival of the initial wave of stress. Under the edge, in the zone of greatest stresses, the core of the seal of the damaged rock begins to grow, due to which a smoother redistribution and transfer of the impact pulse to the array occur. In an array, the volume of compression increases with the constant gradient of compression to the core of the compression. The growth of stress occurs as a result of the immersion of the cutting edge and the growth of the core of the seal, and as a result of the internal reflection of the wave energy emitted by the edge of the deep into the array. When the stresses reach the boundary value for a given breed, values in the zone bordering the core of the seal begin to give rise to microcracks, which release part of the elastic energy and cause the splitting off of the volume of compression of a particular layer. Part of this layer passes into the core of the seal (adhering to the cutting edge), and the other part forms the region of weakened ligaments around the nucleus. In the future, this process is repeated. In the next, adjacent nucleus, the layer of stress reaches the limit value, the origin of microcracks, their growth and the increase of the area of weakened bonds occurs [1]. At the next time there is an increase of the nucleus again, and so long as the resistance of the breed to the immersion of the edge does not equal the force of the impulse or until the blow ends. This complex spatial problem can be reduced to a plane problem of the theory of elasticity, if we divide it into n elementary problems, as follows. The cutting edge of the rock-cutting tool interacts with the array along the circle arc. It is natural to assume that if a crack occurs and reaches the surface of the face in the furthest point of the arc, the same processes will occur in all other points of the interaction arc. Thus, we arrive at the problem of the propagation of a crack in a half-infinite plate with a damped velocity (Fig. 1).
The peculiarity of the problem is the proximity of the crack to the edge. Because of this proximity, the crack will not develop straightforwardly, but will tend to a surface free from stress (surface of the face). This hypothesis is in good agreement with the main provisions of the theory of Bussinesca. The mathematical model of the problem with initial impulse action is the equation of motion of an elastic environment [2]:

\[
\begin{align*}
\nabla^2 u + \frac{1}{1-2\nu} \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) &= \rho_0 \frac{\partial^2 u}{\partial t^2}, \\
\nabla^2 v + \frac{1}{1-2\nu} \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) &= \rho_0 \frac{\partial^2 v}{\partial t^2},
\end{align*}
\]

where \(\sigma_y = \sigma_0 \) on \([0; s]\), \(\sigma_y = 0 \) on \([s; l]\), \(\sigma_y = -F \) on \((l; \infty)\), \(v(x, y + 0, 0) = h \), \(v(x, y - 0, 0) = -h \) on \((l; \infty)\), \(\rho_0 \) - density of the rock, \(\sigma_0 \) - breach of rock solidity at break, \(\nu \) – Poisson's coefficient.

In Figures 2 and 3 for a fixed shock pulse, the dependence of the crack length on the radius of the rock-cutting tool \(r \) (at fixed \(\sigma_0 \)) and the tensile strength \(\sigma_0 \) (at fixed \(r \)) is shown.

Fig. 2. Dependence of the crack length on the radius of the tool: 1 - argillites, 2 - sandstones, 3 - granite.

Fig. 3. Dependence of the length of the crack on the strength of the rock on the gap:

1. \(r = 5 \), 2. \(r = 15 \), 3. \(r = 25 \), 4. \(r = 35 \).

Consider a system of ordinary differential equations:

\[
\begin{align*}
\frac{dx}{dt} &= f(x,t), \\
\frac{d^2 q^{(i)}}{dt^2} + a_i \frac{dq^{(i)}}{dt} + b_i q^{(i)} &= \phi_i(x,t), t \in [t_0, T], i = 1,2,\ldots,m.
\end{align*}
\]

(1)

Here \(x^T = (x_1, x_2, \ldots, x_n) \) – \(n \)-dimensional vector, \(q_i, i = 1,2,\ldots,m \) – generalized coordinates that correspond to high-frequency oscillation processes, \(a_i, b_i, i = 1,2,\ldots,m \) – constant coefficients, \(t_0 \) i \(T_0 \) – the beginning and the end of integration.

Need numerous algorithms [1-3] to find the solution of the system (1) with initial conditions

\[
\begin{align*}
x(t_0) &= x^{(0)}, q^{(i)}(t_0) = q_0^{(i,0)}, q^{(i)}(t_0) = q_0^{(i,1)}, i = 1,2,\ldots,m.
\end{align*}
\]

(2)

Let’s say that out of step \(h_k \) (on \(k \)-so step) some method of integration is carried out first. This step can be selected and automatically. For high-frequency processes step of integration should be much smaller. Therefore, for finding the solutions of the second equation system (1) apply numerical-analytical approaches.

The problem is put thus:
on the segment \([t_{k-1}, t_k]\) \((h_k = t_k - t_{k-1}) \) find the approximate solution of the Cauchy problem

\[
\begin{align*}
\frac{dx}{dt} &= f(x,t), \\
\frac{d^2 q^{(i)}}{dt^2} + a_i \frac{dq^{(i)}}{dt} + b_i q^{(i)} &= \phi_i(x,t), t \in [t_0, T], i = 1,2,\ldots,m, \\
q^{(i)}(t_{k-1}) &= q_{k-1}^{(i,0)}, q^{(i)}(t_{k-1}) = q_{k-1}^{(i,1)}, \nonumber
\end{align*}
\]

(3)

\[
x(t_{k-1}) = x^{(k-1)}, x(t_k) = x^{(k)}, i = 1,2,\ldots,m.
\]

For the \(i \)-th equation (3) write down the characteristic equation

\[
\lambda^2 + a_i \lambda + b_i = 0
\]

(4)

The roots of the equation (4)
\[
\lambda_{1,2}^{(i)} = \begin{cases}
\frac{-a_i + \sqrt{a_i^2 - 4b_i}}{2}, & \text{if } a_i^2 - 4b_i > 0, \\
\frac{-a_i}{2}, & \text{if } a_i^2 - 4b_i = 0, \\
\frac{-a_i - \sqrt{a_i^2 - 4b_i}}{2}, & \text{if } a_i^2 - 4b_i < 0.
\end{cases}
\] (5)

Solution of the Cauchy problem for the \(i\)-th equation we write as
\[
q^{(i)} = q_{\text{зар.одн.}}^{(i)} + \int_{t_{k-1}}^t \psi_i(t, \xi) \varphi_i(x(\xi), \xi) d\xi.
\] (6)

Both parts solutions (6) for each of the cases are in their own way. Consider in this regard three cases:

1. The roots of \(\lambda_{1,2}^{(i)}\) are real and different. Then
\[
q_{\text{зар.одн.}}^{(i)} = c_1^{(i)} e^{\lambda_1^{(i)} t} + c_2^{(i)} e^{\lambda_2^{(i)} t},
\] (7)

moreover
\[
q_{\text{зар.одн.}}^{(i)} = c_1^{(i)} \lambda_1^{(i)} e^{\lambda_1^{(i)} t} + c_2^{(i)} \lambda_2^{(i)} e^{\lambda_2^{(i)} t}.
\] (8)

Function \(\psi_i(t, \xi)\) is according to the formula (7), if \(c_1^{(i)}, c_2^{(i)}\) determine the system of equations
\[
q_{\text{зар.одн.}}^{(i)}(\xi) = 0, \quad q_{\text{зар.одн.}}^{(i)}(\xi) = 1.
\] (9)

That is, according to (9), we have
\[
\begin{cases}
c_1^{(i)} e^{\lambda_1^{(i)} t} + c_2^{(i)} e^{\lambda_2^{(i)} t} = 0, \\
c_1^{(i)} \lambda_1^{(i)} e^{\lambda_1^{(i)} t} + c_2^{(i)} \lambda_2^{(i)} e^{\lambda_2^{(i)} t} = 1.
\end{cases}
\]

From here
\[
c_1^{(i)} = \frac{1}{\lambda_1^{(i)} - \lambda_2^{(i)}} e^{-\lambda_1^{(i)} t}, c_2^{(i)} = \frac{1}{\lambda_2^{(i)} - \lambda_1^{(i)}} e^{-\lambda_2^{(i)} t}.
\] (10)

So, for this case
\[
\psi_i(t, \xi) = \frac{1}{\lambda_1^{(i)} - \lambda_2^{(i)}} \left(e^{\lambda_1^{(i)} t - \xi} - e^{\lambda_2^{(i)} t - \xi} \right).
\] (11)

The total solution the \(i\)-st equation for the \(k\)-th interval we write so
\[
q_i^{(k)}(t) = c_1^{(i)} e^{\lambda_1^{(i)} t} + c_2^{(i)} e^{\lambda_2^{(i)} t} + \frac{1}{\lambda_1^{(i)} - \lambda_2^{(i)}} \int_{t_{k-1}}^t \left(e^{\lambda_1^{(i)} (t-\xi)} - e^{\lambda_2^{(i)} (t-\xi)} \right) \varphi_i(x(\xi), \xi) d\xi, t \in [t_{k-1}, t_k].
\] (12)

Comment by. If in the \(i\)-3rd equation coefficients \(a_i, b_i\) constant, then the function \(\psi_i(t, \xi)\) (11) is the same for any segments \([t_{k-1}, t_k], k = 1, 2, \ldots\). For convenience, will present the solution of an equation in the form of Cauchy. Steel \(c_1^{(i)}, c_2^{(i)}\) define solving system
So, in the end, we have:

\[
q^{(i)}(t) = \frac{1}{\lambda_1 - \lambda_2} \left[(q^{(i)}_{k-1} - q^{(i,0)}_{k-1}) e^{\lambda_1 (t - \tau_{k-1})} - (q^{(i,1)}_{k-1} - q^{(i,0)}_{k-1}) e^{\lambda_2 (t - \tau_{k-1})} + \int_{\tau_{k-1}}^{t} (e^{\lambda_1 (t - \xi)} - e^{\lambda_2 (t - \xi)}) \cdot \phi_1 (x(\xi), \xi) d\xi \right].
\]

(14)

It should be noted that the formula (14) is accurate. Depending on the function approximation \(\phi_1 (x(\xi), \xi) \) will receive a working formula [2].

Numerical implementation of the new algorithm above shows its efficiency and adequate performance.

![Figure 1](image1.png)
![Figure 2](image2.png)

Figure 1 - Examples of schedules for slowly changing coordinates;
Figure 2 - Examples of schedules for generalized coordinates and velocities, which describe high-frequency oscillatory processes.

USING PUBLIC TRACKS DATA TO AUGMENT SRTM MODEL IN ESTIMATING GROUND LEVELS FOR TRIP PLANNING APPLICATIONS

Poryev G.V.

Ключевые слова: цифровая модель Земли, планирование логистики, облачное хранилище треков.
Keywords: Earth digital elevation model, logistical planning, cloud track storage.
AMS Subject Classification: 68U35

In the scope of this work we understand the Trip Planning Applications (TPA) as software or networked service that provide its users with the information relevant to the designated path over Earth terrain, such as path distance, elevation gain and loss, highest and lowest elevation, maximum and average slope etc. While such definition seems to be generally related to GIS applications, for the purpose of clarity we knowingly narrow it down to the specialized trip-planning.

The well-known examples of TPA include both standalone software such as Google Earth, NASA World Wind, Garmin MapSource and BaseCamp and networked services such as GPSies.com, OpenStreetMap.org and Google Maps. These are general-purpose TPA that may be utilized for planning hikes as well as automotive and bicycling trips.

However, the basic principles upon which TPA works are mostly identical both in consumer-grade products and in complex commercial applications dealing with the large fleet of automotive vehicles. We especially stress the attention on the fact that very few of industrial logistic TPA available on the market today, deal with vehicular fuel efficiency in the context of the elevation gains along the planned route.

The source data upon which the TPA works consists of object shapes, points of interest, and terrain layers. Common terrain layers include surface coloration and satellite or aerial imagery and the digital elevation models, the latter being the focus of this work.

Up until recent years, almost the only source of elevation data that was reliable, freely available and global was SRTM, which stands for Shuttle Radar Topography Mission, undertaken by NASA in 2000 in order to build the comprehensive global digital elevation model (GDEM) of Earth surface. SRTM data is publicly available and consists of so-called “tiles”, each tile representing the roughly rectangular surface patch one degree by one degree. Tile is sampled in a Cartesian grid each three arc seconds. The sample denotes the ground level elevation above mean sea level as defined in the WGS84 geodetic model; special values also denote the surface of water bodies. The claimed vertical resolution of the SRTM is 16 meters [1] with the confidence 90%. Compressed SRTM data consisting of all tiles overlapping Ukrainian territory takes up about 165 MiB.

The GDEM saw extensive use in many areas of science, engineering and entertainment. Its applications range from construction planning, through use in the national ecology monitoring networks, and as a basis to provide realistic Earth terrain in multiple videogames.

The GDEM usage in TPA varies. TPA may offer simple terrain visualization achieved through selective shading of background images or tones that correspond to orientation of the hillside related to the virtual Sun. However, the primary use of GDEM in TPA is to provide elevation data to calculate the aforementioned characteristics of the path.

Of course, the path points would rarely coincide with tile sampling points so the interpolation is necessary. In our previous works [2] we used the Catmull-Rom spline for this purpose, utilizing its low computing complexity (single point is calculated from adjacent points using only 24 arithmetic additions and multiplications) and the property of such spline to pass through reference points.
In [2] we also considered some aspects of estimating interpolation errors in building surface profiles using spline interpolation methods and got promising results. However, it should be noted that using pure calculation methods would never be sufficient to derive GDEM with the accuracy higher than that of the original model, because Earth surface is fractal in nature [3] unlike continuous shapes resulted in interpolations. The latter, it seems, is only meaningful as some mathematical abstraction to use in ecology-related solutions or as some kind of “pre-calculated data bank” to use in a systems limited in computing power but requiring readily available data as they move along the surface [4].

It is possible to overcome this problem by lowering the instrumental errors of the data obtained from sensors and aerial imagery by combining them with the classical topographic and geodetic surveys. This approach is used by both the government institutions and private contractors but their derivative GDEMs have high commercial market value and therefore are rarely available for scientific and research purposes.

At the same time, should we consider using GDEM exclusively in the context of TPA, it is apparent that there are vast data volumes containing partial cases of Earth elevation profiles. Such data are represented as “recorded tracks”, that is sequence of sample points where each point contains geographical coordinates, elevation and variety of other parameters such as timestamp, velocity, heading, weather conditions etc.

The most widely known storages for recorded tracks are aforementioned Gpsies and WikiLoc. The total number of tracks (usually recorded by portable GPS terminals) contained in these storages are numbered on the scale of hundreds of thousands, their geography spanning almost every country available for tourism activities. The error of altitude measurement for typical consumer-grade GPS terminals depends on the number of satellites visible but usually stick to around 3 meters (compare to 16 meters in SRTM). However, this error could also be significantly lowered since many contemporary GPS terminals have barometric altimeters available.

The fact that height profiles recorded in the tourist tracks show certain tendency to cluster around public roads and tracks is, at first glance, a deficiency preventing detailing of the GDEM uniformly, that is, in the global scale. But in the context of TPA aimed at tourism and logistical planning, the ability to augment GDEM using integrated data from array of recorded tracks is an invaluable benefit.

The concept is proposed to augment GDEM using publicly available information will allow to develop TPAs of wide area of applications, including, but not limited to tourism, logistical planning, ecological monitoring and predictions (such as estimating the propagation of atmospheric pollutants). As the source of this publicly available information, we propose to utilize the data from open touristic portals such as Gpsies and WikiLoc in the form of pre-recorded tracks containing the samples with accurately measured elevation along with their geographical coordinates.

This will allow for locality-specific augmenting of basic GDEM to a commercial-grade scale quality in places important for TPA applications without invoking huge investments.

LANCHESTER’S DIRECT FIRE COMBAT MODELS WITH TIME DELAY

Shatyrko A.V.

Key words: Lancaster’s model, system differential equations, time-delay argument, behavior of solutions.

AMS Subject Classification: 34K06, 34K20, 34K60

Lanchester’s equations and their solutions, as continuous differential equations, have been studied in first decades of XX century. Generally, there are three type of combat models: “direct fire” (type A), “guerilla” (type B), “mix model” (type C) [1-3].

The first of these models, is the description of the fighting between regular troops, so-called “direct fire” model, and it has the form:

\[
\begin{align*}
\frac{dx}{dt} &= -ax - by + P(t) \\
\frac{dy}{dt} &= -cx - dy + Q(t)
\end{align*}
\]

Here the fighting take two sides \(x \) and \(y \). Their size at time \(t \), which is measured in days, starting from the first day of combat operations, denote through \(x(t) \) and \(y(t) \) respectively. We assume, according to [1-3] that \(x(t) \) and \(y(t) \) change continuously and, moreover, they are differentiated as functions of time.

Positive coefficients \(a, b, c, d \) are nonnegative constants, which characterizing the rate of influence of various factors on the losses in manpower and both parties. \(P(t) \) and \(Q(t) \) - terms taking into account the possibility of an approach to strengthening forces during the day. \(x_0, y_0 \) - the number of forces before the start of combat operations.

Often suppose that the regular forces of two opposing forces are fighting in the simplified situation, where the losses are not associated with non-combat actions, is absent. And then, if both sides do not receive reinforcements, the mathematical model is reduced to the following form:

\[
\begin{align*}
\frac{dx}{dt} &= -by, \\
\frac{dy}{dt} &= -cx
\end{align*}
\]

We formulate new statements of problems. Namely, models with time-delay argument. In real life at the confrontation between two hostile parties, the side that starts the second always does it not simultaneously with the first one. That is, the answer comes with some delay in time. As far as the author are concerned, to date, such situation is not modeled in terms of models of combat operations of Lanchester type, or others. But this work is a continuation of previous author’s article [4].

For beginning let is rewrite “direct fire” model (1) in the next form
Here $\tau = \text{const} > 0$ - time lag corresponding to a delayed reaction.

Under the same restrictions as for non-delay case, system (3) can be represented as follows

\[
\begin{align*}
\frac{dx(t)}{dt} &= -by(t - \tau) + P(t), \\
\frac{dy(t)}{dt} &= -cx(t - \tau) - dy(t) + Q(t)
\end{align*}
\]

(3)

It is well known that the presence of lag in the system of equations can radically change the behavior of the solutions and significantly affect the quality of the phase portrait [5].

Let us consider the next modification of the model type A.

\[
\begin{align*}
\dot{x}(t) &= -by(t - \tau) + d, \\
\dot{y}(t) &= -cx(t - \tau) + e.
\end{align*}
\]

Here b, c, d, e - are positive constants.

Using the results of [5] for linear inhomogeneous system with a time-delay argument in the form

\[
\dot{x}(t) = Bx(t - \tau) + f(t),
\]

the solution can be write as

\[
x_0(t) = \int_0^t \exp\{B(t - \tau - s)\} f(s) ds
\]

Here is for our case

\[
B = \begin{bmatrix} 0 & -b \\ -c & 0 \end{bmatrix}, \quad f(t) = f = \begin{bmatrix} d \\ e \end{bmatrix}.
\]

And we can analytically write the general solution of model type A with time delay (see [4]).

But more interesting to investigate how time-delay argument can change the qualitative behavior of solution. For this purpose we made some simulation experiments.

РОЗПІЗНАВАННЯ РАКУ МОЛОЧНОЇ ЗАЛОЗИ ЗА ДОПОМОГОЮ АНАЛІЗУ ІНТЕРФАЗНИХ ЯДЕР БУКАЛЬНОГО ЕПІТЕЛІЮ

Андрейчук А.В., Бородай Н.В., Голубєва К.М., Клюшин Д.А.

Кількість випадків захворювань раком молочної залози стрімко зростає кожного року, тож проблема неінвазивної (а отже безпечної) діагностики цієї хвороби є дуже актуальною. Новітні дослідження в області онкології, а саме [1], виявили закономірність: існує зв’язок між змінами у інтерфазному ядри букального епітелію та розвитком злoякiсної або доброякiсної пухлини (раком молочної залози та фіброаденоматозом вiдповiдно).

У доповіді аналізується вищезгаданий зв’язок за допомогою технік комп’ютерного зору та фрактальної геометрії. Ідея використання методів діагностики, що основані на аналізі фрактальних особливостей знімків інтерфазних ядер букального епітелію та розвитком злoякiсної або доброякiсної пухлини (раком молочної залози та фіброаденоматозом вiдповiдно), викликана гiпотезою, що є висунутою в [2], про фрактальну природу розподiлу хроматину в ядрах клітин.

Для дослідження було використано набір зображень інтерфазних ядер букального епітелію, отриманих від здорових пацієнтів, так і від хворих раком молочної залози та фіброаденоматозом, якi лікувалися у інституті онкології.

Попередня обробка

Мікроскопічні зображення у чистому вигляді зазвичай неприйнятні для аналізу у зв’язку з наявністю дефектів, цифрових шумів, спричинених необхідністю підвищення світлочутливості фотоматеріалів, а також сторонніх об’єктів. Для подальшої обробки вхідного набору зображень (відповідно й набору пацієнтів) необхідно зробити попередню обробку та сегментацію.

Для зменшення рівня шуму знімків мікроскопа використано медіанний фільтр — один з видів цифрових фільтрів, описаний в [3], що широко застосовується в цифровій обробці сигналів та зображень.

Наступний етап обробки — відділення фонових пікселів від пікселів об’єктів, наявних на зображенні (ядер клітин або сторонніх об’єктів). Проводиться бінаризація зображення, тобто пікселі фону стають білі, а пікселі клітин — чорні. Для досягнення цієї мети підходить алгоритм бінаризації зображення Оцу, викладений в [4].
На вже бінаризованому зображенні відбувається позбавлення від залишкового шуму типу “сіль та перець” (окремі невеликі групи білих або чорних точок відповідно). Було використано бінарні морфологічні операції, описані в [5], а саме — морфологічне відкриття (opening) для позбавлення від чорних точок, після чого закриття (closing) для заповнення білих точок.

Фрактальний аналіз

Наступним етапом є обчислення фрактальної розмірності для попередньо оброблених зображень. Таким чином, для кожного пацієнта буде побудовано набір фрактальних характеристик.

Фракталом називають множину, що має властивість самоподібності. Характеристика, що описує цю властивість, називається фрактальною розмірністю. Ми використовуємо розмірність Мінковського.

Розмірність Мінковського для обмеженої множини S у метричному просторі дорівнює

$$\dim_{box}(S) = \lim_{\varepsilon \to 0} \frac{\ln(N(\varepsilon))}{\ln(\varepsilon^{-1})},$$

$N(\varepsilon)$ — мінімальна кількість множин діаметра ε, котрими можна покрити множину S.

Щоб наблизити фрактальну розмірність, було використано модифікований алгоритм box-counting, описаний в [6].

Кожному пацієнту ставиться у відповідність набір фрактальних характеристик, розмір якого не є сталим (у кожного — різна кількість клітин). Для порівняння набору характеристик різних пацієнтів треба використовувати міру близькості між вибірками — для цього було застосовано p-статистику, що запропонована в [7].

Для класифікації використано метод k найближчих сусідів (для класифікації елементу x обираємо з навчальної вибірки k найближчих до x елементів та відносимо x до домінантного класу з цих k елементів).

Для пошуку оптимального числа k використовується метод кросвалідації: дані розбиваються на p частин, з яких $p - 1$ використовується для оцінки моделі, а інша — для тестування. Процедура повторюється p разів.

Результати

Вхідний набір даних для дослідження складається з знімків 6752 інтерфазних ядер букального епітелію, для кожного було зроблено 3 знімки мікроскопу: без фільтру, через жовтий фільтр та через фіолетовий фільтр (отже всього 20256 фотографій), взятих з 130 пацієнтів, з яких 68 хворих раком молочної залози, 29 здорових та 33 хворих фіброаденоматозом. Кожне зображення складається з трьох каналів: червоного, зеленого, синього, а також сірого каналу — середнього трьох інших.

Через низьку якість більшості фотографій в блакитному каналі в жовтому фільтрі, червоному та блакитному каналах в фіолетовому фільтрі, а також усіх, крім зеленого, каналах без застосування фільтру, ці знімки не аналізувалися.
Назвемо групу хворих на рак молочної залози “позитивними”, а хворих на фіброаденоматоз та здорових “негативними”. Всього позитивних прикладів — 68, а негативних 33 + 29 = 62. За визначенням

\[
\text{чутливість (sensitivity)} = \frac{TP}{P},
\]

\[
\text{специфічність (specificity)} = \frac{TN}{N},
\]

de \(TP\) (true positive) — кількість коректно класифікованих позитивних прикладів, \(TN\) (true negative) — кількість коректно класифікованих негативних прикладів, \(P\) та \(N\) — кількість позитивних та негативних прикладів у вибірці відповідно.

Задамо:

\[
\text{точність (accuracy)} = \frac{\text{sensitivity} + \text{specificity}}{2}
\]

У таблицю записуємо результати для таких \(k\), де:

\[
\text{accuracy} \rightarrow \text{max}
\]

<table>
<thead>
<tr>
<th>канал</th>
<th>(k)</th>
<th>sensitivity</th>
<th>specificity</th>
<th>accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ф. фільтр) зелений</td>
<td>1</td>
<td>98.53%</td>
<td>96.77%</td>
<td>97.65%</td>
</tr>
<tr>
<td>(ф. фільтр) зелений</td>
<td>1</td>
<td>99.50%</td>
<td>95.70%</td>
<td>97.60%</td>
</tr>
<tr>
<td>(ж. фільтр) зелений</td>
<td>1</td>
<td>99.26%</td>
<td>97.58%</td>
<td>98.42%</td>
</tr>
<tr>
<td>(ж. фільтр) сірий</td>
<td>1</td>
<td>99.63%</td>
<td>96.37%</td>
<td>98.00%</td>
</tr>
<tr>
<td>(ж. фільтр) червоний</td>
<td>1</td>
<td>99.70%</td>
<td>95.48%</td>
<td>97.59%</td>
</tr>
<tr>
<td>середнє</td>
<td></td>
<td>99.40%</td>
<td>96.27%</td>
<td>97.80%</td>
</tr>
</tbody>
</table>

Досягнуто в середньому точності 97.8% (максимальна — 98.42% при сіром каналі в фіолетовому фільтрі). Стандартні методи діагностики раку — клінічне обстеження, мамографія, аспіраційна біопсія — дозволяють поставити діагноз з точністю до 99%. Тим не менш, радіоактивне опромінення, травмування злоякісної пухлини під час біопсії несе з собою ризик для здоров’я пацієнта, на відміну від вищеописаного метода.

Програмні і математичні технології розроблення операційних систем реального часу

Бичков О.С.

Ключові слова: операційна система, реальний час, багатозадачність, захищеність, надійність.

AMS Subject Classification: 94 04

Ціль розроблення - це створення легке масштабованої, багатозадачної, операційної системи реального часу, яка має високу передбачуваність станів і захищеність, невисокі вимоги до апаратних ресурсів.

Передбачувані властивості операційної системи:

• «Жорсткий» реальний час
• Внутрішня архітектура «клієнт-сервер», багатозадачність
• Полегшене масштабування, та поритрування: система може підтримувати мікропроцесори, що не мають на своєму борті модулів керування пам'ятю MMU і подібних підсистем
• Висока захищеність системи від несанкціонованого доступу або виконання зовнішнього коду та висока передбачуваність поведінки системи в критичних ситуаціях
• Невибагливість до обчислювальних ресурсів

Операційна система Сварог призначена для використання в системах критичних до часових характеристик, вимог безпеки й стабільності роботи системи з гарантованим виконанням покладених на неї функцій при будь-якому навантаженні. Гарантований час реакції на зовнішню подію (наприклад перериваннівід зовнішніх датчиків або іншого встаткування) виключає ситуації коли події, що відбулися, залишилися зігнорованими системою (наприклад у наслідку сильної завантаженості системи) або реакція системи виявилася не досить швидкою.

Особлива архітектура системи клієнт-сервер дозволила відмовитися від попередніх архітектур (наприклад монолітного або гібридного ядра) на користь високої надійності й практично необмеженої масштабованості. Основний її принцип полягає у винесенні сервісів ОС у вигляді серверів на рівень користувача й виконанні мікроядром функцій диспетчера повідомлень між клієнтськими користувацькими програмами й серверами — системними сервісами.

Ядро системи Сварог забезпечує функціонування проміжного абстрактного рівня ОС, який прийому від прикладного ПЗ специфіку технічного обладнання процесору (декількох процесорів) і пов’язаного з ним апаратного забезпечення.
Гладка Юлія Анатоліївна, кандидат фіз.-мат. наук, доцент,
Київський національний економічний університет ім. Вадима Гетьмана, Київ, Україна,
e-mail: yuliagladkaya@hotmail.com

ПРО СТІЙКІСТЬ ДВОКРОКОВОЇ СХЕМИ РОЗЩЕПЛЕННЯ ДЛЯ ПАРАБОЛІЧНОГО РІВНЯННЯ

Гладка Ю.А.

Ключові слова: чисельний метод, методи розщеплення, різницева схема, стійкість
AMS Subject Classification: 65M12

Математичне моделювання є найважливішим і найбільш перспективним напрямком
dослідження актуальних завдань екології, динамічних теплових і дифузійних процесів, що
описуються параболічними рівняннями другого порядку [1-3].

Метою роботи є розробка дискретних математичних моделей і побудови безумовно
стійких схем для чисельного моделювання та оптимізації нестаціонарних теплових і
дифузійних процесів на основі різницевих схем з явою організацією обчислень. В основі
схем розщеплення перехід на наступний за часом крок пов’язаний з розв’язанням більш
простих задач. Запропонований підхід до побудови дискретних моделей використовує
ідею розщеплення і реалізації отриманих схем з явою організацією обчислень.

Питання побудови та дослідження стійкості різницевих схем розщеплення
проілюструємо на прикладі крайової задачі для параболічного рівняння другого порядку.
Нехай в декартовій системі координат \((x, y)\) на часовому проміжку \(0 < t \leq T\) функція

\[u(x, y, t) \]

задовольняє в пряме кутній області \(G = \{ (x, y) \mid 0 < x < l_1, 0 < y < l_2 \} \) з межею \(\partial G\)
dвовимірне нестаціонарне параболічне рівняння

\[\frac{\partial u}{\partial t} - \frac{\partial}{\partial x} (k_1 \frac{\partial u}{\partial x}) - \frac{\partial}{\partial y} (k_2 \frac{\partial u}{\partial y}) = f(x, y, t), (x, y) \in G, t \in (0, T]. \] (1)

Тут \(u(x, y, t)\) – шукана функція, коєфіцієнти \(k_\alpha = k_\alpha(x, y) > \chi > 0, \alpha = 1,2\) – додатні
неперервно-диференційні функції, \(f(x, y, t)\) – функція джерел. Рівняння (1)
dоповнюється однорідними граничними \(u(x, y, t) = 0, (x, y) \in \partial G\) та початковою умовами

\[u(x, y, 0) = u_0(x, y), (x, y) \in G. \]

Двокрокова схема розщеплення. Викладемо підхід до побудови різницевих схем
розщеплення на прикладі двокрокової схеми. У рамках цього підходу двокрокову схему
розщеплення можна отримати на основі допоміжних задач

\[\frac{\partial u_1}{\partial t} + L_1 u_1 = \frac{1}{2} f, u_1(x, y, t) = u(x, y, t), \] (2)

\[\frac{\partial u_2}{\partial t} + L_2 u_2 = \frac{1}{2} f, u_2(x, y, t) = u(x, y, t), \] (3)

de \(L_1 u = L_1 u = - \frac{1}{2} \frac{\partial}{\partial x} (k_1 \frac{\partial u}{\partial x}) - \frac{1}{2} \frac{\partial}{\partial y} (k_2 \frac{\partial u}{\partial y}) \). Тоді, розв’язуючи послідовно задачі (2),(3),
отримаємо розв’язок рівняння (1) для момента часу \(t = t + \tau\) з похибкою \(O(\tau^2)\).

В області \(\overline{G}\) введемо різницеву сітку \(\omega_h = \omega_h \cup \gamma_h\), де \(\omega_h\) – множина внутрішніх
вузлів, а \(\gamma_h\) – граничних вузлів. Введемо гільбертовий простір \(H_h\) сітових функцій,
заданих на $\bar{\omega}_h$ і рівних нуле на межі. Скалярний добуток і норму в H_h задаємо співвідношенням

$$(\varphi, \psi) = \sum_{(x,y)\in\bar{\omega}_h} \varphi(x,y)\psi(x,y)h_1h_2, \quad \|\varphi\| = \sqrt{(\varphi, \varphi)}.$$

Для самоспряженого додатно означеного різницевого оператора D можна визначити енергетичний простір H_D зі скалярним добутком $(\varphi, \psi)_D = (D\varphi, \psi)$ і нормою $\|\varphi\|_D = \sqrt{(D\varphi, \varphi)}$. У подальшому будемо розглядати сіткові функції $\varphi(t_n)$ дискретного аргумента $t_n \in \omega$, зі значеннями із простору H_h, тобто $\varphi(t_n) \in H_h$.

Чисельну реалізацію схеми (2), (3) можна одержати, розщеплюючи інтервал τ між точками t_n і t_{n+1} з проміжною точкою $t_{n+1/2}$. На першому інтервалі розглядається явна різницева схема

$$
\frac{\varphi^{n+1/2} - \varphi^n}{\tau} = \frac{1}{2} \left(a_{i+1} \varphi_i^n - a_i \varphi_i^{n+1/2} \right) + \frac{1}{2} \varphi_{n+1/2} + \frac{1}{2} f_{n+1/2},
$$
(4)

на другому часовому інтервалі розв’язується друга підсистема

$$
\frac{\varphi^{n+1} - \varphi^{n+1/2}}{\tau} = \frac{1}{2} \left(a_{i+1} \varphi_i^{n+1} - a_i \varphi_i^{n+1/2} \right) + \frac{1}{2} \varphi_{n+1} + \frac{1}{2} f_{n+1/2}.
$$
(5)

Тут φ – сіткова функція, і для апроксимації диференціальних виразів L_1, L_2 використовуються загальноприйняті позначення теорії різницевих схем [2].

В роботі для дослідження стійкості сіткових задач за початковими даними отримані априорні оцінки для кожної допоміжної задачі (4), (5). Для цього використовується однорідні рівняння в канонічному операторному вигляді

$$
B\varphi + A\varphi = 0,
$$
(6)

de лінійні оператори A, B діють в гильбертовому просторі H_h, $\varphi = \varphi^n \in H_h$.

Як відомо [2], необхідною і достатньою умовою стійкості за початковими даними двошарової різницевої схеми (6) із самосопряженими додатно означенними операторами A, B є виконання операторної нерівності

$$
B \geq 0.5\tau A,
$$
тоді для розв’язку φ^{n+1} справедлива оцінка в енергетичній нормі $\|\cdot\|_A$:

$$
\|\varphi^{n+1}\|_A \leq \|\varphi^n\|_A, \quad n = 0, N.
$$

В роботі встановлено вирази для операторів, досліджено властивості операторів A, B і показана стійкість схеми розщеплення (4), (5) в енергетичній нормі $\|\cdot\|_A$.

169
Гончар Микола Семенович, доктор фіз.-мат. наук, професор, Інституту теоретичної фізики ім. М.М. Боголюбова НАН України, e-mail: mgonchar@bitp.kiev.ua;
Довжик Олена Петрівна, інженер, Інституту теоретичної фізики ім. М.М. Боголюбова НАН України, e-mail: alenkadov87@gmail.com

ПРО КРИТЕРІЙ СТАЛОГО ЕКОНОМІЧНОГО РОЗВИТКУ

Гончар М.С., Довжик О.П.

Ключові слова: обмінний курс, рецесія, сталий економічний розвиток, прогноз.

AMS Subject Classification: 91B64, 91B15

У роботі сформульовано принцип рівноваги відкритої економіки з її середовищем: курс національної валюти відносно долара США є показником рівноваги економіки з її середовищем. Використовуючи цей принцип, встановлено канонічне рівняння грошового обігу:

\[M_i = e^{a_0[G^i]}[R_i]^{a_3}i = 1, n, \]
де \(a_0, a_2, a_3 \) є роз'язком задачі (20):

\[\min \sum_{i=1}^{n}(f_i - a_0 - a_2g^i - a_3r^i)^2, \]
де \(F_i = e^{-b_i}[Y_i]M_i^0[G^i]^{a_2}[R_i]^{a_3}, f_i = \log F_i, i = 1, n. \)

Називатимемо функціональну залежність (21) між змінними \(M_i, G_i, R_i \) канонічним рівнянням грошового обігу в \(i \)-ий період, \(i = 1, n. \)

На його основі сформульовано принцип сталого розвитку економіки.

Означення. Говоритимемо, що економіка в період функціонування перебуває в стані сталого економічного розвитку, якщо канонічне рівняння грошового обігу задовольняє умови: \(L_2 = a_2 - b_i > 0, \) \(L_3 = a_3 - b_i < 0. \)
За межами цього стану економіка може перебувати в стані рецесії або близькому до нього. На цій підставі дано класифікацію рівноважних станів економіки. Якість рівноваги економіки визначається параметрами рівняння канонічного грошового обігу.

Для підтвердження основного принципу, що обмінний курс національної валюти щодо долара США є показником рівноваги економіки з його середовищем, досліджуємо залежність курсу валют від внутрішніх факторів, що його визначають.
Після цього вивчаємо адекватність інфляції та курсів обміну валют до визначальних факторів. Припускаємо, що інфляція та курси обміну валют є непостережуваним випадковим процесом, який визначається стохастичним рівнянням залежно від внутрішніх факторів. Для оцінки цього процесу використовуємо метод фільтра Калмана.

Формулювання проблеми. Задано еволюцію факторів \(Y_i, i = 1, N, \) які можуть впливати на інфляцію та курс національної валюти стосовно долара, а також еволюцію інфляції та курсу національної валюти / долара \(x_i, i = 1, N, \) де вимірність вектора факторів є \(n, \) а вимірність
вектора \mathbf{x}_i дорівнює 2. Слід встановити адекватність впливу факторів на інфляцію та курс обміну. Нижче припускаємо, що $N = 5$. Кожен вектор \mathbf{N}_i, $i = 1, 5$, має вимірність 12.

Цю задачу розв'язано побудовою неспостережуваного випадкового процесу \bar{x}_k, що описує адекватний рівень інфляції та обмінний курс у межах k-го періоду, заданого законом:

$$
\bar{x}_{k+1} = F_{k,k+1} \bar{x}_k + w_k, \quad k = 0, N-1,
$$

$$
Y_{k+1} = H_k \bar{x}_k + \nu_k, \quad k = 0, N-1,
$$

де w_k і ν_k - білі шуми, тобто $E w_k^i v_k^j = 0$, де

$$
E w_k^i v_k^j = \delta_{kk} \delta_{ii}, \quad \delta_{ii} > 0, \quad i = 1, 2, \quad E v_k^i v_k^j = \delta_{kk} \delta_{jj}, \quad \delta_{jj} > 0, \quad i = 1, \bar{N},
$$

з нульовим середнім $E w_k = 0$, $E \nu_k = 0$, $F_{k,k+1} = E$ - одинична матриця 2×2.

Матриця H_k визначається з умови мінімуму функціоналу

$$
\min \sum_{i=1}^{\bar{N}} \{ (y_i^k - h_1^k x_i^k - h_2^k x_i^k)^2 + (y_i^{k+1} - h_3^k x_i^{k+1} - h_4^k x_i^{k+1})^2 \}
$$

де $H_k = \{ h_1^k, h_2^k \}_{i=1}^{\bar{N}}$, $Y_i^k = \{ y_i^{k+1} \}_{i=1}^{\bar{N}}$, $k = 1, N$.

В початковий момент часу

$$
\hat{x}_0 = E \bar{x}_0,
$$

$$
P_0 = E (\bar{x}_0 - E \bar{x}_0)(\bar{x}_0 - E \bar{x}_0)^T.
$$

Еволюція неспостережуваного процесу задається формою

$$
\dot{\hat{x}}_k = F_{k,k-1} \hat{x}_{k-1},
$$

де матриця помилок протягом періоду часу $[k-1, k]$ задана виразом

$$
P_k^- = F_{k,k-1} P_{k-1} F_{k,k-1}^T + Q_{k-1},
$$

а матриця Калмана - виразом

$$
G_k = P_k^- H_k^T [H_k P_k^- H_k^T + R_k]^{-1}.
$$

Оцінка неспостережуваного процесу задається виразом

$$
\hat{x}_k = \hat{x}_{k-1} + G_k (Y_{k+1} - H_k \hat{x}_k).
$$

На цій основі зроблено аналіз економіки Канади, Китао, Японії, Великобританії. Встановлено, що економіка Китао та Японії перебувала в стані сталого економічного розвитку протягом 2015-2017 років. Встановлено, що економіка Китао та Японії перебували в стані сталого економічного розвитку. Економіка Канади була близька до рецесії, і економіка Великобританії перебувала в рецесії в розглянутій період. Прогноз обмінного курсу, що визначається внутрішніми факторами, відрізняється від реального обмінного курсу в момент часу, де поточний платіжний баланс має різке негативне падіння. Це підтверджує той факт, що валютний курс служить індикатором рівноваги економіки з її середовищем.

10. https://www.iea.org/media/statistics
15. https://countryeconomy.com/gdp
17. https://countryeconomy.com/gdp
ЗБІЖНІСТЬ РІЗНИЦЕВОЇ АПРОКСИМАЦІЇ РІВНЯННЯ СУБДИФУЗІЇ ЗМІННОГО ПОРЯДКУ

Гуляницький А.Л., Токар К.С.

Ключові слова: дробові диференціальні рівняння, субдифузія, часова дискретізація, L1-метод.

AMS Subject Classification: 35R11, 65M06

Протягом раннього розвитку ембіріона функціональна диференціація його клітин визначається концентрацією сигналних молекул, що називаються морфогенами. Вважається, що певна частина ембіріона секретує морфоген з постійною швидкістю. Після цього внаслідок дифузії концентрації морфогенів розподіляється по тканинах. Різні цільові гені клітин активуються при досягненні певного порога концентрації морфогенів. Відповідно, концентрація морфогенів певним чином кодує подальший розвиток тканини ембіріона [1].

Отже, дослідження переносу морфогенів в позаклітинному середовищі становить важливу задачу в біології розвитку. Характерною особливістю міжклітинного середовища ембіріона є наявність великої кількості так званих пасток, які суттєво впливають на природу переносу. А саме, в [2] показано, що цільність часу очікування стрибка частинки має довгий хвіст. Це призводить до того, що середньоквадратичне зміщення зростає по-вільніше, ніж \(t \), через що процес описується моделлю субдифузії, а не звичайної дифузії.

Диференціальна модель субдифузії отримана на основі процесу випадкових блукань з неперервним часом в неоднорідному середовищі, в якому показник дифузії залежить від просторової зміни [3].

Ми розглядаємо наступне просторово-часове рівняння в обмеженій області \(\Omega \) як математичну модель процесу перенесення морфогенів:

\[
\frac{\partial u(x,t)}{\partial t} = \Delta \left(e^{-\theta(x)} K(x) D_0^{1-\alpha(x)} \left(e^{\theta(x) t} u(x,t) \right) \right) - \theta(x)u(x,t) + f(x,t),
\]

з початковою і крайовою умовами

\[
u|_{t=0} = U_0(x),
\]

\[
u|_{\partial \Omega} = 0,
\]

де \(u \) є невідомою концентрацією речовини, \(D_0^{1-\alpha(x)} \) – похідна Рімана-Ліувілля за часовою зміною, \(\theta \) – коефіцієнт реакції, \(\alpha \) – залежний від просторової змінної показник дифузії, а \(f \) – інтенсивність джерел та стоків речовини.

Диференціальна модель, виражена через дробову похідну Рімана-Ліувілля, має переваги над моделлю випадкових блукань, оскільки для диференціального рівняння легше формулюються крайові умови та легше враховується дія зовнішніх джерел.

173
В останні десятиліття широко досліджувались рівняння з дрібними похідними сталого порядку. Проте аналогії рівняння (1)—(2) до цього часу були не достатньо досліджени та для них не було побудовано методів наближеного розв'язання.

В даній роботі запропоновано теорему про зближеність дискретизації за часом задачі (1)—(3) з використанням L1-методу апроксимації дрібної похідної [4].
Для напівдискретизованої задачі (дискретної за часом, неперервної за простором) в області Ω на часовій сітці 0 = t_0 < t_1 < ... < t_m = T зі сталим кроком τ

\[\frac{u_j - u_{j-1}}{\tau} = \Delta \left(K(x)e^{-\theta(x)t_j} \cdot \tau^{\alpha(x)-1} \sum_{k=0}^{j} \rho_{jk}e^{\theta(x)t_{j-k}u_{j-k}} \right) - \theta(x)u_j + f_j, \] (4)

з початковою і крайовою умовами

\[u_0 = U_0(x), \] (5)
\[u_j|_{\partial \Omega} = 0, \] (6)
де \(u_j = u_j(x), \ f_j = f_j(x) = f(x, t_j), \)

\[\rho_{jk}(x) = \frac{1}{\Gamma(1+\alpha(x))} \begin{cases} 1, & k = 0 \\ (k-1)^{\alpha(x)} - 2k^{\alpha(x)} + (k+1)^{\alpha(x)}, & k = 1, j-1 \\ (j-1)^{\alpha(x)} - j^{\alpha(x)} - \alpha(x)j^{\alpha(x)-1}, & k = j \end{cases}, \] (7)

має місце такий результат:

Теорема. Нехай \(\Omega \subset \mathbb{R}^N, N \in \{1, 2, 3\} \) та виконуються такі умови:

- \(\alpha(x) \in C(\bar{\Omega}), \)
- \(0 < \alpha_0 \leq \alpha(x) \leq \alpha_1 < 1, \ k(x) \geq k_0 > 0, \ \theta(x) \geq 0, \ x \in \Omega, \)
- \(\partial \Omega \in C^2, \ u \in L_2(\Omega, C^2([0, T])). \)

Тоді \(\exists c > 0 \) таке, що ноківка апроксиманції \(e_j(x) = u(x, t_j) - u_j(x) \) різницевої схеми (4)—(6) для рівняння (1)—(3) задовольняє

\[||e_j||_{L_2(\Omega)} \leq ct. \] (8)

Крім того, в даній роботі розглянуто чисельні розв'язки для деяких моделейних прикладів та значення експериментально визначеного порядку зближеності, які узгоджуються з теоретичними результатами.

МОДЕЛЮВАННЯ ЖЕСТІВ ДЛЯ ВІЗУАЛІЗАЦІЇ ДАКТИЛЬНОЇ МОВИ

Єфремов М.С

Ключові слова: інформаційна модель, тести, тестові завдання, навчальні матеріали, ключові терміни.

AMS Subject Classification: 97R50

Основним способом спілкування для глухонімів та людей з вадами слуху є використання жестової мови, що складається з дактильної абетки та набором рухів, які мають певні значення. Дактильна абетка складається з різних жестів, як статичних так й рухомих. Для вивчення жестової мови (ЖМ) необхідно розробити загальнодоступні інструменти, що дозволили ефективно забезпечити розуміння жестової мови. Беручи до уваги розвиток інформаційних технологій та техніки, створення застосунку, що надає базу жестів та навчає ЖМ є можливим і реалізованим, наприклад, у роботі [2] для української ЖМ представлено інформаційну технологію, що дозволяє відтворити невербальні методи спілкування. В доповіді розглядається проблема реалізації даної технології таким чином, щоб вона була доступна на будь якій операційній системі мобільного телефону чи комп’ютера.

Пропонується реалізація кросплатформленого застосунку, що має базу жестів ЖМ, яку можна розширювати. З метою вивчення ЖМ і перевірки знань використовується набори тестових завдань для визначення даних дактильних символів. Застосунок має бути достатньо простим у використанні, та мати інтуїтивно зрозумілий інтерфейс. Даний застосунок передбачає варіант, що його будуть використовувати школярі для вивчення дактильної абетки ЖМ.

Запропоновано використовувати середовище розробки Unity, яке дозволяє використовувати фізiku типу RagDoll для моделювання поведінки 3D об’єктів. Для збереження моделі руки використовується формат fbx, який підтримується багатьма програмами для обробки тривимірних моделей. На теперішній момент анимації рухів були записані мануально та програються використовуючи інверсну кінематику, що дозволяє зменшити об’єм застосунку до мінімуму. В подальшому планується використовувати формат JSON для збереження проміжних станів для анимації в нашому випадку, це положення координат з’єднань у тривимірному просторі. Модуль для тестування на знання ЖМ несе у собі набір питань, що потребують вибрати правильний жест з даного набору.

Метою застосунку є освоєння ЖМ серед зацікавлених користувачів, та надання можливості її вивчати у доступній формі через засоби комунікації. Однією з важливих проблем яка можна вирішити за допомогою цього застосунку, це проблема вивчення ЖМ дітьми шкільного та дошкільного віку, а також дорослими, які за своїми службовими обов’язками мають знати ЖМ.

Новий кинетичный подход до моделирования Доннановской рівноваги

Жук П.Ф., Карахім С.О., Костерін С.О.

Ключевые слова: математическая модель, рівновага Доннана, мембрана, проникливость мембраны, потенциал Доннана, дисоциация, кінетика

AMS Subject Classification: 37N25, 76R50, 92C45

При разработке мембранных технологий всегда враховывают эффект Доннана, оскільки завдяки цьому можна передбачити поведінку йонів в мембранній системі й розрахувати рівноважні концентрації йонів, що знаходяться по різні боки напівпроникної мембрани. Його також приймають до уваги при поясненні нерівномірного розподілу йонів в клітинах живих організмів.

В 1911 році Доннан показав, що якщо розчини електролітів розділені мембраною, що непроникна хоча б для одного йона (але проника для інших йонів), то при досягненні термодинамічної рівноваги дифундуючи через мембрану йони розподіляються по обидва боки мембрани нерівномірно.

Модель Доннана базується на наступних припущеннях: досліджувана система складається з ідеальних розчинів електролітів, які розділені напівпроникною мембраною і мають рівні й постійні об’єми; всі електроліти, що розглядаються, повністю (на 100 %) дисоційовані, тому в розчинах присутні тільки йони; йони невеликого розміру легко проникають крізь мембрану, в той час як йони органічного походження, що мають більший розмір, не можуть проходити крізь мембрану, або, принаймні, проникають через неї набагато повільніше проникаючих йонів; проникаючі йони проходять крізь мембрану попарно (в еквімолярних кількостях), так, щоб не порушувалась електронейтральність розчинів; після завершення процесу перерозподілу проникаючих йонів по обидва боки мембрани, в досліджуваній системі встановлюється термодинамічна рівновага.

Останнє припущення має визначальне значення для того, щоб знайти взаємозв’язок між мембранним потенціалом Доннана E_D та розподілом йонів по обидва боки мембрани, тобто з Доннановським розподілом λ. Приймаючи до уваги, що в стані рівноваги електрохімічні потенціали кожного з спільних йонів, що знаходяться в розчинах i і e, рівні, отримують наступні рівняння

$$E_D = \frac{RT}{F} \ln \left(\frac{[K^+]_i}{[K^+]_e} \right)^{\frac{1}{Z}} = \frac{RT}{F} \ln \left(\frac{[A^-]_e}{[A^-]_i} \right)^{\frac{1}{Z}} = \frac{RT \ln \lambda}{F} \quad \lambda = \left(\frac{[K^+]_i}{[K^+]_e} \right)^{\frac{1}{Z}} = \left(\frac{[A^-]_e}{[A^-]_i} \right)^{\frac{1}{Z}} \quad (1)$$

мембрану, а, відповідно, й рівноважних концентрацій проникаючих йонів.

Модель Доннана не враховує можливості неповної дисоціації речовин, які можуть бути присутніми у досліджуваних розчинах, в її рамках також важко проводити розрахунки для багатокомпонентних систем, в яких об'єми розчинів \(i \) та \(e \) не однакові.

Оскільки модель Доннана є термодинамічною, вона може застосовуватись лише у випадку, коли система досягає рівноважного стану, і не дозволяє розраховувати кінетику процесу. Для проведення таких досліджень замість моделі Доннана використовують інші підходи, засновані на застосуванні рівняння Нернста-Планка, яке є одним з виразів лінійних феноменологічних законів нерівноважної термодинаміки. Однак, на нашу думку, використовувати рівняння нерівноважної термодинаміки, в яких потоки є лінійними функціями сил, для описання кінетичних залежностей не зовсім коректно, оскільки такі рівняння можуть бути застосовані тільки в області, близькій до рівноваги, де може виконуватись лінійна залежність між силами і потоками. Таким чином, незважаючи на відсутність необхідності досліджень кінетичних залежностей, адекватних моделей і теорій для цього не існує.

В даній роботі представлена розроблена нами кінетична модель, що дозволяє розраховувати зміну в часі концентрацій всіх йонів і молекул, присутніх в системі, проводити розрахунки Доннанівської рівноваги \(\lambda \), а, відповідно, й мембранного потенціалу Доннана \(E_D \), для складних сумішей речовин (проникаючих і непроникаючих через мембрану) з врахуванням ступеня їх дисоціації, різного початкового розподілу цих речовин в розчинах, розділених мембраною, та різниці в об’ємах цих розчинів.

Для вирішення поставлених задач нами була розроблена модель, заснована на іншому принципі, ніж класична модель Доннана. Якщо в моделі Доннана припускається, що через мембрану проникають окремі йони, то розроблена нами модель заснована на припущенні про те, що крізь мембрану проникають незаряджені частинки – молекули або йонні пари. Механізм проникнення – проста дифузія. Дифузія молекул або йонних пар через мембрану означає автоматичне дотримання електронейтральності розчинів і описується рівнянням Фіка (з врахуванням дисоціації). Фактично дотримання електронейтральності в моделі Доннана можна інтерпретувати (принаймні з математичної точки зору) саме як проникність мембрани для молекул. Відзначимо також, що електричне поле біля мембран має набагато слабкіше впливати на проникання нейтральних молекул, ніж на проникання йонів, тому в розробленій нами кінетичній моделі вплив мембранного потенціалу на проникнення молекул крізь мембрану не враховується.

На відміну від класичної моделі Доннана, в розробленій нами моделі непроникаючим через мембрану є не окремий йон, а всі молекули або йонні пари (нейтральні сполуки), до складу яких входить цей йон (його солі, кислота або основа), утворення яких можливе в досліджуваній системі. Для спрощення викладення розроблена нами кінетична модель буде представлена в термінах концентрацій, а не активності, припускаючи, що всі розчини є ідеальними.

Розглянемо систему, в якій два розчина \((i \text{ та } e) \), розділені напівпроникною мембраною з площею поверхні \(S \), мають об’єми \(V_i \) та \(V_e \) відповідно. В початковий момент часу розчин \(e \) містить речовину \(KB \) з концентрацією \(C_{1e} \) і сіль \(KA \) з концентрацією \(C_{2e} \), а розчин \(i \) – тільки сіль \(KA \) або \(KB \) з концентрацією \(C_{3i} \). Речовина \(KB \) не може проникати через мембрану із-за більшого розміру аніона \(B^- \), в той час як \(KA \) може дифундувати крізь мембрану. Обидві сполуки можуть дисоціювати на йони

\[
KB \xrightarrow{k_1} K^+ + B^- \quad KA \xrightarrow{k_2} K^+ + A^- \tag{2}
\]

де \(k_1 \) і \(k_1^- \) – константи швидкості відповідно прямої й зворотної реакцій дисоціації непроникаючої речовини \(KB \) на йони, а \(k_2 \) і \(k_2^- \) – константи швидкості відповідно прямої й зворотної реакції дисоціації на йони проникаючої солі \(KA \).
В результаті проникнення крізь мембрану молекул KA, тобто їх недисоційованої частини \([KA]\), система, що розглядається, почне рухатися в бік рівноваги, яка встановиться, коли концентрації \([KA]\) в обох розчинах стануть рівними \([KA]_e = [KA]_i\) (тобто коли буде досягнута рівність хімічних потенціалів для недисоційованих молекул KA в розчинах \(i\) та \(e\). Математичною моделлю даного процесу є система диференціальних рівнянь:

\[
\begin{align*}
 &d[KA]_e/dt = -D_{KA} ([KA]_e - [KA]_i) S/V_e - k_2 [KA]_e + k_2 [K^+]_e [A^-]_e, \\
 &d[KA]_i/dt = D_{KA} ([KA]_i - [KA]_e) S/V_i - k_2 [KA]_i + k_2 [K^+]_i [A^-]_i, \\
 &d[KB]_e/dt = -D_{KB} ([KB]_e - [KB]_i) S/V_e - k_1 [KB]_e + k_1 [K^+]_e [B^-]_e, \\
 &d[KB]_i/dt = D_{KB} ([KB]_i - [KB]_e) S/V_i - k_1 [KB]_i + k_1 [K^+]_i [B^-]_i, \\
 &d[A^-]_e/dt = k_2 [KA]_e - k_2 [K^+]_e [A^-]_e, \\
 &d[A^-]_i/dt = k_2 [KA]_i - k_2 [K^+]_i [A^-]_i, \\
 &d[K^+]_e/dt = k_2 [KA]_e - k_2 [K^+]_e [A^-]_e + k_1 [KB]_e - k_1 [K^+]_e [B^-]_e, \\
 &d[K^+]_i/dt = k_2 [KA]_i - k_2 [K^+]_i [A^-]_i + k_1 [KB]_i - k_1 [K^+]_i [B^-]_i, \\
 &d[B^-]_e/dt = k_1 [KB]_e - k_1 [K^+]_e [B^-]_e, \\
 &d[B^-]_i/dt = k_1 [KB]_i - k_1 [K^+]_i [B^-]_i,
\end{align*}
\]

de \(D_{KA}\) і \(D_{KB}\) – коефіцієнти проникності мембрани для молекул KA і KB відповідно.

Диференціальні рівняння мають бути записані для кожної молекулярної або йонної частинки, що присутня в розчинах \(e\) й \(i\). Чисельний розв’язок цієї системи рівнянь дозволяє розрахувати зміну концентрації кожного компонента реакції в часі. Аналіз показаної системи диференціальних рівнянь показує, що вона має єдиний розв’язок і він є стійким.

В класичній моделі Доннана спочатку термодинамічним шляхом отримують співвідношення Доннана (1), а потім з його допомогою розраховують рівноважні концентрації йонів, тобто ще до розрахунку рівноважних концентрацій вважають, що проникаючі їйони в рівноважному стані перерозподіляються по обидва боки напівпроникної мембрани у відповідності з розподілом Доннана (1). Навпаки, в рамках запропонованої нами кінетичної моделі ми не робимо ніяких припущень стосовно того, в яких співвідношеннях розподіляються проникаючі їйони коли система досягне стану рівноваги. Запропонована модель дозволяє розраховувати концентрації всіх сполук (йонів та молекул) в процесі переходу системи з початкового стану в рівноважний. І тільки в кінці розрахунків, коли концентрації всіх йонів та молекул перестануть змінюватися, і система досягне рівноважного стану, виходячи з рівноважних концентрацій проникаючих йонів, можна розрахувати їх співвідношення за рівнянням (1) і перевірити, чи розподіляються вони у відповідності з передбаченим класичною моделлю Доннана. Результати розрахунків підтверджують, що проникаючі йони в рівноважному стані розподіляються так, як це передбачається класичною теорією Доннана. Використовуючи розраховані рівноважні концентрації проникаючих йонів можна розрахувати також потенціал Доннана.

Врахування процесу дисоціації молекул дозволяє точніше зрозуміти природу Доннанівського розподілу, тобто зрозуміти, чому рівноважний розподіл проникаючих йонів описується рівнянням (1). Це визначається дією трьох факторів, кожен з яких пов’язаний з наявністю недисоційованих молекул: рівністю рівноважних концентрацій проникаючих молекул по обидва боки мембрани, дисоціацією молекул на йони та принципом Ле Шателье, в результаті дії якого відбувається порушення рівномірного розподілу йонів проникаючої речовини за рахунок наявності спільних йонів у речовину, проникаючих та непроникаючих крізь мембрану.

Дослідження, проведені в рамках запропонованої кінетичної моделі, показали, що збільшення концентрації непроникаючої солі в одному з розчинах і збільшення її константи дисоціації, зменшення загальної концентрації проникаючої солі її зменшення її константи дисоціації, зменшення відношення об’єму розчину, що не містить непроникаючої солі, до об’єму розчину, що містить непроникаючу речовину, приводить до збільшення абсолютної величини мембранного потенціалу Доннана \(\Delta E\).
Використання гібридних паралельних технологій
Козуб В. Ю., Гоменюк С. І.

Ключові слова: паралельні обчислення, метод скінчених елементів, розпаралелювання обчислень, гібридні паралельні технології, модель fork-join.

Завдяки останнім досягненням в області комп'ютерних технологій і САПР стало набагато простіше моделювати об'ємні і складні обчислення. Таким чином, кілька комп'ютерних моделей можуть бути змоделювані до розробки прототипу. Це не тільки покращує якість інженерного продукту, але і скорочує час розробки продукту. Хоча за останні десятиліття комп'ютерні технології досягли значних успіхів, зросли обсяги, масштаби і складність завдань, з якими стикаються вчені та інженери. Це вимагає використання паралельних обчислень. Паралельні обчислення включають програмування декількох підключених комп'ютерів (кластер Beowulf) або комп'ютерів з декількома процесорами (двоядерні, чотириядерні, суперкомп'ютери і т. ін.). Однак просто виконання послідовного коду на паралельній машині не є рішенням. Необхідно змінити програмний код, щоб використовувати всі можливості розпаралелювання. Ця модифікація може бути виконана з використанням таких інструментів, як MPI (message passing interface) і OpenMP (open multi-processing).

Все це говорить про необхідності йти в ногу з будь-якими новими дослідженнями і розробками, беручи до уваги основну теорію, методи моделювання та обчислювальні аспекти методу скінчених елементів (МСЕ).

Метод скінчених елементів включає дискретизацію континууму на сукупність тіл простої геометричної форми. Важливо, щоб сітка була досить точною для забезпечення точності рішення. Однак для поліпшення якості сітки може знадобитися зменшення розміру елементів. Це, в свою чергу, збільшує загальну кількість елементів в задачі, збільшуючи тим самим вимоги до пам'яті і швидкості комп'ютера.

Застосування складних скінченно-елементних моделей на практиці стримується значною трудомісткістю їх програмної паралельної реалізації. Для того щоб прискорити і вдосконалити процес створення розрахункових програм, необхідно розробити програмне середовище, специфічне для скінчено-елементного моделювання. При створенні таких програм можна застосувати технологію об'єктно-орієнтованого моделювання, в результаті чого створюється модель, що відповідає математичної моделі, і її програмна реалізація у вигляді об'єктно-орієнтованого коду [1].

Паралельні обчислення на графічних процесорах (GPU) дозволяють зменшити час вирішення рівняння, яке використовується при розрахунках, в результаті чого вимагається вирішення на другому рівні. Останнім часом це стає стандартним для розробки алгоритмів і програмного забезпечення. Обчислювальні алгоритми і програмний код вирішення різних задач здатні до значної оптимізації. При вирішенні двовимірних і особливо тривимірних задач актуально розпаралелювання процесу формування сіткової системи рівнянь, який пов’язано з чисельним інтегруванням за об’ємом і поверхні скінчених елементів (версії розподіленого навантаження,
локальні матриці жорсткості і мас і т. ін.). У МСЕ генерується безліч матриць жорсткості елементу. Матриці жорсткості формуються і зберігаються різними способами: поелементно, пореберно і в глобальній матриці жорсткості без нульових елементів. Введення тієї чи іншої схеми обчислений матрично-векторного і скалярного добутку в ітераційних методах рішення систем лінійних рівнянь дозволяє вибрати рівень розпаралелювання при одному і тому ж поділі області на різних гібридних архітектурах, що містять центральні процесори і графічні прискорювачі.

Використовуючи паралельне програмування середовища включають кілька окремих процесорів (кілька дорогих або безліч дешевих). Програми та дані можуть знаходитися на різних процесорах, які повинні сполучатися один з одним. Для цього зв'язку зазвичай використовуються два методи: MPI і OpenMP [2]. Стандарт MPI визначає базовий набір бібліотечних процедур, які корисні в програмах з обміном повідомлень. Використання MPI потребує явного контролю процедури розпаралелювання програми і даних. Інший підхід полягає у використанні OpenMP для вказівки паралелізму спільно використовуваної пам'яті в програмах на Fortran і C / C ++ [3]. Вони вставляються в певні місця в існуючому послідовному коді і реалізуються компілятором для розпаралелювання цих конкретних розділів коду. Зазвичай ці директиви використовуються для розпаралелювання трудомістких циклів DO. Ствірується, що цей підхід набагато простіше реалізувати в порівнянні з використанням MPI [2].

Модель паралельного виконання fork-join (Рис. 1) використовує OpenMP. Всі програми OpenMP стартують як єдиний потік, званий головним потоком. Головний потік виконується послідовно, поки не зустрінеться з областю паралельної конструкції (! $ OMP PARALLEL). Потім головний потік створює команду паралельних потоків. В кінці паралельної області (яка визначається! $ OMP END PARALLEL) всі потоки з'єднуються і завершуються, залишаючи тільки головний потік [3].

ОПТИМІЗАЦІЯ ОБЧИСЛЕНЬ В АЛГОРИТМІ ЛІНІЙНОЇ КЛАСІФІКАЦІЇ СИГНАЛІВ ЗАСОБАМИ СЕВДО ОБЕРНЕННЯ МАТРИЦЬ

Кудін Г.І.

Ключові слова: системи лінійної класифікації, псевдо обернені та проекційні матриці.

Анотація. Розроблений в рамках теорії псевдо обернених матриць алгоритм лінійної класифікації сигналів дозволяє впорядкувати координати векторів ознак згідно їх впливу на критерій лінійної роздільності класів та на ширину полоси роздільності Алгоритми оптимального перетворення окремих компонент векторів простору ознак у ряді випадків дозволяють розв’язувати задачу класифікації залишаючи в рамках лінійної моделі.

Вступ. Науковими співробітниками Інституту кібернетики НАНУ та кафедри моделювання складних систем факультету комп’ютерних наук та кібернетики факультету комп’ютерних наук та кібернетики протягом останніх двадцяти років розшепано ряд як теоретичних, так і прикладних проблем з використанням лінійної класифікації та класифікації, для яких в аналітичному вигляді були подані умови лінійної роздільності сигналів.

1. Алгоритм лінійної класифікації сигналів [1,2]. Нехай для точок \(x(i) \in \mathbb{R}^m, \quad i = 1, \ldots, n \) (додаткова компонента \(x_m(j) = 1 \)) відомо, що точки \(x(i_k) \in \mathbb{R}^m, \quad k = 1, \ldots, n_1 \) знаходяться в першому класі \(\Omega_1 \), \(\Omega_1 = \{x_i: x = x(i), \ldots, x(i_{n_1}), x(i_{n_1})\} \), точки \(x(i_j) \in \mathbb{R}^m, \quad j = 1, \ldots, n_2 \) в другому класі \(\Omega_2 \). Необхідна і достатня умова лінійної роздільності цих класів така:

\[
\min_{y \in \Omega_y} y^T Z((X:J_n)^T y) = y^T Z((X:J_n)^T y_*) = 0, \tag{1}
\]

де \(X = (x(1):\ldots:x(n)) \in \mathbb{R}^{m \times n}, \quad \Omega_y = \{y: y = (y(1),\ldots,y(n))^T, \quad Z(A) = I_n - (X:J_n)^+ (X:J_n)\}
\]

\(y(i_k) \geq 1, \quad k = 1, \ldots, n_1; \quad y(j_s) \leq -1, \quad s = 1, \ldots, n_2 \), \(J_n = (1, 1, \ldots, 1)^T \in \mathbb{R}^n \), а сам вектор \(a \in \mathbb{R}^{m+1} \), який задовольняє умові, приймає значення

\[a = (X:J_n)^+ y_*. \tag{2} \]

Відстань між гіперплощиною визначається виразом

\[h = 2(y_*^T R(X:J_n) y_*)^{-\frac{1}{2}}, \quad R(A) = (X:J_n)^+ (X:J_n)^T. \tag{3} \]

2. Оптимізація простору векторів ознак.

2.1. Умова лінійної роздільності класів (7) – це забезпечення мінімуму квадратичної функції за наявністю обмежень на змінні. Оптимізувати обчислень матриці квадратичної функції досягнуть з врахуванням лінійної класифікації сигналів \(Z((X:J_n)^T, R(X:J_n)) \), а саме, можна стверджувати, що видалення лінійно залежних рядків з вхідної матриці \(A \) не впливає як на умову лінійної роздільності класів, так і, що дуже важливо, на ширину полоси роздільності.
Отже, економно реалізувати алгоритм лінійної класифікації сигналів, використовуючи лише лінійно незалежні рядки матриці \(X:J_n \).

2.2. В роботі [2] введено поняття найменш інформативної координати \(x_{i^*} \) з простору ознак, яка визначається згідно умови

\[
y_{i^*}^T Z(X_{i^*}^T) y_{i^*} = \min_{i \in I,n} y_{i}^T Z(X_i^T) y_{i},
\]

де

\[
X_i = \begin{pmatrix} x_{(i)} & \cdots & x_{(i-1)} & x_{(i+1)} & \cdots & x_{(n)} \end{pmatrix}.
\]

Отже, можна чекати, що заміна найменш інформативної компоненти \(x_{i^*} \) у векторі ознак

\[
x = (x_1, \ldots, x_m)^T
\]

dеякою новою лінійно незалежною компонентою \(x_0 \), тобто розгляд нового вектора ознак \((x_1, \ldots, x_{i^*-1}, x_0, x_{i^*+1}, \ldots, x_m)^T \), для якого з усіх або частини лінійно незалежних рядків матриці \(X \) формується лінійна оболонка \(P_x \):

\[
x_{(0)}^{T} \in P_x, \quad x_0^{T} = \sum_{k \in Q} \alpha_k x_{(k)}^{T},
\]

de \(Q \) – множина індексів лінійно незалежних рядків вихідної матриці \(X \), \(\alpha_k \) - невизначені коефіцієнти, які разом з новим вектором \(y \) визначаються згідно наступної умови оптимальності – розширеної умови роздільності класів

\[
y_{i^*}^T Z(x_{i^*}^{T}, x_0^{T}) y_{i^*} \rightarrow \min_{x_0 \in P_x, y \in \Omega_y}
\]

покращить результат класифікації.

2.3. При негативному результаті описаних вище дій залишається можливість побудови кусково лінійної полоси роздільності [3, 4].

2.4. В роботі [5] досліджено актуальну проблему впливу похибок отримання показників певних компонент векторів ознак на результат класифікації.

Висновки. Методи псевдообернення, теорія збурення псевдообернених і проекційних матриць, дозволяють побудувати конструктивні схеми засобів виділення в скінченому просторі дискретних точок роздільних підмножин, дозволяють оптимізувати такі процеси, використовуючи аналітичні вирази умов лінійної роздільності множин, визначати оцінки інформативності компонент векторів простору ознак при потребі організувати перебір елементів підмножин в процесі кусково лінійної класифікації.

Список використаних джерел

1. Кириченко Н.Ф., Кривонос Ю.Г., Лепеха Н.П. Оптимизация синтеза гиперплоскостных кластеров и нейрофункциональных преобразований в системах классификации сигналов // Кибернетика и системный анализ. – 2008. – №6. – С. 107-124.

2. Кириченко Н.Ф., Кривонос Ю.Г., Лепеха Н.П. Синтез систем нейрофункциональных преобразователей в решении задач классификации. // Кибернетика и системний анализ. – 2007. – №3. – С. 47-57

3. Кириченко Н.Ф., Кудин Г.И., Кудин Г.І. Анализ и синтез систем классификации сигналов средствами возмущений псевдо обратных и проекционных операций // Кибернетика и системный анализ. – 2009. – №3. – С. 47-57

4. Кудин Г.І. Оптимизация линейной классификации сигналов засобами збрунь сигналов певдoboобрениих матриць. Математичне та комп’ютерне моделювання, Серія Фізико- математичні науки, Випуск 15, 2017, с. 84 – 88

5. Гаращенко Ф.Г., Кудин Г.І. Задачи классификации средствами псевдо обращения: преобразование пространства признаков, влияние возмущений исходной информации. Проблемы управления и информатики, 2018. №2. c66-78.
Махорт Андрій Пилипович, кандидат фіз.-мат. наук, старший науковий співробітник, Інститут теоретичної фізики ім. М.М. Боголюбова НАНУ, Київ, Україна, e-mail: map@bitp.kiev.ua

ПРО СТАНИ РІВНОВАГИ ЕКОНОМІЧНОЇ СИСТЕМИ ЗА НАЯВНОСТІ МОНОПОЛІСТІВ ТА АЛГОРИТИМИ ВИЗНАЧЕННЯ ЇХ ХАРАКТЕРИСТИК
Махорт А.П.

Ключові слова: рівновага, попит, пропозиція, оподаткування, монополісти, ціноутворення.
AMS Subject Classification: 91B50

Математичне моделювання процесів в економічних системах важливе для виявлення засобів впливу на них задля уникнення реалізації несприятливих сценаріїв функціонування. Зокрема, підходи, що грунтуються на засадах рівноваги економічних систем дають змогу виявляти дисбаланси та потенційні чинники дестабілізації, а їх знання може сприяти запобіганню розвитку небажаних явищ. Монополізм є одним тим чинником, що може негативно впливати на стан економічної системи.

Досліджуватимемо економічну систему, яка складається зі споживачів товарів, частина з них є також і виробниками. Вважатимемо, що серед виробників є монополісти, а споживчі уподобання формуються з урахуванням цін товарів. Умову рівноваги в такій економічній системі можна подати у вигляді нелінійних рівнянь

\[\frac{1}{p_k} \sum_{i=1}^{n} c_i(p)p_k \tilde{D}_i(p) = \Psi_k, \quad k = 1, n, \]

де елементи матриці \(c_i(p) \) задають споживчі уподобання суб'єктів економічної системи, а елементи матриці \(a_{ij} + b_{ij}/x_j \) описують технології виробництва товарів.

Змінні вектори \(\{p_i\}_{i=1}^n, \{x_i\}_{i=1}^n \) є характеристиками можливих станів рівноваги економічної системи.

Наявність монополістів в моделі враховано за допомогою заданого вектора \(\{p_i\}_{i=1}^n \).

Серед усіх станів рівноваги важливо вміти знайти стан рівноваги з певними властивостями. Це означає, що розв'язки нелінійних рівнянь (1) мають міститись в заданій області значень. Задані властивості станів рівноваги можуть бути пов'язані з їх якістю. Якість станів рівноваги визначає вектор \(\{\pi_i\}_{i=1}^n \).

Серед усіх станів рівноваги важливо вміти знайти ці стани рівноваги з певними властивостями. Це означає, що розв'язки нелінійних рівнянь (1) мають міститись в заданій області значень. Задані властивості станів рівноваги можуть бути пов'язані з їх якістю. Якість станів рівноваги визначає вектор \(\{y_i\}_{i=1}^l \), з компонентами

\[y_i = \frac{\tilde{D}_i(p)}{\sum_{x=1}^{n} c_{ss}(p)p_x}, \quad i = 1, l. \]

Компоненти вектора \(\{y_i\}_{i=1}^l \) набуватимуть значень, за якими можна встановити спроможність суб'єктів економічної системи задовольняти свої потреби на певному рівні і здобути той набір потрібних ним товарів, що відповідає наявним в них фінансовим ресурсам. Величини
\{ \tilde{D}_j(p) \} \}_{j=1}^\ell \text{ задають прибуток суб'єктів економічної системи і для виробників товарів можуть бути подані у вигляді}
\[
\tilde{D}_j(p) = \pi_j x_j \left(p_j - \sum_{k=1}^n a_{jk} p_k \right) - \pi_j \sum_{k=1}^n b_{jk} p_k, \quad j = 1, n.
\]

З огляду на те, що
\[
b_j = \sum_{k=1}^n (E - A)^{-1} \Psi_k, \quad j = 1, t,
\]
і компоненти \{b_{1j}\}_{j=1}^\ell вектора \{b_j\}_{j=1}^\ell є заданими, рівняння рівноваги (1) можуть бути трансформовані до вигляду
\[
p_k = P_k(p, y), \quad k = 1, t, \quad (2)
\]
\[
P_k(p, y) = \sum_{j=1}^\ell (E - A)^{-1}_{jk} \left[\sum_{x=1}^n a_{xj} p_x^0 + \frac{y_j}{\pi_j x_j} \sum_{x=1}^n c_{xj}(p)p_x + \frac{1}{x_j} \sum_{x=1}^n b_{xj} p_x \right], \quad k = 1, t,
\]
\[
y_k = Y_k(p, y), \quad k = 1, t, \quad (3)
\]
\[
Y_k(p, y) = \frac{1}{\Delta_1} \left(\alpha_k b_0^0 - \sum_{j=1}^\ell c_{kj}(p)y_j \right), \quad k = 1, t,
\]
який є зручним для використання ітераційних методів розв'язування задачі про економічну рівновагу.

Було знайдено умови розв'язності рівнянь (2) – (3) в заданій області значень. Було доведено збіжність ітераційного методу визначення розв'язку рівнянь (2) – (3), та встановлено вимоги до заданих характеристик моделі економічної системи, за виконання яких оператори \{P_j(p, y)\}_{j=1}^\ell і \{Y_j(p, y)\}_{j=1}^\ell будуть стискаючими.

Було розглянуто випадок споживчих уподобань, які описуються матрицею $c_{kj}(p)$ спеціальної структури, а саме: матрицею з елементами $c_{kj}(p) = c_{kj} f_j(p)$. Функції \{f_j(p)\}_{j=1}^\ell залежать лише від монопольних цін \{p_{0j}\}_{j=1}^\ell, що дає змогу оцінити монопольний вплив на структуру споживання в економічній системі. Враховано, що певний рівень монопольних цін може призводити до зменшення попиту на товари в економічній системі. Відповідно, умова рівноваги (1) вибирається у вигляді
\[
\sum_{i=1}^\ell c_{ki} f_k(p) y_i = \tau_k \Psi_k, \quad k = 1, n,
\]
de $\tau_k \leq 1$ і будуть визначати зменшення попиту.

З'ясовано, за яких умов можна отримати аналітичні вирази для характеристик станів рівноваги, зокрема
\[
p_k = \sum_{j=1}^\ell (E - A^0)^{-1}_{jk} \frac{1}{x_j} \sum_{x=1}^n \left(a_{xj} x_j + b_{xj} + f_j \frac{c_{xj}}{\pi_j} \right) p_x^0, \quad k = 1, t,
\]
\[
A^0 = \left[a_{xj} + \frac{1}{x_j} b_{xj} + f_k \frac{1}{\pi_j x_j} c_{xj} \right]_{k,j=1}^\ell.
\]

З'ясовано також, коли в системі може виникати виродження розв'язків по вектору \{p_k\}_{k=1}^\ell.

Роботу виконано за часткової підтримки НАН України (проект 0118U003196).
Новіков Олег Олександрович, кандидат фіз.-мат. наук, доцент
Донбаський державний педагогічний університет, Слов’янськ, Україна,
Ровенська Ольга Геннадіївна, кандидат фіз.-мат. наук, доцент
Донбаська державна махінобудівна академія Краматорськ, Україна,
e-mail: rovenskaya.olga.math@gmail.com

НАБЛИЖЕННЯ АНАЛІТИЧНИХ ПЕРИОДИЧНИХ ФУНКЦІЙ
НЕПОВНИМИ ОПЕРАТОРАМИ ФЕЙЄРА

Новіков О.О., Ровенська О.Г.

Ключові слова: Асимптотична формула, оператори Фейєра.
AMS Subject Classification: 42A10

Позначимо \(C^q_{\beta,\infty} \), \(q \in (0; 1) \), \(\beta \in \mathbb{R} \) класи неперервних \(2\pi \)-періодичних функцій \(f(x) \), які можна подати у вигляді згортки

\[
f(x) = A_0 + \frac{1}{\pi} \int_{-\pi}^{\pi} \varphi(x + t) P_{\beta}^q(t) \, dt,
\]

в якій

\[
P_{\beta}^q(t) = \sum_{k=1}^{\infty} q^k \cos(\beta k t),
\]

— ядро Пуассона, а для функції \(\varphi(x) \) виконую умову \(\text{esssup} |\varphi(x)| \leq 1 \). Множини \(C^q_{\beta,\infty} \) містять функції \(f(x) \), які є звуженнями на дійсну вісь функцій \(f(z) = f(x + iy) \), аналітичних у смугі

\[
|\text{Im} \, z| \leq \frac{1}{q}.
\]

Нехай

\[
S[f] = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)
\]

— ряд Фур’є функції \(f \in L, a_k = a_k(f), b_k = b_k(f), k = 0, 1, \ldots \) — коефіцієнти Фур’є функції \(f \),

\[
S_n(f; x) = \sum_{k=0}^{n} (a_k \cos kx + b_k \sin kx)
\]

— часткові суми ряду Фур’є.

Суми Фейєра \(\sigma_n(f; x) \) функції \(f \in L \) визначаються таким співвідношенням

\[
\sigma_n(f; x) = \frac{1}{n} \sum_{k=0}^{n-1} S_k(f; x).
\]

Послідовність поліномів \(\sigma_n(f; x) \) рівномірно зблигається для будь-якої \(f(x) \in C \).

У 1946 році С.М. Нікольський [1] показав, що для верхніх граней відхилень часткових сум Фур’є на класі аналітичних функцій має місце асимптотична рівність

\[
\mathcal{E} \left(C^q_{\beta,\infty}; S_n \right) = \frac{8q^n}{\pi^2} \int_0^{\frac{\pi}{2}} \frac{du}{\sqrt{1 - q^2 \sin^2 u}} + O(1) \frac{q^n}{n}
\]

185
де

\[K(q) = \int_0^\frac{\pi}{2} \frac{du}{\sqrt{1 - q^2 \sin^2 u}}, \]

— новий еліптичний інтеграл першого роду, величина \(O(1) \) не залежить від \(n \). С.Б. Стежкін [2] показав, що заліпковий член цієї рівності можна подати у вигляді \(O(1) \frac{q^n}{n(1-q)} \), де величина \(O(1) \) рівномірно обмежена відносно \(n \) і \(q \in (0; 1) \). Питання наближення класів \(C_{\beta,\infty} \) іншими лінійними методами досліджено у багатьох роботах [3–11].

В роботі розглянуто питання наближення класів \(C_{\beta,\infty} \) тригонометричних поліномами

\[\tilde{\sigma}_n(f; x) = \frac{1}{n} \sum_{k=0}^{n-2} S_k(f; x), \]

які є достатньо близькими до поліномів \(\sigma_n(f; x) \), зокрема, до середнього арифметичного не входить доданок \(S_{n-1}(f; x) \). Має місце твердження.

Теорема. Нехай \(q \in (0; 1) \). Тоді для \(n \to \infty \) має місце асимптотична формула

\[E(C_{1,\infty}, \tilde{\sigma}_n) = \frac{2}{\pi n} \left(\frac{2q}{1 - q^2} + \ln \frac{1 + q}{1 - q} \right) + O(1) \frac{q^n}{n(1-q)^2}. \]

Нехай \(q \in (0; 1/2) \). Тоді для \(n \to \infty \) має місце асимптотична формула

\[E(C_{0,\infty}, \tilde{\sigma}_n) = \frac{2}{\pi n} \left(\frac{2q}{1 + q^2} - \frac{1 + q^2}{1 - q^2} \arctg \frac{2q}{1 - q^2} \right) + O(1) \frac{q^n}{n}. \]

186
ЗАСТОСУВАННЯ ІНТЕГРАЛЬНОГО ЧИСЛЕННЯ ПРИ ОЦІНЦІ ШУМУ У ЗОНІ МЕТРОПОЛІТЕНУ

Петрівський В.Я., Шевченко В.Л.

Ключові слова: інтегральна оцінка шуму, екологічний моніторинг, метрополітен, санітарні норми, оцінка небезпеки.

AMS Subject Classification: 00A69.

Нехай відомі дані замірів датчику шуму протягом певного періоду часу \([t_0, t_n]\), позначимо значення в момент часу \(l(t_i)\). Використавши кубічну інтерполацію знаходимо проміжні значення та будуємо відповідний графік (рис.1) функції \(l(t)\).

Рис. 1. Графік інтерпольованої функції рівня шуму \(l(t)\).
Обчисливши інтеграл інтерпольованої функції отримаємо сумарне значення шуму за період часу \([t_0, t_n]\), позначимо дану величину через \(U\).

\[
U = \int_{t_0}^{t_n} f(x) \, dx
\]

Величина \(U\) описує значення накопиченого шуму за період \([t_0, t_n]\). Згідно нормам [3], шкідливий вплив на організм людини у зоні громадського, зокрема залізничного транспорту спричиняють шуми що є більшими за 80 Дб. Проведемо на графіку пряму \(y = 80\) та позначимо через \(D_1^+, D_2^+ \ldots D_n^+\) зони, де функція \(I(t)\) набуває значення більшого за 80 та \(D_1^-, D_2^- \ldots D_m^-\) де функція набуває значень менших за 80 (рис.2).

![Графік зон шуму](image)

Рис. 2. Визначення зон \(D_n^+\) та \(D_m^-\).

Обчислимо сумарне значення шуму по зонам \(D^+\) та \(D^-\) у наступному вигляді:

\[
U^+ = \iiint_{D^+} I(t) \, dtdy,
\]

\[
U^- = \iiint_{D^-} I(t) \, dtdy,
\]

де \(D^+ = D_1^+ \cup D_2^+ \cup \ldots \cup D_n^+, \ D^- = D_1^- \cup D_2^- \cup \ldots \cup D_m^-\).

Очевидним є факт того, що при значенні \(U^+ > U^-\) буде мати місце шкідливий вплив шумів на організм людини та необхідно застосовувати заходи та засоби зменшення рівня шуму або зменшити період перебування особи у зоні метрополітену.

1. Семашко П. В. Определение вклада метрополитена в сум марную акустическую загрузку населения путем расчета суммарной дозы звуковой энергии [Електронний ресурс] / П. В. Семашко, В. В. Шкуро, А. В. Очеретяная.
3. Санітарні норми виробничого шуму, ультразвуку та інфразвуку ДСН 3.3.6.037-99.
ОСОБЛИВОСТІ МОДЕЛЮВАННЯ ПРОЦЕСУ КОМПЛЕКСНОЇ ОБРОБКИ НАВІГАЦІЙНОЇ ІНФОРМАЦІЇ В БОРТОВИХ КОМПЛЕКСАХ БЕЗПІЛОТНИХ ЛІТАЛЬНИХ АПАРАТІВ

Пономаренко С.О., Захарін Ф.М.

Сучасною тенденцією і основним принципом побудови навігаційних комплексів літальних апаратів є алгоритмічна інтеграція різноманітних бортових навігаційних засобів. Інтегровані навігаційні комплекси (НК) дозволяють забезпечити необхідний рівень точності та надійності навігаційного забезпечення безпілотних літальних апаратів (БпЛА) у складних умовах функціонування. Основу таких комплексів складають курсо-повітряна і інерціальна системи зчислень координат, а також бортова апаратура (БА) супутникової навігаційної системи (СНС), яка, за умови нормального функціонування, забезпечує високоточну позиційно-швидкісну корекцію систем зчислень координат. До основної переваги обох зазначених систем зчислення координат відноситься їх автономність й завадозахищеність.

Створення інтегрованого НК БпЛА на основі навігаційних вимірювачів різного принципу дії: інерціальних, курсо-повітряних та ін. має свої особливості. До таких особливостей відносяться: доцільність розділення вертикального та горизонтальних каналів навігаційних обчислень; необхідність визначення умов і логіки переключення інерціальної і курсо-повітряної підсистем комплексу; особливий порядок виконання операцій корекції та екстраполяції неінваріантної компенсаційної схеми інтеграції та наявність процедури ідентифікації параметрів систематичних похибок датчиків.

Резервом підвищення точності, надійності й завадозахищеності інтегрованого навігаційного комплексу БпЛА є його адаптивна настройка в залежності від умов польоту БпЛА. Саме тому тема статті є актуальною і своєчасною.

Схема моделювання комплексної обробки навігаційної інформації в інтегрованому навігаційному комплексі для БпЛА з адаптивною настройкою приведена на рис. 1. До складу курсо-повітряної підсистеми входять датчики повітряної швидкості, кутів атаки й ковзання, кутів вертикалі та трикомпонентний магнітометр. Інерціальна підсистема побудована з використанням акселерометрів та гіроскопів (датчиків кутової швидкості). В обчислювальних алгоритмах використовуються такі навігаційні вимірювання, (рис.1): \(\hat{h} \) – барометрична висота польоту БпЛА; \(\hat{a}_H \) – вертикальна складова уявного прискорення від акселерометрів; \(h^\text{СНС} \), \(V^\text{СНС} \) – значення висоти і вертикальної швидкості польоту БпЛА від приймача СНС; \(\hat{\alpha}, \hat{\beta} \) – кути атаки й ковзання; \(\hat{\psi}, \hat{\phi}, \hat{\gamma} \) – кути курсу, тангажу й крену; \(\hat{V}_E^\text{СНС}, \hat{V}_N^\text{СНС}, \hat{V}_H^\text{СНС} \) – північна, східна і вертикальна складові швидкості від СНС; \(\hat{\tilde{\phi}}, \hat{\tilde{\lambda}}, \hat{\tilde{H}} \) – складові абсолютної кутової швидкості та уявного прискорення по осях приладової системи координат (СК); \(\hat{V}_{\text{вітр}} \), \(\hat{\psi} \) – швидкість й кут напрямку стаціонарного вітру; \(\hat{\phi}, \hat{\lambda}, \hat{H} \) та \(\hat{\phi}^\text{СНС}, \hat{\lambda}^\text{СНС}, \hat{H}^\text{СНС} \) – географічні координати (довгота, широта, висота) в земній СК та їх оцінки від СНС відповідно.

Перша особливість функціонування інтегрованого навігаційного комплексу полягає в тому, що алгоритми його роботи можна розділити на шість різних груп (шість блоків на рис.1).
Другою особливістю є наявність двох рівнів навігаційних розрахунків місцезнаходження БпЛА. На 1-му рівні розраховуються поточні горизонтальні складові шляхової швидкості. Їх отримують або на основі курсо-повітряного принципу у блокі 2, або на основі інерціального принципу у блокі 3. На 2-му рівні розраховуються координати місцеположення, що реалізується у блокі 6.

Третьою особливістю є використання неінваріантних компенсаційних схем у вигляді нелінійних дискретних фільтрів. Ці фільтри реалізується в бароінерціальному вертикальному каналі у блокі 1; в інерціальній підсистемі визначення параметрів орієнтації і горизонтальних складових шляхової швидкості у блокі 2 та в підсистемі зчислень координат місцеположення БпЛА у блокі 6.

Четвертою особливістю є те, що для кожного із нелінійних дискретних фільтрів на кожному кроці обчислення реалізуються такі основні операції: операція корекції вектора стану по інформації від навігаційного коректора та операція екстраполяції вектора стану з використання інформації від датчиків (або інформації про оцінки горизонтальних складових шляхової швидкості для блоку 6).

П’ятою особливістю є використання лінійної регресійної процедури для ідентифікації похибок датчиків первинної інформації й похибок початкової орієнтації. При цьому ідентифікуються горизонтальні складові швидкості стаціонарного вітру і зміщення показани датчика кута курсу, що використовуються в курсо-повітряній підсистемі визначення горизонтальних складових шляхової швидкості, а також ідентифікуються зміщення показань інерціальних датчиків і похиби початкової виставки, що використовуються в інерціальній підсистемі визначення параметрів орієнтації і горизонтальних складових шляхової швидкості.
Результатами математичного моделювання процесу комплексної обробки інформації в навігаційному комплексі БпЛА показують, що реалізація адаптивної настройки алгоритмів дозволяє суттєво підвищити точність визначення навігаційних параметрів польоту, надійність і завадозахищеність системи управління БпЛА при виконанні польотного завдання.

2. Захарин Ф.М., Пономаренко С.О. Спосіб комплексної обробки навігаційної інформації від датчиків курсо-швидкісної навігаційної системи і супутникової навігаційної системи літального апарату. Патент на корисну модель України № 70281. Опублік. В бюл. № 11 від 11.06.2012.
ЭКСТРАГРАДИЕНТНЫЕ АЛГОРИТМЫ С ДИВЕРГЕНЦИЕЙ БРЭГМАНА

Семёнов В.В.

Ключевые слова: вариационное неравенство, псевдомонотонность, дивергенция Брэгмана, алгоритм, сходимость.

AMS Subject Classification: 47J20

Настоящая работа продолжает статьи [1–5] и посвящена изучению новых методов для приближенного решения вариационных неравенств с псевдомонотонными операторами.

Работаем в конечномерном действительном линейном пространстве, обозначаемом буквой E. Это пространство снабдим нормой $\| \cdot \|$. Двойственное пространство обозначим E^*. Для $a \in E^*$ и $b \in E$ будем обозначать через (a, b) значение линейной функции a в точке b. Двойственную норму на E^* обозначим $\| \cdot \|_*$.

Пусть C — непустое подмножество пространства E, A — оператор, действующий из E в E^*. Рассмотрим вариационное неравенство:

$$
\text{найти } x \in C : (Ax, y - x) \geq 0 \quad \forall y \in C; \tag{1}
$$

множество решений которого обозначим S.

Предположим, что выполнены следующие условия: множество $C \subseteq E$ — выпуклое и замкнутое; оператор $A : E \rightarrow E^*$ — псевдомонотонный и липшицевый с константой $L > 0$ на C; множество S не пусто. Заметим, что при данных условиях множество S выпуклое и замкнутое.

Введем необходимые для формулировки алгоритмов конструкции. Пусть функция $\phi : E \rightarrow \mathbb{R} \cup \{+\infty\}$ удовлетворяет условия: $\text{int dom } \phi \subseteq E$ непустое выпуклое множество; ϕ непрерывно дифференцируема на $\text{int dom } \phi$; если $\text{int dom } \phi \ni x_n \rightarrow x \in \text{bd dom } \phi$, то $\|\nabla \phi (x_n)\|_* \rightarrow +\infty$; ϕ сильно выпукла относительно нормы $\| \cdot \|$ с константой сильной выпуклости $\sigma > 0$:

$$
\phi (a) \geq \phi (b) - (\nabla \phi (b), a - b) + \frac{\sigma}{2} \|a - b\|^2 \quad \forall a \in \text{dom } \phi, \ b \in \text{int dom } \phi.
$$

Соответствующая функция ϕ дивергенция Брэгмана задается формулой

$$
V (a, b) = \phi (a) - \phi (b) - (\nabla \phi (b), a - b) \quad \forall a \in \text{dom } \phi, \ b \in \text{int dom } \phi.
$$

Имеет место полезное 3-точечное тождество:

$$
V (a, c) = V (a, b) + V (b, c) + (\nabla \phi (b) - \nabla \phi (c), a - b).
$$

Из сильной выпуклости функции ϕ следует оценка

$$
V (a, b) \geq \frac{\sigma}{2} \|a - b\|^2 \quad \forall a \in \text{dom } \phi, \ b \in \text{int dom } \phi.
$$

Пусть $K \subseteq \text{dom } \phi$ непустое замкнутое выпуклое множество, причем $K \cap \text{int dom } \phi \neq \emptyset$. Рассмотрим сильно выпуклые задачи минимизации вида

$$
P^K_x (a) = \arg \min_{y \in K} \{-(a, y - x) + V (y, x)\} \quad \forall a \in E^*, \ x \in \text{int dom } \phi. \tag{2}
$$
Известно, что задача (2) имеет единственное решение \(z \in K \cap \text{int dom } \varphi \), причем
\[-(a, y - z) + (\nabla \varphi (z) - \nabla \varphi (x), y - z) \geq 0 \quad \forall y \in K.\]
Точка \(P^K_x (a) \) в евклидовом случае (\(\varphi (\cdot) = \frac{1}{2} \| \cdot \|_2^2 \), где \(\| \cdot \|_2 \) — евклидова норма) совпадает с евклидовой метрической проекцией

\[P_K (x + a) = \arg \min_{y \in K} \| y - (x + a) \|_2. \]

А для симплекса \(S_m = \{ x \in \mathbb{R}^m : x_i \geq 0, \sum_{i=1}^{m} x_i = 1 \} \) и дивергенции Кульбака-Лейблера имеем

\[P^S_{x} (a) = \left(\frac{x_1 e^{a_1}}{\sum_{j=1}^{m} x_j e^{a_j}}, \frac{x_2 e^{a_2}}{\sum_{j=1}^{m} x_j e^{a_j}}, \ldots, \frac{x_m e^{a_m}}{\sum_{j=1}^{m} x_j e^{a_j}} \right), \quad a \in \mathbb{R}^m, \quad x \in \text{ri} (S_m). \]

Один из предлагаемых методов решения вариационного неравенства (1) имеет следующий вид.

Алгоритм 1. Экстраградиентный метод с дивергенцией Брэгмана.

Инициализация. Задаем \(\tau \in (0, \sigma), \lambda_1 > 0 \) и \(x_1 \in \text{int dom } \varphi \). Полагаем \(n = 1 \).

Шаг 1. Вычислить
\[y_n = P^C_{x_n} (-\lambda_n A x_n). \]

Шаг 2. Если \(y_n = x_n \), то СТОП и \(x_n \in S \), иначе вычислить
\[x_{n+1} = P^C_{x_n} (-\lambda_n A y_n). \]

Шаг 3. Вычислить
\[\lambda_{n+1} = \begin{cases} \min \left\{ \lambda_n, \tau \frac{2}{\sigma} \sqrt{\frac{V(y_n, x_n)}{\|A y_n - A x_n\|_*}} \right\}, & \text{если } A x_n \neq A y_n, \\
\lambda_n, & \text{иначе.} \end{cases} \]

Положить \(n := n + 1 \) и перейти на шаг 1.

Алгоритм 1 позволяет получать аппроксимирующие последовательности без знания значения константы Липшица оператора \(A \).

Мы докажем сходимость алгоритма 1 и рассмотрим несколько близких методов.

Работа выполнена при финансовой поддержке МОН Украины (проект «Математическое моделирование и оптимизация динамических систем для обороны, медицины и экологии», 0219У008403).

МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ РУХУ СИПКОГО СЕРЕДОВИЩА В ПРОЦЕСІ ВІБРАЦІЙНОЇ СЕПАРАЦІЇ

Стоцько З.А., Ребот Д.П., Топільницький В.Г., Кусий Я.М.

Ключові слова: динамічна система, математична модель, дослідження, вібраційна сепаракція.

В процесі вібраційної сепаракції сипкового середовища велика увага приділяється можливості збільшення його продуктивності та ефективності без втрат якості вихідної продукції. У зв’язку з цим проводиться дослідження залежності ефективності сепаракції від динамічних параметрів вібраційного сепаратора та динамічних процесів у сипку середовищі під час його оброблення. Саме аналіз розв’язків математичних моделей динамічних процесів у сипних середовищах із врахуванням всього спектру сил, у тому числі і періодичних, дає можливість раціонально сконструювати машини із найбільшою продуктивністю роботи. Важливою задачею є отримання у параметризованій формі зручних для інженерних розрахунків аналітичних співвідношень, що описують динамічні процеси в сипних середовищах. При цьому необхідно враховувати весь спектр чинників, в тому числі і періодичні, за умови сталої швидкості поздовжнього руху. Щоб дослідити їх вплив на продуктивність процесу вібраційної сепаракції необхідно отримати адекватну математичну модель не лише руху сепаратора, але й руху сипкої середовища під час сепаракції.

В процесі сепаракції шар сипкого середовища здійснює складний просторовий рух і його математично можна описати за допомогою звичайних лінійних співвідношень. Тому, як правило, розглядаються окремі випадки руху сипкого матеріалу по поверхні сіт [1-3]. В проведених дослідженнях приймаємо, що в процесі сепаракції сипко середовище визнає горизонтальні коливання та рухається вздовж сіт сепаратора із сталою швидкістю, а шар сипкого середовища моделюється як нашарування плоских балок, які взаємодіють між собою. Зокрема, навмисно розглядається напрямок руху сипкого середовища вздовж сіт, а шар сипкого середовища здійснює горизонтальні коливання та рухається вздовж сіт сепаратора із сталою швидкістю. Диференціальні рівняння сипкого матеріалу описуються у вигляді:

\[
\frac{\partial^2 u(x, t)}{\partial t^2} - \left(\alpha^2 - V^2\right)\frac{\partial^2 u(x, t)}{\partial x^2} = 0 ,
\]

де \(\alpha\) - функція, що описує зміну фізико-механічних характеристик матеріалу; \(V\) - швидкість руху сипкого матеріалу вздовж сіт сепаратора; \(u(x, t)\) - переміщення довільного перерізу шару сипкого середовища із координатою \(x\) вздовж сіт вібраційного сепаратора в довільний момент часу \(t\). Зокрема
Періодичні та нелінійні сили впливають на зміну параметрів динамічного процесу середовища. Для нелінійного випадку \(a \) та \(\psi \) є змінними величинами в часі і залежать від співвідношення частот власних та вимушених коливань. Амплітуда сипкого середовища співпадає із амплітудою коливання контейнера сепаратора. З врахуванням асимптотичних методів нелінійної механіки закони зміни амплітуди та частоти сипкого середовища записуються диференціальними рівняннями:

\[
\frac{da}{dt} = \varepsilon A_1(a) + \varepsilon^2 A_2(a) + \ldots + \varepsilon^n A_n(a)
\]

\[
\frac{d\psi}{dt} = \omega + \varepsilon B_1(a) + \varepsilon^2 B_2(a) + \ldots + \varepsilon^n B_n(a)
\]

Тобто, завдання побудови наближеного розв’язку для рівняння із першим наближенням полягає в знаходженні функцій \(A_1(a), B_1(a) \) та \(U_1(a, x, \psi, \theta) \). Після підстановки функцій часу замість \(a \) та \(\psi \) розв’язком математичної моделі процесу вібросепарації буде асимптотичний ряд:

\[
u(x,t) = a \sin \frac{k\pi}{l} x \sin \psi + \varepsilon U_1(a, x, \psi, \theta) + \varepsilon^2 U_2(a, x, \psi, \theta) + \ldots + \varepsilon^n U_n(a, x, \psi, \theta)
\]

Амплітудо-фазова характеристика руху сипкого середовища визначається залежністю:

\[
\frac{da}{dt} = \frac{1}{P} \int_0^{2\pi} \int_0^{2\pi} F(a, x, \psi, \theta) F(a, x, \psi) \sin \frac{\pi}{l} x \sin \psi \, dx \, d\psi \, d\theta
\]

\[
\frac{d\psi}{dt} = \omega - \left(\frac{k\pi}{l} \right)^2 \frac{1}{\omega} V^2 + \frac{1}{P} \int_0^{2\pi} \int_0^{2\pi} F(a, x, \psi) \sin \frac{\pi}{l} x \cos \psi \, dx \, d\psi
\]

Подані рівняння описують основні параметри руху сипкого середовища при його коливаннях на ситі сепаратора в нерезонансному випадку та дають змогу розглянути зміну амплітудо-частотних характеристик сипкого середовища у випадку малої швидкості руху матеріалу вздовж сита сепаратора. Також дані залежності можуть слугувати базою для подальших досліджень з метою визначення оптимальної амплітуди та частоти коливання сипких матеріалів з метою підвищення ефективності процесу вібраційної сепарації. Математична модель також може в подальшому використовуватись при дослідженнях процесів вібраційного оброблення та транспортування сипких матеріалів.

3. Ребот Д.П. Математична модель визначення зміни амплітуди та частоти коливання сипкого матеріалу в процесі вібросепарації / Д.П. Ребот, В.Г. Топільницький // Науковий Вісник НЛТУ України. Збірник науково-технічних праць. – 2018. – Вип. 28.2. – с. 164-166.
Уалханова Айнур Толыбаевна, докторант 2 курса, Школа информационных технологий, Восточно-Казахстанский государственный технический университет им. Д. Серикбаева, Усть-Каменогорск, Казахстан, e-mail: ainarazamat17@gmail.com

Крак Юрий Васильевич, доктор физико-математических наук, профессор, Киевский национальный университет имени Тараса Шевченко, Киев, Украина, e-mail: yuri.krak@gmail.com;

Денисова Наталья Федоровна, кандидат физико-математических наук, доцент, Восточно-Казахстанский государственный технический университет им. Д. Серикбаева, Усть-Каменогорск, Казахстан, e-mail: ndenissova@ektu.kz;

Интеграция элементов трехмерной визуализации и геoinформационной системы

Уалханова А.Т., Крак Ю.В., Денисова Н.Ф.

Ключевые слова: Фотограмметрия, виртуальная модель, 3D-модель, геопортал, квадрокоптер, интеграция, визуализация.

AMS Subject Classification: 97R50

В настоящее время популяризация геологических знаний, развитие геотуризма и использование современных информационных технологий для этого является актуальной и популярной задачей. В то же время Восточно-Казахстанская область обладает огромным потенциалом для развития геотуризма. Основными особенностями туристского потенциала Восточно-Казахстанского региона являются живописная природа, горный рельеф, историко-культурные объекты, наличие уникальных природных памятников и памятников геологического наследия. Одним из решений для привлечения отечественных и иностранных туристов в регион является использование информационных технологий для предоставления заинтересованным сторонам исчерпывающей информации о геологическом объекте с возможностью его изучения с помощью его виртуальной модели. В рамках государственных программ «Цифровой Казахстан» и «Рухани Жангыру» в Казахстане большое внимание стало уделяться цифровизации и, в частности, созданию региональных и отраслевых геопорталов. Также в Казахстане планируют создать проект по Национальной инфраструктуре пространственных данных в целях их эффективного использования государственными органами, организациями и бизнесом [1]. С другой стороны, во многих научных работах исследуется возможность геопорталов для развития туризма, например, Сафарян А.А. в работе [2] пишет, что «…в информационном веке для развития туризма на конкретной территории необходим специальный туристско-информационный ресурс с обеспечением специализированными картами. Таким универсальным web-картографическим ресурсом является геопортал. Он может послужить для нескольких целей: исследовательских, коммерческих, информационно-познавательных…».

Таким образом, Восточному Казахстану, как региону с высоким туристическим потенциалом и с бурно развивающейся туристской отраслью, такой ресурс как туристический геопортал полезен и необходим. Геопортал – это программно-технологическое обеспечение для работы с пространственными данными. Его основная задача – обеспечение пользователя средствами и сервисами хранения и каталогизации, публикации и загрузки пространственных (географических) данных, поиска и фильтрации по метаданным, интерактивной веб-визуализации, прямого доступа к геоданным на основе картографических веб-сервисов [3]. Также геопортал может быть инструментом, с помощью которого можно решить задачи интеграции элементов трехмерной визуализации геологических объектов и геоинформационной системы.
Целью данной работы является разработка информационной технологии получения виртуальной модели геологического объекта, пригодной для дальнейшего размещения в интегрированной информационной системе. В данной работе рассматриваются возможности адаптации и применения технологии фотограмметрии для трехмерного (3D) моделирования геологических объектов Восточного Казахстана, представляющих интерес для геотуризма. Рассмотрены этапы создания 3D-модели и ортофотоплана на примере моделирования территории уникального геологического объекта – Тарханского геологического разреза [4]. Рассматриваются алгоритмы фотографирования объектов для получения фотографий, пригодных для дальнейшей обработки с целью получения виртуальной модели объекта [5, 6]. Выявлены особенности и проблемы построения трехмерных виртуальных моделей геологических объектов, исследованы возможности программного продукта Agisoft Photoscan, который позволяет получать облако точек в полуавтоматическом режиме, виртуальные трехмерные модели объекты, основанные на их двухмерных фотографиях, в том числе полученные с использованием управляемых беспилотных летательных аппаратов (квадрокоптеров, дронов) [6,7]. Полученные, описанным в статье способом, 3D-модели и ортомозаики могут быть экспортированы в различные форматы, что позволяет интегрировать их с ГИС, например, с популярной Google Earth [8].

Яременко Сергій Володимирович, аспірант
Київський національний університет імені Тараса Шевченка, Київ, Україна,
e-mail: yaserg555@gmail.com

МОДЕРНІЗАЦІЯ ТРЕНАЖЕРНОГО КОМПЛЕКСУ: ПРОЕКТУВАННЯ ТРЕНАЖЕРНОЇ СИСТЕМИ КЕРУВАННЯ ВОГНЕМ ВІДДІЛЕННЯ

Яременко С.В.

Ключові слова: тренажерний комплекс, програмні модулі, тренажерна система
AMS Subject Classification: 97R50

Розглядаються основні етапи при моделюванні фоноцільової та мішеневої обстановки. Визначені електронні бібліотеки візуалізаційного матеріалу для комплексної симуляції тренувальної та бойової обстановки

Актуальність розробки пов’язана з існуючим збройним протистоянням на території України та якісною підготовкою особового складу до умов сучасного бою. Наразі актуальним питаннями вогнєвої підготовки постає питання колективної підготовки – стрілецька підготовка особового складу та відпрацювання бойового залогодження підрозділів в умовах, наближених до умов бою та навчання командирів відділень керування вогнем підрозділу. Тому подаліше розширення можливостей існуючого тренажерного комплексу Тренажер інтерактивний лазерний ePresenter T1 полягає у поетапній модернізації як апаратної складової так і програмної складової тренажерного комплексу та появі програмного комплексу, що дозволить моделювати різні варіанти вправ стрільб з усіх видів стрілецької зброї та гранатометів, а також імітувати появу противника та його дії в ході бою.

До складу спеціалізованого програмного забезпечення Тренажера T1 входять вправи Курсу стрільб зі стрілецької зброї і бойових машин, що призначені для набуття та удосконалення навичок щодо вирішення вогневих завдань із стрілецької зброї (підствольних гранатометів), гранатометів (реактивних протитанкових гранат).

Програмне забезпечення Тренажера T1 дозволяє розширити функціональні можливості уже відомих електронних стрілецьких тренажерів. Воно призначене для відпрацювання навичок прицільної, швидкісної, і інтуїтивної стрільби та засвоення прийомів володіння зброєю, з використанням навчальної зброї, що за конструктивними та масогабаритними характеристиками відповідає штатним зразкам озброєння, без витрат на бойові припаси. [1]

Перший етап модернізації полягає у модернізації навчальних макетів стрілецької зброї та гранатометів, що має на озброєння відділення. Проведені дослідження показали необхідність дооснащення навчальних макетів зброї окремими електронними модулями, що дозволять точно ідентифікувати кожен макет під час колективної підготовки військовослужбовців, контролювати боеспособність та відповідь на провести об’єктивне оцінювання влучності особового складу, а й здійснити оцінку ефективності та доцільності засвоєння того чи іншого зразка озброєння. Одночасно з апаратними змінами розроблено окрему підпрограму, що відслідує інформацію від кожного окремого електронного модуля навчальної зброї та відповідає за його ідентифікацію: визначення зразка озброєння, аналіз місця влучання лазерного променю та обробка результатів влучання/промаху та визначення ступеня ураження цілей з урахуванням факторів зовнішньої балістики кулі/гранати. Такі зміни дозволили формувати комплексну оцінку рівня підготовки відділення при веденні вогню з різних зразків озброєння одночасно.

Наступний етап модернізації полягає у розробці окремої програми, що моделює фоноцільову обстановку на основі цифрових карт місцевості та розробка структури навчально-тренувальних вправ, що дозволять за короткий термін та при мінімальних витратах здійснити якісну підготовку спеціалістів. Наразі триває формування окремих
електронних бібліотек, які призначені для моделювання та відтворення фоноцільової обстановки для комплексної симуляції тренувальної та бойової обстановки, наближеної до реальної:

- додання різних об’єктів (мішеней, перешкод, цивільного населення, будівель) на місцевість
- імітацію техніки та живої сили противника (наявність типових моделей військової техніки противника)
- відтворення різних погодних умов та часу доби;
- відтворення місцевості, типової для України та зони проведення ООС
- моделювання балістики польоту снарядів та куль, дії боєприпасів на техніку та живу силу
- фіксацію ураження техніки різними типами зброї з розрахунком рівня нанесених ушкоджень

На завершальному етапі передбачено розробку окремих програмних модулів, що забезпечать навчання та тренування для формування навичок вибору вогневої позиції, формування навичок застосування стрілецького та протитанкового озброєння, орієнтування на місцевості, контроль боєзапасу, розвиток навичок орієнтування на місцевості, відпрацювання навичок керування вогнем підрозділу, відпрацювання взаємодії особового складу у складі підрозділів під час вирішення вогневих завдань.

Практичне значення даної розробки полягає у розробці та введення в експлуатацію комплексного тренажерного комплексу відпрацювання бойового залагодження підрозділів.

1. Патент на корисну модель «Тренажер Інтерактивний лазерний для тренування стрільби зі стрілецької зброї (Тренажер Т1)», 4 стор., №126776 від 10.07.2018 Винахідники: Алексєєв В.Ю., Бобарчук О.А., Соловйова Н.А., Яременко В. А., Яременко С. В.
3. Modeling and investigation of processes in mechanics

MODELLING
&
STABILITY
PHYSICAL AND MATHEMATICAL MODELING
OF WAVE PROPAGATION IN ELECTRO-ELASTIC COMPOSITES
WITH THE ROUGH SURFACES JUNCTIONS

Ara S. Avetisyan and Asatur Zh. Khurshudyan

Keywords: wave signal, composite structures, surface roughness, waveguide, high-frequency wave, layered systems, hypotheses MELS, piezoelectric layer.

Absolutely smooth surface is an idealized model of a structure boundary. However, the majority of real-life mechanical structures have surfaces which are imperfect, i.e., they contain non-smooth or rough areas. In general, at the micro-scale, all surfaces have some sort of roughness which has a contribution to the general state of the structure. Depending on the quantitative estimate of this contribution, there may occur a necessity to take the roughness into account in formulating the macro-scale model. On the other hand, rough surfaces contain some uncertainties preventing the identification and accurate analysis of wave field characteristics in a waveguide with rough surfaces especially in the near-surface areas where the roughness is regarded as geometric heterogeneity. This circumstance complicates the theoretical study even further in the case of multi-layered composite waveguides where the roughness of contact surfaces between sub-layers are also considered. This is the case especially in dynamical problems of high-frequency short wave propagation in composite structures where the wavelength is comparable with the roughness step of the composite.

In this paper, we study the physical and mechanical interaction of a high-frequency wave signal with the surface roughness of a multilayer waveguide (fig. 1)

At this, we consider the case when both external and internal (intra-layer) surfaces are rough.

\[
\left(\sigma_{ij}^{(1)} - \sigma_{ij}^{(2)}\right) \cdot n_j \bigg|_{\Sigma_n(x_k)} = 0 ; \quad u_k^{(1)} \bigg|_{\Sigma_n(x_k)} = u_k^{(2)} \bigg|_{\Sigma_n(x_k)} ;
\]

\[
\left(D_j^{(1)} - D_j^{(2)}\right) \cdot n_j \bigg|_{\Sigma_n(x_k)} = 0 ; \quad \varphi^{(1)} \bigg|_{\Sigma_n(x_k)} = \varphi^{(2)} \bigg|_{\Sigma_n(x_k)} .
\]

It is assumed that each sub-layer of the waveguide possesses electro-elastic properties.

\[
\sigma_{ij} = c_{ijk} u_{n,k} + e_{ijk} \varphi^{m} ; \quad D_m = e_{mk} u_{n,k} - e_{mk} \varphi^{m} .
\]
\[
\begin{align*}
\mathbf{c}_{ijkl} \frac{\partial^2 \mathbf{u}^{(n)}_{ij}}{\partial x_k \partial x_m} + e_{ijm} \frac{\partial^2 \varphi_{nm}}{\partial x_j \partial x_m} &= \rho_n \frac{\partial^2 \mathbf{u}^{(n)}_{ij}}{\partial t^2} ; \\
\epsilon_{ijm} \frac{\partial^2 \mathbf{u}^{(n)}_{ij}}{\partial x_j \partial x_m} - \epsilon_{ijm} \frac{\partial^2 \varphi_{nm}}{\partial x_j \partial x_m} &= 0
\end{align*}
\]
(1.3)

the solution of which is studied in the near-surface areas. Making use of the known principles of formation and propagation of high-frequency wave signals, hypotheses of magneto (electro, thermo) elastic layered systems are introduced (hypotheses MELS – Magneto-Elastic Layered Systems) depending on the magnitude of the surface roughness.

\[
w_m(x, y, t) = f(h_m(x, y)) \left[w_2(x, h_2(x, t), t) - w_1(x, h_1(x, t), t) \right] + w_1(x, h_1(x, t), t)
\]
(1.4)

\[
\varphi_m(x, y, t) = f(h_m(x, y)) \left[\varphi_2(x, h_2(x, t), t) - \varphi_1(x, h_1(x, t), t) \right] + \varphi_1(x, h_1(x, t), t)
\]
(1.5)

The choice of surface exponential functions (SEF) in hypotheses

\[
f(h_m(x, y)) = \text{sh} \left[\alpha_3 k(y - h_1(x)) \right] / \text{sh} \left[\alpha_3 k(h_2(x) - h_1(x)) \right]
\]
(1.6)

in equations and in thermodynamic relationships of the problem ensures that the surface roughness is taken into account explicitly.

The introduction of hypotheses MELS makes possible to formulate a mathematical model for the wave propagation depending on external and internal surface roughness and physical and mechanical fields.

![Figure 2](image1.png)

Figure 2. Virtual allocation of roughness as a heterogeneous layer of variable thickness

![Figure 3](image2.png)

Figure 3. Piezoelectric waveguide, surface roughness which are filled with dielectric and electrical conductor materials

The propagation of an elastic shear wave signal in an isotropic dielectric waveguide (fig. 2) and the propagation of an electro-elastic wave signal when surface roughness is filled with an ideal conductor or dielectric (fig. 3) are studied thoroughly.

We also consider the mathematical model of joining the surfaces of two piezoelectric layers by ultrasonic welding or gluing with a third piezoelectric.

REFERENCES

MAPPINGS OF SPACES WITH AFFINE CONNECTION PRESERVING THE WEYL TENSOR

Kiosak V.A., Lesenko O.V.

Keywords: Mappings, spaces with affine connection, deformation tensor, Riemannian tensor.
AMS Subject Classification: 514.765.1+512.813.4

A space with affine connection A_n of a given dimension n is a differential manifold with every curve having an affine connection defined. Or in other words: for any point M and for any vector field in the vicinity of this point, absolute differential of a vector belonging to this field, if calculated in the point M for any curve passing through it, is a linear function of a vector of elementary translation along the curve.

Authors treat spaces with affine connections A_n without torsion, as follows

$$\Gamma^h_{ij}(x) = \Gamma^h_{ji}(x).$$

The space A_n belongs to class C^r ($A_n \in C^r$), if $\Gamma^h_{ij}(x) \in C^r$.

Here we treat two spaces with affine connection.

A one-to-one correspondence of points of spaces with affine connection A_n and \tilde{A}_n is called a mapping. Then in a system of coordinates common in respect to the mapping the following conditions exist:

$$\Gamma^h_{ij}(x) - \tilde{\Gamma}^h_{ij}(x) = P^h_{ij}(x)$$

here $\Gamma^h_{ij}, \tilde{\Gamma}^h_{ij}$ — objects with affine connection of spaces A_n and \tilde{A}_n respectively. In the following discussion the objects A_n will be denoted by a bar.

A system of curvilinear coordinates is called a system of coordinates common in respect to a mapping if the coordinates of respective points coincide.

The tensor $P^h_{ij}(x)$ is called a tensor of deformation of connection at a given mapping.

If

$$P^h_{ij}(x) \neq 0,$$

then the mapping is called nontrivial.

Let us mention that the deformation tensor is symmetrical in sense of covariant indexes. Or $P^h_{ij} = P^h_{ji}$ for torsion-free spaces with affine connection.

Theorem 1. When the space with affine connection A_n is mapped onto the space with affine connection \tilde{A}_n, Riemannian and Ricci tensors of spaces A_n and \tilde{A}_n are connected by an equation in a single coordinate system

$$\tilde{R}^h_{ijk} = R^h_{ijk} + \frac{1}{2}(\nabla_k P^h_{ij} - \nabla_j P^h_{ki} + \tilde{\nabla}_k P^h_{ij} - \tilde{\nabla}_j P^h_{ki}).$$

$$\tilde{R}_{ij} = R_{ij} + \frac{1}{2}(\nabla_\alpha P^\alpha_{ji} - \nabla_j P^\alpha_{i\alpha} + \tilde{\nabla}_\alpha P^\alpha_{ji} - \tilde{\nabla}_j P^\alpha_{i\alpha}).$$

Here R^h_{ijk} — Riemannian tensor and ∇ — a symbol of covariant derivative.
While for purposes of definition of mapping, we introduce a one-to-one correspondence, in fact we order the given pair of spaces with affine connection A_n and A_n by ascribing a sign for a deformation tensor. Any pair of spaces A_n and A_n has a correspondence defined by objects of connections of these spaces. On the other hand, object of connection A_n and deformation tensor characterize connection of space A_n. It permits to introduce a mapping that we propose to name shortened in relation to a given mapping. Further we will call it a shortened mapping.

Object Γ^h_{ij} is constructed following a rule

$$
\Gamma^h_{ij} = \Gamma^h_{ij}(x) + \frac{\lambda}{1 + \lambda} P^h_{ij}(x), \quad \lambda = \text{const} > 0.
$$

(1)

It characterizes the connection of a given space with affine connection A_n.

Theorem 2. When spaces A_n and A_n admit a mapping that corresponds to deformation tensor P^h_{ij}, then there exists a shortened mapping, in respect to which Riemannian tensor corresponds to limitations:

$$
\lambda R^h_{ijk} = R^h_{ijk} + \frac{\lambda}{1 + \lambda} (\nabla_k P^h_{ji} - \nabla_j P^h_{ki} + \nabla_j P^h_{ki} - \nabla_j P^h_{ki}).
$$

When $\lambda = 1$ then such a mapping is called shortened in half or a half-mapping and the connection is called medium.

Theorem 3. When spaces A_n and A_n admit the mapping that corresponds to the deformation tensor P^h_{ij}, then there exists the half-mapping with Riemannian tensor that satisfies conditions:

$$
\bar{R}^h_{ijk} = R^h_{ijk} + \frac{\bar{c}}{\bar{c}} \nabla_k P^h_{ji} - \nabla_j P^h_{ki}.
$$

Contracting the latter with respect to indices i and j, we get

$$
\bar{R}^a_{ijk} = R^a_{ijk} + \frac{\bar{c}}{\bar{c}} \nabla_k \tau_j - \nabla_j \tau_k,
$$

where $\tau_i \equiv f_{ij} P^a_{ai} = \Gamma^a_{ij} - \Gamma^a_{ji}$.

A manifold A_n with a symmetric affine connection is called equiaffine manifold if the Ricci tensor is symmetric.

Since in the case of symmetric connection $R_{ij} - R_{ji} = R^a_{ai}$. A manifold A_n with a symmetric affine connection is an equiaffine manifold if and only if in any coordinate system (x^i) there exists a function $f(x)$ satisfying

$$
\Gamma^a_{ia} = \partial_i f(x).
$$

When the spaces are equiaffine and the Ricci tensors are symmetrical then we get the equation:

$$
\bar{c} \nabla_k \tau_j - \nabla_j \tau_k = 0.
$$

Let us formulate the theorem:

Theorem 4. If the Weyl tensor is preserved in the course of the mapping of spaces with affine connection, the deformation tensor holds the conditions:

$$
\frac{\bar{c}}{\bar{c}} \nabla_k P^h_{ji} - \frac{\bar{c}}{\bar{c}} P^h_{ki} = \frac{1}{n - 1} \left(\delta^h_k (\bar{c} P^a_{ji} - \bar{c} P^a_{ai}) - \delta^h_j (\bar{c} P^a_{ki} - \bar{c} P^a_{ai}) \right) -
$$

$$
- \frac{1}{n + 1} \left(\delta^h_i (\bar{c} P^a_{ak} - \bar{c} P^a_{ai}) - \frac{1}{n - 1} \left(\delta^h_k (\bar{c} P^a_{ai} - \bar{c} P^a_{aj}) - \delta^h_j (\bar{c} P^a_{ai} - \bar{c} P^a_{aj})) \right) \right)
$$

206
and for equiaffine spaces

\[
\frac{c}{\nabla_k P^h_{ji} - \nabla_j P^h_{ki}} = \frac{1}{n-1} \left(\delta^h_j (\nabla_{\alpha} P^h_{ji} - \nabla_{\alpha} P^h_{ki}) - \delta^h_i (\nabla_{\alpha} P^h_{ji} - \nabla_{\alpha} P^h_{ki}) \right).
\]

For further investigation the methods developed by [1] and [2] can be applied.

Let us denote the difference between the tensors of Riemannian spaces \(\bar{\gamma} \) and \(\gamma \) by a mapping \(P_{ijkl} \), i.e., \(P^{h}_{ijkl} - \) deformation of the Riemannian tensors in the course of a mapping

\[
R^h_{ijkl} - R^h_{ijkl} = P^h_{ijkl}
\]

or, taking into account the latter,

\[
P^h_{ijkl} = \frac{1}{2} \left(\nabla_k P^h_{ij} - \nabla_j P^h_{ki} + \nabla_i P^h_{kj} - \nabla_j P^h_{ik} \right).
\]

We note that the tensor \(P^h_{ijkl} \) satisfies the conditions

\[
P^h_{ijkl} + P^h_{iklj} = 0 \quad \text{and} \quad P^h_{ijlk} + P^h_{ijkl} = 0.
\]

The theorem is proved.

Theorem 5. If, when it is taken in an arbitrary coordinate system, the tensor \(P^h_{ijkl} \) is such that

\[
P^h_{232} = 0 \quad \text{or} \quad P^h_{234} = 0 \quad \text{for} \quad n > 3
\]

then this tensor is written as follows

\[
P^h_{ijkl} = \delta^h_i (P^h_{jk} - P^h_{kj}) + \delta^h_j P^h_{ik} - \delta^h_k P^h_{ij},
\]

where \(P^h_{ij} \) is any tensor.

Let us denote that only the algebraic properties \(P^h_{ijkl} \) have been used for the proof of theorems, so it is valid for an arbitrary tensor that satisfies the conditions (2), in particular for the Weyl tensor \(W^h_{ijkl} \). There is the theorem:

Theorem 6. If, when it is taken in an arbitrary coordinate system, the tensor \(P^h_{ijkl} \) is such that

\[
P^h_{232} = 0 \quad \text{or} \quad P^h_{234} = 0 \quad \text{for} \quad n > 3
\]

then the tensor of the projective curvature of Weil is preserved in the course of the mapping.

The latter theorems make it possible to formulate the conclusion of the following type

Corollary. If the spaces of affine connection have the same values of the component of the Riemannian tensors \(R^h_{ijkl} \) (or \(R^h_{ijkl} \) for \(n > 3 \)) and \(barR^h_{232} \) (or \(barR^h_{234} \)), then, when they are mapped onto each other, the tensor of the Weil projective curvature is preserved.

There is a theorem

Theorem 7. If, when taken in an arbitrary coordinate system, the tensor \(P^h_{ijkl} \) is such that

\[
P^h_{232} = 0 \quad \text{or} \quad P^h_{234} = 0 \quad \text{for} \quad n > 3
\]

then in the course of a mapping the Riemannian and Ricci tensors satisfy the conditions

\[
\nabla_{[lm]} R^h_{ijkl} = \nabla_{[lm]} R^h_{ijkl} + \delta^h_{[m} P^h_{l]i} R^h_{ijkl} + \delta^h_{[i} P^h_{k(l} R^h_{m]lj} - \delta^h_{l} P^h_{k[j} R^h_{i]lm} +
\]

\[
+ P^h_{[m} R^h_{l]ijk} + P^h_{jm} R^h_{ijkl} - P^h_{jl} R^h_{imk} + P^h_{km} R^h_{ijl} - P^h_{kl} R^h_{ijm};
\]

\[
\nabla_{[lm]} R^h_{ij} = \nabla_{[lm]} R^h_{ij} - (n-1) P^h_{[m} W^h_{ij]lm}.
\]

Quasilinear model of multicomponent materials creep and strength

Maslov B.P.

Key words: quasilinear viscoelasticity, multicomponent materials, long-term strength.

AMS Subject Classification: 74D10

Polymer and metal matrix composites used in modern technology structures can experience fatigue damage and failure due to the repeated loads [1]. Theoretical estimation of remaining lifetimes and residual strength is an important problem of solid mechanics and mathematical modelling. The response of composite structures under fatigue loading is a problem that has led to the development of a number of fatigue prediction models. The focus of this research is on the strength degradation effects, continuum damage mechanics approach, and micromechanics model capabilities [1-3].

A commonly used approach in fatigue life predictions is to use stress versus life, known as $S-N$ curves. The constant amplitude cyclic loads are characterized by the mean stress level σ_m and the amplitude σ_a of the stress variations around the mean. This is alternatively expressed in terms of the maximum stress and the stress ratio or R-ratio. The situation is more complex in the case of heterogeneous media, strong stress triaxiality, and rheology time presence. For the analysis of creep fatigue problems in the framework of the quasi-linear viscoelasticity model, we use the correspondence principle, which is different from that used in the linear theory [4]. In this case, there is no assumption of an analogy between the defining relations of nonlinear elasticity and nonlinear viscoelasticity.

Let t be the time, x, $\sigma(t)$, and $e(t)$ be the position, the viscoelastic stress, strain, and $u(t)$-the current displacement in three-dimensional case, respectively. We assume that the viscoelastic material possesses instantaneous elastic response σ^e. The model requires that the loading curves and the unloading curves must fall in the same curve, and the stress and the strain must return to the origin simultaneously. It follows that there exists a strain energy function with the property that [4]

$$W = W(e^r, x, t), \quad \sigma^r = \frac{\partial W}{\partial e^r}. \quad (1)$$

These equations define the nonlinear elastic constitutive relations. To formulate the correspondence principles, we write down the constitutive equations of quasi-linear viscoelasticity between the current, viscoelastic stress $\sigma(t)$ and $\sigma^r(t)$ the instantaneous (elastic) stress

$$\sigma^r(t) = (g * d\sigma)(t) = \int_{-\infty}^{t} g(t-t_\tau) d\sigma(t_\tau), \quad g = J(t) / J(0), \quad (2)$$

and constitutive relations for creep

$$e^r(t) = (h * de)(t) = (e * dh)(t), \quad h(t) = E(t) / E(0). \quad (3)$$

Quasi-linear viscoelasticity allows generalizing the classical approaches in mechanics of composites [5]. We use here the enhanced viscoelastic model with internal parameter of stored damage $D(t)$ [4]. The local and overall constitutive relations between the infinitesimal strain $e(t)$ and the Cauchy stress $\sigma(t)$ fields can be expressed as hereditary integrals. At the micro-scale of individual constituents these are presented by

$$e(x, t) = (h_f * e^r)(x, t), \quad x \in \nu_f. \quad (4)$$
Space coordinate \(x \) denotes a material point within any phase \(r \), \(r \in [1, N] \) of the multi-component material, and \((f \ast dg)(t)\) stands for the Stieltjes convolution product. Similarly, the macroscopic or effective constitutive relations can be written as

\[
\langle e(t) \rangle = \langle \frac{\partial U}{\partial \sigma} \rangle(t).
\]

Here \(\langle e(t) \rangle \) and \(\langle \sigma(t) \rangle \) are the macroscopic, or averaged, strain and stress, the angle brackets denote spatial averaging over a representative volume element of the material. Four order tensors \(g(t) \) and \(h(t) \) are the local in phase, and \(\mathbb{H}(t) \) effective creep reduced functions of the composite, respectively.

The strain equivalence hypothesis, which states that any deformation behavior, whether uniaxial or multi-axial, of a damaged material is represented by the constitutive laws of the virgin material in which the usual stress \(\sigma(t) \) is replaced by the so-called effective stress \(\bar{\sigma}(t) \), which enables the definition of an effective stress \(\bar{\sigma}(t) = \sigma(t)(1 - D)^{-1} \).

In our model, the viscoelastic strain energy function \(W(t) \) is coupled with damage parameter \(D \). The expression of \(W(e, t) \) is defined as [4]

\[
2W(e, t) = (1 - D(t)) \int_{-\infty}^{t} \frac{\partial e(t_1)}{\partial t_1} E(2t - t_1 - t_2) \frac{\partial e(t_2)}{\partial t_2} dt_1 dt_2,
\]

where \(E(t) \) is relaxation tensor. The internal scalar variable \(D \) models the damage, which is assumed to be isotropic and varies between 0 for undamaged material and 1 under complete failure. The thermodynamic force associated with \(D \) is denoted \(Y = -\partial W / \partial D \). The constitutive equation may be written in the compliance formulation to describe creep phenomena

\[
2(1 - D(t)) U(s, t) = \int_{-\infty}^{t} \frac{\partial \sigma(t_1)}{\partial t_1} J(2t - t_1 - t_2) \frac{\partial \sigma(t_2)}{\partial t_2} dt_1 dt_2.
\]

According to (5) in quasi-linear viscoelasticity, for the proposed viscoelastic model coupled with damage the expression of stress is written as

\[
\sigma(t) = (1 - D(t)) \int_{-\infty}^{t} h(t - t_1) \frac{\partial W(e, t_1)}{\partial t_1} dt_1.
\]

The stress \(\sigma(t) \) is thus related to the damage variable \(D(t) \) and to the whole history of viscoelastic strains \(e(t) \) throw the energy \(W(e, t) \) via Boltzmann’s hereditary integral. Note that the constant volume concentration of phases remains unchanged after transforming from the time domain to the Carson domain. For numerical analysis required we use the Fortran95 programs from NAG-Fortran library. Statistical averaging of expressions is performed to define the mean deformation of short inclusions randomly oriented in volume. The result is that overall response of such a composite is isotropic [5]. Stress concentration near inclusions and overall creep response are modeled in the three-component metal matrix composite with aluminum viscoelastic matrix [1].

In this work, we use Hashin’s failure criteria to determine the fiber and matrix failures in a multi-component composite. Equations that summarize the failure envelopes for fiber and matrix failure are obtained from Hashin’s criteria. Short fibers and matrix failure in tension will be

\[
\left(\frac{\sigma_{11}^2}{X_T} \right)^2 + \frac{\sigma_{12}^2}{S_{12}^2} = 1, \quad \left(\frac{(\sigma_{22} + \sigma_{33})}{Y_T^2} \right)^2 + \frac{\sigma_{23}^2 - \sigma_{22}\sigma_{33}}{S_{23}^2} + \frac{\sigma_{12}^2 + \sigma_{13}^2}{S_{12}^2} = 1.
\]

In equations (10), \(X_T \) and \(X_c \) are the longitudinal tensile and compressive strengths, \(Y_T \) and \(Y_c \) are the transverse tensile and compressive strengths, \(S_{12} \) is the in-plane shear strength, and \(S_{23} \) is the out of plane shear strength. An instantaneous matrix stiffness degradation scheme is used for the progressive failure when matrix or fiber failure is detected. We evaluate here the residual stiffness
of the representative volume following failure in each mode (10). In other words, the fatigue model used here is based on stiffness and strength reduction directly applied to the engineering stiffness constants and strengths that are RVE properties. To quantify and visualize the level of damage, a measure of the relative reduction in the stiffness/strength parameter due to damage \(D_p \) is calculated using equation (10)

\[
D_p = 1 - \frac{P}{P_{\text{init}}}.
\]

(11)

The non-linear cumulative damage rule for isotropic viscoelastic composite materials is used here. Scalar damage variable \(D(t) \) evolves with the number of cycles. The evolution of damage is governed by increment methods

\[
\int_{D_{k-1}}^{D_k} dD = \int_0^N \left[1 - (1 - D)^{\alpha_f} \right] \beta_f (\frac{\sigma_k}{1 - D})^{\beta_f} dN.
\]

(12)

Here, \(N \) is the number of cycles at the current stress state \(\sigma_k \), \(D_k \) and \(D_{k-1} \) are the amount of damage after the current, and previous cycles, respectively, \(\beta_f \) is a material parameter, and \(\alpha_f \) is a function of the current triaxial stress state [4]. Some numerical examples were analyzed. Properties of fibers and matrix are presented in Table 1.

<table>
<thead>
<tr>
<th>Material</th>
<th>(E), GPa</th>
<th>(\nu_1)</th>
<th>(\nu_2)</th>
<th>(\nu_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boron</td>
<td>467.3</td>
<td>0.361</td>
<td>-840.0</td>
<td>-420.0</td>
</tr>
<tr>
<td>SiC</td>
<td>440.3</td>
<td>0.171</td>
<td>-227.2</td>
<td>31.5</td>
</tr>
<tr>
<td>Al2024</td>
<td>80.34</td>
<td>0.296</td>
<td>-115.0</td>
<td>-160.5</td>
</tr>
</tbody>
</table>

The overall complex viscoelastic characteristics are obtained for composite with Al2024 matrix. Numerical method of the FFT [3] was used. It should be noted that results of fatigue life prediction with the model proposed are in an acceptable correlation with known from literature experimental data. As a conclusion, we may notice that the viscoelastic model with internal parameter of stored damage suggested here will be useful for long-term durability prediction and nondestructive control problems of composite elements. Numerical experiments were carried out with the aim of choosing the optimal structure and composition of isotropic multicomponent materials [1,2] for the possible control of frequency, damping properties and long-term strength under given technological constraints.

DYNAMICS OF THE SYSTEM WITH LIMITED POWER SUPPLY HAVING MISES GIRDER IN VICINITY OF RESONANCE

Onizhuk A.O., Mikhlin Yu.V.

Keywords: System with limited power supply, resonance behavior.
AMS Subject Classification: 70K30, 34C25.

The systems with a limited power-supply are characterized by interaction of source of energy and elastic sub-system which performs motions is under action of the source. Such systems are named also as the non-ideal systems. One of the most important effects observed in such systems is the Sommerfeld effect [1], when the stable resonance regime with large amplitudes is appeared in the elastic sub-system, and the large part of the vibration energy passes from the energy source to the resonance vibrations. Resonance dynamics of such systems was first analytically described by V.O.Kononenko [2]. Investigations on the subject were presented in different publications, in particular, in overviews [3-5]. The Mises girder as dynamical absorber is analyzed in [6]. Here a resonance behavior of a system containing the linear oscillator, the Mises girder as absorber and the source of energy is analyzed. Resonance regimes of vibrations near stable equilibrium position are considered, namely, vibrations near the resonance 1:1 between the linear oscillator and the motor, and near the resonance 1:1 between the absorber and the motor. The multiple scale method is used. Outcome from the vibrations near the equilibrium positions to the snap-through motion is shown.

A motion of the system is determined by variables x, y and φ, corresponding to motions of the linear oscillator, the Mises girder, and to the motor rotation respectively. There is here an interaction of the elastic sub-system and the energy source. The motor acts to the elastic sub-system having a mass M by the crank shaft of the radius r. Besides, the system contains the Mises girder of the mass m as absorber which is attached to the linear sub-system and to the motionless ground by springs of the length L. The angle γ corresponds to two girder’s equilibrium states. Potential and kinetic energies can be written as

$$
\Pi = \frac{1}{2} \sum_{i=0}^{3} c_i \Delta l_i^2, \quad T = \frac{1}{2} \left(M \dot{x}^2 + m \dot{y}^2 + I \dot{\varphi}^2 \right),
$$

where: $\Delta l_0 = x,$ $\Delta l_1 = x - r \sin \varphi,$ $\Delta l_2 = l - \sqrt{(l \cos \gamma - x)^2 + y^2},$ $\Delta l_3 = l - \sqrt{(l \cos \gamma)^2 + y^2}.$

One introduces $K(\dot{\varphi})$ as the driving moment of the energy source, and $H(\dot{\varphi})$ as the moment of resistance to rotation. The driving moment and the moment of resistance are taken as linear ones. The small parameter ε is introduced to equations of motion. This parameter characterizes a smallness of the angle γ, corresponding to the girder’s stable equilibrium, the ratio μ of the absorber mass and the elastic sub-system mass, the values of springs stiffness $c_2, \text{ and } c_3$, the dissipation and the radius of the shaft r. Besides, it is assumed that the vibration components in function of the angular velocity are small with respect to the constant component. Then the multiple scales method is used to describe the system behavior near
resonances between the rotation frequency and two fundamental frequencies, namely, fundamental
frequency of the elastic sub-system ω_u (the first resonance), and fundamental frequency of the
Mises girder ω_w (the second resonance). To analyze stability of the obtained stationary regimes
corresponding equations in variations are analyzed.

Effect of absorption near the first resonance is presented in Fig. 1. Vibrations of the elastic
sub-system and rotations of the engine both with the absorber, and without one are shown Fig. 1.
The system parameters are chosen, in particular, as the following: $\mu = 0.025$; $\gamma = \pi/6$; $L = 1$;
$r = 0.03$; $q = 1.697$; normalized value of the spring stiffness is essentially smaller than one of the
elastic sub-system. We can see from the Fig. 1 that in presence of the Mises girder amplitudes
of vibrations of the elastic sub-system are almost three times less than ones of the sub-system
without absorber. It is possible to obtain both essential reduction of the elastic vibrations, and
fast passage of the motor to the maximal frequency of rotation.

Conclusions

Resonance behavior of the non-ideal system which contains the snap-through truss (Mises
girder) as absorber is considered. Resonances between the motor rotation frequency and two
fundamental frequencies are analyzed. Effect of the absorber to reduce elastic vibrations is
shown.

1. 1. Sommerfeld A. Beiträge zum dynamischen ausbau der festigkeitslehre / A. Sommerfeld A. // Physikal
Zeitschr. 3 – 1902. - P. 266-268.
MODELING OF SH-WAVES SCATTERING
BY A THIN PIEZOELECTRIC INCLUSION IN AN ELASTIC HALF-SPACE

Key words: boundary integral equation, piezoelectric inclusion, SH-waves scattering

AMS Subject Classification: 74S15

Computational method for investigating far-zone wave fields scattered from a piezoelectric inclusion in an elastic half-space is proposed. Parameters of such wave fields are important for design and ultrasonic nondestructive testing of new smart materials. The method is based on combination of the boundary integral method and singular perturbations approach for modeling of the inclusion [1, 2].

Consider an elastic half-space containing a thin hexagonal piezoelectric inclusion under the anti-plane dynamic loading. The geometry of inclusion in Cartesian coordinates $x_2 \leq H, \quad |x_1| \leq \infty$ is as follows

$$W_\varepsilon = \{(x_1, x_2) : |x_1| < a, \quad 2| x_2 | \leq h(x_1)\} ,$$ (1)

where H is the distance from the median line of inclusion to the half-space surface; $h(x_1)$ and a are the thickness and half-length of inhomogeneity.

It is assumed that the piezoelectric material of inclusion has a pooling direction perpendicular to the plane x_1x_2. The relative thickness of the inclusion is characterized by the small dimensionless parameter $\varepsilon = a^{-1} \max_{|x_1|=a} h(x_1) \ll 1$.

The composite is subjected to the incident harmonic SH-wave $u^{in}(x)$

$$u^{in}(x) = u_0 \exp[i k (x_1 \cos \theta_{in} + x_2 \sin \theta_{in})] ,$$

$$u^{r}(x) = u_0 \exp[i k (x_1 \cos \theta_{in} - (x_2 - 2H) \sin \theta_{in})] ,$$ (2)

where u_0, θ_{in}, and k are the amplitude, angle of incidence and wave number; $u^{r}(x)$ are the displacements reflected from the half-space surface without heterogeneity.

Perfect mechanical contact and electrical insulation are prescribed on the interface $x \in \partial W_\varepsilon$ between inclusion and matrix.

The surface of the half-space is stress-free and scattered wave fields $u^{s}(x)$ satisfy radiation condition on infinity:

$$u^{s}(x) \approx \frac{i}{4} \sqrt{\frac{2}{\pi kr}} \exp(i kr - i \pi / 4) f(\theta) , \quad r = |x| \to \infty ,$$ (3)

where $f(\theta)$ is the complex amplitude of scattering; (r, θ) are polar coordinates $x_1 = r \cos \theta$, $x_2 = r \sin \theta$.

It is assumed that materials of inclusion and surrounding matrix are non-contrast and
parameter γ falls within the interval $\sqrt{\varepsilon} \leq \gamma \leq 1/\sqrt{\varepsilon}$. Accordingly dynamic interaction between composite components is described by effective boundary conditions [1]:

$$
\Psi(x_1) = (1-\gamma) \frac{\partial}{\partial x_1} h(x_1) \frac{\partial U^{in}(x)}{\partial x_1} + \left(k^2 - \gamma k_0^2 \right) h(x_1) U^{in}(x),
$$

$$
\Phi(x_1) = \frac{1-\gamma}{\gamma} h(x_1) \frac{\partial U^{in}(x)}{\partial x_2}, \quad |x_1| < a, \quad x_2 = 0; \quad (4)
$$

$$
U^{in}(x) = u^{in}(x) + u^r(x), \quad \gamma = \gamma(1 + \eta^2),
$$

where $\Phi(x_1)$ and $\Psi(x_1)$ are the jumps of displacements and their derivatives with respect to x_2 on the middle line of inclusion.

The boundary integral representation for scattered field is given by:

$$
u^s(x) = \int_a^{-a} \left[\Phi(x_1^0) \frac{\partial G_T(x,x^0)}{\partial x_2^0} - \Psi(x_1^0) G_T(x,x_0) \right] dx_1^0;
$$

$$
G_T(x,x_0) = \frac{i}{4} \left[H_0^{(1)}(kR_0) + H_0^{(1)}(kR_1) \right], \quad (5)
$$

$$
R_0 = |x-x_0|, \quad R_1 = |x-x_1|, \quad x_0 = (x_1^0, x_2^0), \quad x_2^0 = 0,
$$

where $G_T(x,x_0)$ is the Green function for the half-plane; $H_0^{(1)}(x)$ is the Hankel function of the first kind; x^0 and x^1 are Cartesian coordinates of the source point and its mirror image with respect to the surface of the half-space.

The thickness of the inclusion $h(x_1)$ is represented by function

$$
h(x_1) = \varepsilon a \left(1 - p \right)^{\delta_+} \left(1 + p \right)^{\delta_-}, \quad x_1 = ap, \quad (6)
$$

with parameters δ_+, δ_- which characterize the form of inclusion tips.

Substituting expressions (4) into the representation (5) and taking into account formulas (2) and (6), we obtain amplitude of scattering $f(\theta)$:

$$
f(\theta) = \left(\frac{1-\gamma}{\gamma} \sin \theta \sin \sin (k_\ast H \sin \theta) \sin (k_\ast H \sin \theta_m) + \left(1-\gamma \right) \cos \theta \cos \left(\frac{\rho_0}{\rho} - 1 \right) \cos (k_\ast H \sin \theta) \cos (k_\ast H \sin \theta_m) \right) J(\theta),
$$

$$
J(\theta) = \int_0^1 \left(1 - p \right)^{\delta_+} \left(1 + p \right)^{\delta_-} \exp \left(ik_\ast p \left(\cos \theta_m - \cos \theta \right) \right) dp,
$$

where $k_\ast = ka$ and $H_\ast = H/a$ are normalized wave frequency and relative depth of the inclusion.

Dependencies of the scattering amplitude upon mechanical and geometric parameters of the composite constituents are analyzed.

This research work was carried out at the expense of the budget program "Support to the development of priority areas of academic research" (КПКВК 6541230).
ON THREE FIRST APPROXIMATIONS IN STUDYING THE PLANE LONGITUDINAL SOLITARY WAVE

Rushchitsky J.

The problem on propagation of plane longitudinal solitary wave (P-wave) is considered within the framework of nonlinear theory of elasticity basing on the most often used and well linked with engineering materials Murnagahan five-constant model [1]. Usually the basic nonlinear wave equation is derived and written in displacements. Then it includes linear and quadratically nonlinear parts [1]

$$\rho u_{st} - (\lambda + 2\mu) u_{,st} = N_1 u_{,t} u_{,t} + (c_s^2) u_{,st} = (N_1/\rho) u_{,t} u_{,t},$$

where $N_1 = [3(\lambda + 2\mu) + 2(A + 3B + C)]$, ρ is density, u_k are displacements; λ, μ, A, B, C are elastic constants of Murnagahan model, $c_s = \sqrt{(\lambda + 2\mu)/\rho}$ is velocity of linear P-wave.

The equation (1) was analyzed by different approximate approaches (methods) among of them the method of successive approximations was used most often. It works quite well for harmonic waves. According to this method, the 1st approximation is chosen as solution of corresponding linear wave equation

$$u_{t,t} - (v_k^2) u_{,t}^{(0)} = 0$$

and has the form

$$u(x,t) = u_{t,0}\cos(k_x x_t - \omega t).$$

The 2nd approximation is found as solution of inhomogeneous linear wave equation

$$u_{t,t}^{(2)} - (v_k^2) u_{,t}^{(2)} = (N_1/\rho) u_{t,0}^{(2)} u_{,t}^{(0)}$$

and is characterized by the 2nd harmonics

$$u_{1}^{(2)}(x_t, t) = x_t \left[\frac{N_1}{8(\lambda + 2\mu)}(u_{t,0})^2 k_x^2 \right] \cos 2(k_x x_t - \omega t).$$

The 3rd approximation is evaluated from equation

$$u_{t,t}^{(3)} - (v_k^2) u_{,t}^{(3)} = (N_1/\rho) u_{t,0}^{(3)} u_{,t}^{(2)}$$

and is characterized by the 4th harmonics [1]

$$u_{1}^{(3)}(x_t, t) = u_{t,0} (M_x^3) (x_t)^3 \left[\frac{-8 + \frac{5}{3} \sin 4(k_x x_t - \omega t) + \left(\frac{4}{3} + \frac{11}{8(k_x^3)(x_t^3)} \right) \cos 4(k_x x_t - \omega t) }{2k_x x_t} \right].$$

Thus, the containing of first 3 approximations solution

$$u_t(x_t, t) = u_{t,0}^{(0)}(x_t, t) + u_{t,0}^{(1)}(x_t, t) + u_{t,0}^{(2)}(x_t, t)$$

is described by the 1st, 2nd, and 3rd harmonics and shows in this way the evolution of the initially exponential wave profile. This easiness in obtaining the solution is provided by the fact that all harmonics are the solutions of the corresponding linear wave equation and product of derivatives of exponential function is still the exponential function.
So, harmonics are doubled – next harmonics is the 8th one. The main mechanical effect consists in dominating the first harmonics on the very short distance of propagation, then the second harmonics is dominating on the not very short distances, and finally the fourth harmonics becomes dominating one.

The situation is changed when the initial profile $F(ax_i)$ is described by a function of not so simple type what is characteristic for the solitary wave. The common assumption is that the wave is propagated with the profile

$$u(x_i,t) = F[a(x_i - vt)]$$

depending on the phase variable $\sigma = a(x_i - vt)$.

In this case, the 2nd approximation has to be evaluated as the solution of inhomogeneous linear wave equation

$$u_{i,tt}^{(2)} - (v_i)^2 u_{i,11}^{(2)} = a^3 \left(N_i/\rho\right) F''[a(x_i - vt)] F'[a(x_i - vt)].$$

But evaluation of this solution becomes the complicate problem owing some troubles with representation of product $F''F''$.

These troubles can be obviated by using the approach based on another representation of basic nonlinear wave equation (1)

$$u_{i,tt} - (v_i)^2 \left[1 + \alpha u_{i,1}\right] u_{i,11} = 0, \quad \alpha = \left[N_i/(\lambda + 2\mu)\right]. \quad (2)$$

It is assumed further that the solitary wave with initial profile $F(ax_i)$ propagates in the same form

$$u(x_i,t) = F[a(x_i - vt)],$$

where $\sigma = a(x_i - vt)$ is the phase variable, $v = v_i \sqrt{1 + \alpha u_{i,1}}$ is the changing velocity of propagation of nonlinear wave.

On the next step, the root $\sqrt{1 + \alpha u_{i,1}}$ can be expanded into the series with condition that $\alpha u_{i,1}$ is a small quantity, that is,

$$|\alpha u_{i,1}| \ll 1$$

The case when only two first approximations are saved

$$\sqrt{1 + \alpha u_{i,1}} = 1 + (1/2) \alpha u_{i,1}$$

is considered recently in publication [2], in which the approximate representation of solitary wave has a form

$$u_i(x_i,t) \approx F \left[a(x_i - vt - (1/2)\alpha v_{i,1} u_{i,1}^t)\right] = F \left[a(x_i - vt) - (1/2)\alpha av_{i,1} u_{i,1}^t\right]. \quad (3)$$

The solution (3) can be expanded into Taylor series by the small parameter $|\delta = (1/2)\alpha av_{i,1} u_{i,1}^t| \ll 1$ within the neighborhood of the classical constant value $\sigma = a(x_i - vt)$ and with saving only two first terms

$$u_i(x_i,t) \approx F(\sigma) + F'_{i,1}(\sigma) a \delta = F(\sigma) - (1/2)\alpha av_{i,1} u_{i,1}^t \left[F'_{i,1}(\sigma)\right]^2. \quad (4)$$

The presented approximate representation of solution (4) has a general character. It describes for different initial profiles $F(x_i)$ the one and the same nonlinear effect – the initially linear form of solution (the first harmonics in the case of harmonic profile) is complemented by the generated by non-linearity of material part (the second harmonics in the case of harmonic profile). From point of view of wave mechanics, a presence of this new part that is increased with time of propagation of wave means the distortion of wave initial profile.
Thus, the shown above approach permits to evaluate two first approximations through the representing of initial wave profile without the procedure of solving the inhomogeneous wave equation with the very complicate right side part (what is necessary in the classical method of successive approximations).

Now some generalization of the based on smallness of parameter \(\delta = -(1/2) \alpha v_1 u_{1,1} \) approach can be considered. The approximate representation

\[
\sqrt{1 + \alpha u_{1,1}} = 1 + (1/2) \alpha u_{1,1} - (1/8) \alpha^2 (u_{1,1})^2
\]

can be treated as saving the first three approximations in analysis of equation (2). In this case, the variable velocity of solitary wave is as follows

\[
v = v_1 [1 + (1/2) \alpha u_{1,1} - (1/8) \alpha^2 (u_{1,1})^2]
\]

and the approximate solution has a more complicate form

\[
u_i(x_1, t) \approx F \left\{ a \left(x_1 - v_1 t \right) - (1/2) t \alpha v_1 u_{1,1} \left[1 - (1/4) \alpha v_1 u_{1,1} \right] \right\}.
\]

An assumption on smallness of expression \(\delta^* = -(1/2) t \alpha v_1 u_{1,1} \left[1 - (1/4) \alpha v_1 u_{1,1} \right] \) permits the used above expanding into the Taylor series by the small parameter \(\delta^* \) within the neighborhood of the classical constant value \(\sigma = a \left(x_1 - v_1 t \right) \) and with saving only two first terms

\[
u_i(x_1, t) \approx F \left(\sigma \right) - F'_i \left(\sigma \right) a^2 \left\{ (1/2) t \alpha v_1 F'_i \left(\sigma \right) \left[1 - (1/4) \alpha a v_1 F'_i \left(\sigma \right) \right] \right\} =
\]

\[
\quad = F \left(\sigma \right) - (1/2) \alpha a^2 v_1 t \left[F'_i \left(\sigma \right) \right]^2 \left[1 - (1/4) \alpha a v_1 F'_i \left(\sigma \right) \right].
\]

Thus, the third approximation (6) includes an additional factor \(\left[1 - (1/4) \alpha a v_1 F'_i \left(\sigma \right) \right] \) that introduces into the characteristic for first two approximations symmetric form of distortion the antisymmetric change of the initial profile wave shape. An appearance of new summand that introduces into the solution some asymmetry is characteristic for the initially cubically nonlinear wave equations [1], But the initial wave equation in the case in hand is quadratic nonlinear one. Therefore, the term “third approximation” has to be used sufficiently conditionally.

It should be noted also that approximation (6) contains the quadratic and cubic nonlinearities what in the case of harmonic initial profile could mean a presence of the 1st, 2nd, and 3rd harmonics. This shows some disagreement between described above two different approaches.

The degree of antisymmetric distortion can be seen in the numerical modeling that needs a knowledge of concrete values of physical constants of engineering materials what is presented in a row of scientific publications (see, for example, [3-5]).

The main conclusion from presented study of propagation of solitary longitudinal plane wave is that the used approach based on smallness of gradients of displacement gives a new tool for analysis of solitary waves.

ON COMPARATIVE ANALYSIS OF EVOLUTION OF CYLINDRICAL HARMONIC AND SOLITARY WAVES

Rushchitsky J., Sinchilo S., Symchuk Ya., Yurchuk V.

The harmonic in time and solitary cylindrical waves are studied. Their propagation in the hyper-elastic medium is described by the nonlinear wave equation relative to the radial displacement [1]

\[
\left(u_{r,r} + \frac{u_r}{r} \right)_t - \frac{\rho}{\lambda + 2\mu} \frac{u_r}{r} = -\bar{N}_1 u_{r,r} - \bar{N}_2 \frac{1}{r} u_{r,r} + \bar{N}_3 \frac{1}{r^2} u_{r,r} - \bar{N}_4 \frac{1}{r^3} (u_r)^2 - \bar{N}_5 \frac{1}{r^4} (u_r)^2,
\]

(1)

They propagate from the cylindrical cavity of radius \(r_0 \), when the harmonic in time radial displacement \(u_r (r_0,t) = u_{r_0} e^{i\omega t} \) (harmonic wave) or the displacement pulse of sufficiently arbitrary form \(u_r (r, t = 0) = F(r) \) (solitary wave) are applied to the cavity.

First the harmonic wave is considered. Let us use the method of successive approximations. Then in the linear case (in the first approximation), this wave is given analytically by the solution including the Hankel functions of the first kind and zero order

\[
\left\{ \begin{array}{l}
\bar{N}_1 = \left[3 + \frac{2(A + 3B + C)}{\lambda + 2\mu} \right], \\
\bar{N}_2 = \frac{\lambda + 2B + 2C}{\lambda + 2\mu}, \\
\bar{N}_3 = \frac{\lambda}{\lambda + 2\mu}, \\
\bar{N}_4 = \frac{2\lambda + 3\mu + A + 2B + 2C}{\lambda + 2\mu}, \\
\bar{N}_5 = \frac{2\lambda + 3\mu + A + 2B + C}{\lambda + 2\mu}.
\end{array} \right.
\]

The solution as first two approximations is as follows [1-3]

\[
u^{(1)}_r (r,t) = u_{r_0} H^{(1)} (k_L r) e^{i\omega t},
\]

(2)

where \(u_{r_0} \) is the arbitrary amplitude factor, determined by the boundary condition on the cavity surface

\[
u_{r_0} = -\frac{p_r k_L}{k_L (\lambda + 2\mu) H^{(1)} (k_L r_0) - \frac{2\mu}{r_0} H^{(1)} (k_L r_0)}; \]

\(k_L = (\omega/v_L), v_L = \sqrt{[(\lambda + 2\mu)/\rho]} \) are the wave number and phase velocity of the linear longitudinal plane wave, respectively.

Remember the main feature of cylindrical wave (2): it is already not the harmonic wave (owing to properties of the Hankel functions, it can be meant as the asymptotically harmonic wave) and its intensity decreases with time of propagation.

The solution as first two approximations is as follows [1-3]

\[
u_r (r,t) = u^{(1)}_r (r,t) + u^{(2)}_r (r,t) = u_{r_0} H^{(1)} (k_L r) e^{i\omega t} + \left\{ B_{00} \left[H^{(1)} (k_L r) \right]^2 + B_{11} \left[H^{(1)} (k_L r) \right]^2 + B_{01} H^{(1)} (k_L r) H^{(1)} (k_L r) \right\} e^{2i\omega t}.
\]

(3)

In the next numerical analysis, the following values are taken: the initial amplitude \(u_{r_0} = 1 \cdot 10^{-4} \) m, the wave frequency \(\omega = 1 \text{MHz} \), the wave number \(k_L = 159,6 \) 1/m. On the presented below figures a distortion of the initial profile of cylindrical wave is shown for the aluminium [4]. The figures are of the same type. The abscissa axis shows the value \(x = k_L r \), corresponding to the passed by wave distance.
The ordinate axis shows the amplitude of oscillations \(u_r \) (the unit corresponds to \(u_r^0 = 1 \cdot 10^{-4} m \)).

The three-dimensional plots are shown on the next two figures, where the initial amplitude is chosen in that way that an effect of the second harmonic is seen on the first oscillations.

These graphs show the periodicity of oscillations becomes quickly about two times more and the amplitude of oscillations is increasing in time. This permits to say that the first harmonics is transformed into the second one with the formulated before reservations – both harmonics are not harmonics in the classical sense. It should be drawn the attention on significant change of initial profile: in the linear approximation it has the decreasing amplitude, whereas nonlinearity transforms its into the profile with increasing amplitude. Seemingly, this fact can be classified as the characteristic for the nonlinear cylindrical wave.

In the case of solitary wave, the equation (1) is rewritten to the form [5]

\[
(c_r^2)^2 (1 - \tilde{N} u_r) \left(u_{rr} + \frac{1}{r} u_r - \frac{u_r}{r^2} \right) - u_{rr} = 0. \tag{4}
\]

An additional assumption is done that the wave is propagated with the depending on the phase variable \(\sigma = a(x - vt) \) profile

\[
u_r (r,t) = F \left[a(r - vt) \right], \quad v = \sqrt{1 + \tilde{N} u_r} a c_r.
\tag{5}
\]

Note that the parameter \(a \) is introduced to choose the wave bottom length (in the case of harmonic wave such a parameter is called the wave length \(\lambda = (2\pi/k) \)).

Further, a restriction of smallness of quantity \(\tilde{N} u_r \gg 1 \) is adopted what allows to represent approximately the solution (5) in the form

\[
u_r (r,t) \approx F \left[a(r - c_t) - \frac{1}{2} a t c_r \tilde{N} u_r \right]. \tag{6}
\]

When the wave phase with the constant linear wave velocity is denoted by \(\sigma = a(r - c_t t) \) and the small parameter by \(\delta = -(1/2) \tilde{N} c_r a t u_r \), then the solution (6) can be represented in the form of Taylor series. The solution as two first approximations is as follow

\[
u_r (r,t) \approx F (\sigma) + F' (\sigma) \left[\delta = -(1/2) \tilde{N} c_r a t u_r \right] = F (\sigma) - (1/2) \tilde{N} c_r a t \left[F' (\sigma) \right]^2. \tag{7}
\]
Later the initial profile is chosen as the Macdonald function $K_0(r)$. In this case, the solution (7) obtains the more concrete form

$$u_r(r,t) \approx K_0(a(r-c_r t)) - \left(1/2\right) \frac{a}{ac_r t} \left[K_1(a(r-c_r t))\right]^2.$$ \hspace{1cm} (8)

This solution shows the main feature of nonlinear cylindrical wave – an evolution of the initial profile;

The numerical modeling of evolution is shown in two figures below. The first figure demonstrates two profiles. The profile close to the ordinate axis is the distorted one, whereas another profile is the initial one.

The presented above results of studying the harmonic and solitary cylindrical waves permits to carry out the comparative analysis of similarities and differences in evolution of these kinds of waves. Some of basic observations are obvious (for example, a presence of quadratic nonlinearity of nonlinear summants in solutions introduces the symmetry in distortion procedure). But also some not so predicting observations will be presented in the conclusions.

MODELING OF NON-STATIONARY VIBRATIONS OF LAMINATED COMPOSITE SHELLS AT IMPACT LOADING

Smetankina N.V., Malyhina A.I., Merkulov D.O.

Key words: composite shell, impact loading, mathematical modeling.

AMS Subject Classification: 39A60 Applications

Laminated structures are used widely in mechanical engineering. Calculating dynamic response parameters for impact loading is a key effort in analysing vibrations of laminated composite structures [1]. The present work suggests an analytical approach to investigating vibrations of laminated orthotropic non-closed cylindrical shells with a complicated form in plan view under impact. Impact loading is carried out by an indenter with a semispherical end. The dynamic behaviour of shells is described by the first-order theory accounting for transverse shear strain, thickness reduction and normal element rotation inertia in each layer. The equations of motion of shells and boundary conditions are obtained from the Hamilton's variational principle. The motion equations are added by the indenter equation of motion and the condition of joint displacement of the indenter and shell. Contact approach is found by solving Hertzian problem on a ball indentation into an elastic semispace. The analytical solution of the problem is derived by the immersion method [2]. According to this method, a complex-shape laminated shell is immersed into an auxiliary enveloping shell with the same composition of layers. The auxiliary shell is one whose contour shape and boundary conditions yield a simple analytical solution. In this case, it is a simply supported rectangular laminated one, allowing to find the problem solution as trigonometric series. This shell is loaded by the same way as an initial shell. To satisfy actual boundary conditions, the auxiliary shell is subjected over the trace of the initial boundary to additional distributed compensating loads whose intensities must be defined. The compensating loads are found from the system of integral equations which results from the system of actual boundary conditions. The sought-for functions of the problem are expanded into trigonometrical series in domain of the auxiliary shell and along the boundary of the given shell. The system of motion equations of shells is integrated by expansion into Taylor series. After computing the values of intensities of compensating loads, the required parameters of the shell dynamic response are found.

The method potentialities are demonstrated by calculating stresses in three-layer and five-layer orthotropic shells with different boundary conditions. A good match of results obtained by different methods confirms the feasibility and effectiveness of the method offered.

CALCULATION OF THERMAL FIELDS IN LAMINATED GLAZING OF AIRPLANES

Smetankina N.V., Postnyi O.V.

Key words: laminated plate, polynomials, thermal fields.
AMS Subject Classification: 34K28 Numerical approximation of solutions, 44A10 Laplace transform

Laminated structures are advantageous as compared with homogeneous ones. Hence, they are used widely in mechanical engineering. Calculating of temperature fields is a key effort in analyzing strength of laminated structures [1].

A method for calculation of nonstationary thermal fields in a laminated glazing of airplanes under the effect of impulse film heat sources is offered. The multilayer glazing is considered as a laminated complex-shape plate made up of isotropic layers with constant thickness. Convective heat transfer occurs on outer surfaces of the plate. The temperature on the side surface of the plate is zero.

The equation of nonstationary thermal conduction for an arbitrary plate layer and boundary conditions on a lateral surface of the plate are formed on the basis of the variational equation of thermal balance. Distribution of temperature along width each layer is presented by means of the Legendre orthonormalized polynomials [2]. The immersion method [3] is extended to the case of a nonstationary thermal conduction problem. The problem is reduced to integration of a system of differential equations by modified Taylor's method.

As an example, we solved the nonstationary heat conduction problem for a five-layer glazing element under heating by the film heat source. The comparative analysis of the temperature distribution over the element thickness with the results of finite element method is carried out. The approach offered can be used for designing a safe laminated glazing under operational and emergency thermal and force loading in different vehicles.

СКІНЧЕННО-ЕЛЕМЕНТНИЙ АНАЛІЗ ЗАДАЧ ТЕОРІЇ ТОНКИХ ОБОЛОНОК, ПОДАТЛИВИХ ДО ЗСУВІВ ТА СТИСНЕННЯ

Бернакевич І.Є., Вагін П.П., Козій І.Я.

Ключові слова: оболонка, варіаційна задача, метод скінчених елементів.
AMS Subject Classification: 74S05.

Тонкостінні оболонкові конструкції, що зазнають різних силових і теплових навантажень – як статичних, так і динамічних, мають широке застосування у багатьох галузях сучасної техніки. Розробка методів, алгоритмів і програм розрахунку напружено-деформованого стану таких конструкцій, що грунтується, зазвичай, на чисельних методах, заснованих, зокрема, на варіаційних постановках відповідних задач, дозволить прогнозувати та покращувати їх міцнісні та експлуатаційні властивості.

З використанням співвідношень теорії тонких оболонок, податливих до зсувів та стиснення (шестимодальний варіант [1, 2]), записано ключові рівняння для визначення методом скінчених елементів [3, 4] напружено-деформованого стану розглядуваних оболонок за дії статичних та динамічних силових навантажень та нерівномірного нагріву, знаходження власних частот вільних коливань та початково-післякритичного стану оболонки. Особливість моделі полягає у напівдискретизації на основі кінематичних гіпотез Тимошенка–Міндліна вектора переміщень пружного тіла за зміною товщиною зі збереженням повного навантаження повного вектора до зсувів та стиснення [5] та акустичної взаємодії оболонок обертання з радіоактивним навантаженням [6].

Результати співвідношення моделі містять невідомі компоненти вектора узагальнених переміщень точок оболонки $u = (u_1, u_2, u_3, \gamma_1, \gamma_2, \gamma_3)$. Деформаційні співвідношення записано таким чином:

$$\varepsilon = C_L u + \frac{1}{2} \left(C_\Omega u \right)^T \Omega \left(C_\Omega u \right),$$

де ε – вектор компонент тензора деформації Гріна, C_L та C_Ω – матриці диференціальних операторів, Ω – вектор, компонентами якого є підібрані відповідним чином матриці 6×6.

Варіаційним методом отримані рівняння рівноваги

$$C_\sigma \sigma^* + P = 0$$

та рівняння руху тонких оболонок, податливих до зсувів та стиснення,

$$C_\sigma \sigma^* + P - m \frac{\partial^2 u}{\partial t^2} = 0,$$

відповідні природні крайові умови [7], а також початкові умови [8] у випадку динамічної рівноваги. Тут P – вектор зовнішнього навантаження; C_σ – матриця диференціальних операторів; σ^* – вектор нововведених зусиль і моментів, m – діагональна матриця 6×6.
Щоб отримати замкнену систему, яка описує процес деформування оболонки, додаються співвідношення пружності при термосиловому навантаженні

$$\sigma = Be - \frac{\alpha T E}{1-2\nu} \Phi (\theta),$$

de σ – вектор симетричних зусиль і моментів, B – матриця пружних характеристик матеріалу оболонки, α – коефіцієнт лінійного температурного розширення, ν – коефіцієнт Пуассона матеріалу оболонки, E – модуль Юнга, Φ – вектор, що залежить від усереднених температурних характеристик θ.

У випадку деформування оболонок під дією зовнішніх навантажень, пропорційних одному параметру λ, повні переміщення в початковому післякритичному стані визначаються у вигляді суми переміщень початкового (докритичного) стану і збурених переміщень.

Найменше власне значення рівняння стійкості [7]

$$K_T (0) q + \lambda G (q_0) q = 0$$

визначає критичний параметр навантаження λ^*, при якому оболонка з початкового стану рівноваги переходить у суміжний. Тут $K_T (q)$ – матриця тангентійної жорсткості, $G (q_0)$ – геометрична матриця жорсткості, q – вектор невідомих вузлових переміщень і поворотів, q_0 – вектор невідомих переміщень лінійної задачі статики.

Дослідження частот і форм власних коливань приводить до так званої узагальненої проблеми на власні значення [8]

$$K_T (0) \ddot{q} = \omega^2 M \ddot{q},$$

de ω – кольова частота вільних коливань, $\ddot{q}(t)$ – невідомі коефіцієнти, які є функціями часу, M – матриця мас.

Наведено низку чисельних прикладів. Здійснено порівняльний аналіз отриманих чисельних розв’язків з розв’язками наведеними в літературі.

К Исследованию Разрушения Кусочно-Однородного Тела При Сжатии Вдоль Межфазной Приповерхностной Трещины

Богданов Л.В., Назаренко В.М., Кипnis А.Л.

Ключевые слова: кусочно-однородная полуплоскость, межфазная трещина, сжатие вдоль трещины, трехмерная линеаризованная теория устойчивости деформируемых тел.

AMS Subject Classification: 74A40

Актуальной проблемой механики разрушения является изучение вопросов, связанных с разрушением кусочно-однородных материалов (слоистых композитов, материалов с тонким покрытием), которые находятся в состоянии сжатия вдоль межфазных трещин [1 – 3]. Соответствующие задачи теории упругости относятся к неклассическим проблемам механики разрушения, поскольку при такой схеме нагружения реализующееся в теле напряженно-деформированное состояние является однородным и в соответствующих представлениях для напряжений и перемещений в окрестности трещины отсутствуют сингулярные составляющие. Вследствие равенства нулю коэффициентов интенсивности напряжений классические критерии разрушения Гриффитса-Ирвина для рассматриваемой задачи оказываются неприменимыми [4, 5]. В указанной ситуации начало развития трещины связывается с локальной потерей устойчивости состояния равновесия части материала в области, примыкающей к трещине. В работе с использованием подходов трехмерной линеаризованной теории устойчивости деформируемых тел для случая плоской деформации выполнена математическая постановка задачи о сжатии кусочно-однородной полуплоскости силами, направленными вдоль расположенной в границе раздела двух материалов приповерхностной трещины и предложен подход к ее исследованию. Изучается случай, когда корни соответствующих материалам характеристических уравнений являются равными.

Рассматривается композит (или материал с покрытием), представляющий собой композицию тонкослойного материала “1” и полуограниченного материала “2”, находящейся под действием сжимающей нагрузки, направленной вдоль плоской, бесконечной в направлении Ox₁ трещины (постоянной ширины вдоль оси Ox₁), которая расположена в границе раздела материалов (расчетная схема задачи приведена на рис. 1). В условиях плоской деформации рассмотрим кусочно-однородную полуплоскость x₂ ≤ h со свободной от нагрузки границей поверхностью x₂ = h и прямолинейной границей раздела сред x₂ = 0, составленную из двух различных, жестко сцепленных между собой (в области вне трещины) материалов: материала “1”, занимающего область, представляющую собой полосу 0 ≤ x₂ ≤ h толщины h, и материала “2”, занимающего область в виде полуплоскости x₂ ≤ 0 (рис. 1). Граница раздела материалов “1” и “2” x₂ = 0 содержит открытую трещину длины 2a, свободную от напряжений. Пусть материалы сжимаются на бесконечности вдоль оси Ox₁ равномерно распределенными усилиями σ₀(q) = const; σ₁₁(q) ≠ σ₁₁(q); σ₂₂(q) = 0.
таким образом, что обеспечивается одинаковое укорочение вдоль оси Ox_1 для материалов слоя и полупространства $\varepsilon_{11}^{(0+)} = \varepsilon_{11}^{(0-)}$, $\lambda_1^{(+)} = \lambda_1^{(-)} =\lambda_1^{(c)} = \text{const}$ ($\lambda_1^{(c)}$ — коэффициенты укорочения вдоль оси Ox_1, обусловленные сжимающими усилиями $\sigma_{11}^{(0+)}. $ Здесь и далее верхним индексом “+” в скобках обозначены величины, относящиеся к материалу полосы “1”, а верхним индексом “−” в скобках — полуплоскости “2”). В этом случае докритическое напряженно-деформированное состояние в каждой из областей “1” и “2” является статически определенным и однородным.

Граничные условия сформулированной задачи запишутся следующим образом:

\[
\begin{align*}
& t_{22}^{(2)} = 0, \quad t_{21}^{(2)} = 0 \quad \text{при} \quad x_2 = 0, \quad |x_1| < a; \\
& t_{22}^{(2)} = t_{22}^{(-)}, \quad t_{21}^{(2)} = t_{21}^{(-)}, \quad u_1^{(+)} = u_1^{(-)}, \quad u_2^{(+)} = u_2^{(-)} \quad \text{при} \quad x_2 = 0, \quad |x_1| \geq a; \\
& t_{22}^{(2)} = 0, \quad t_{21}^{(2)} = 0 \quad \text{при} \quad x_2 = h.
\end{align*}
\]

(1)

(2)

Следуя [4], введем в рассмотрение комплексные переменные $z_k^{(z)} = x_1 + \mu^{(z)}_k x_2, \quad k = 1, 2$, где величины $\mu^{(z)}_k$ для каждого из материалов являются корнями соответствующего характеристического уравнения

\[
\mu^{(z)}_k + 2A^{(z)} \mu^{(z)}_k + A^{(z)}_k = 0,
\]

(3)

\[
2A^{(z)} = \frac{\omega_{111}^{(z)} \omega_{222}^{(z)} + \omega_{112}^{(z)} \omega_{212}^{(z)} - (\omega_{122}^{(z)} + \omega_{121}^{(z)})^2}{\omega_{222}^{(z)} \omega_{211}^{(z)}}, \quad A^{(z)}_k = \frac{\omega_{111}^{(z)} \omega_{122}^{(z)} - \omega_{112}^{(z)} \omega_{121}^{(z)}}{\omega_{222}^{(z)} \omega_{211}^{(z)}}.
\]

Величины $\omega_{ijkl}^{(z)} = \omega_{ijkl}^{(z)}(\lambda_1, \lambda_2)$ являются компонентами тензоров четвертого ранга $\tilde{\omega}^{(z)}$ и характеризуют выбранную модель материала. Отметим преимущество применяемого здесь подхода, предложенного в [4,5], в рамках которого конкретизация модели материала происходит лишь на финальной стадии решения задачи, что позволяет проводить исследование в общем виде для упругих и упруго-пластических, изотропных и ортотропных тел, при малых и конечных докритических деформациях.

В случае, когда для каждого из материалов “1”, “2” соответствующее ему характеристическое уравнение (3) имеет равные корни ($\mu_1^{(z)} = \mu_2^{(z)}$, $\mu_1^{(z)} = \mu_2^{(z})$) справедливы следующие представления

\[
\begin{align*}
t_{22} &= \text{Re}\{[\Psi(z_1) + z_1 \Phi'(z_1)] + \gamma_2^{(2z)}(z_1) + \gamma_2^{(1z)}(z_1)\}, \quad t_{21} = \text{Re}\{\mu_1^{(z)}[\Psi(z_1) + z_1 \Phi'(z_1)] + \gamma_1^{(2z)}(z_1)\}, \\
t_{21} &= \text{Re}\{-\mu_1^{(z)}[\Psi(z_1) + z_1 \Phi'(z_1)] + \gamma_2^{(1z)}(z_1)\}, \quad t_{21} = \text{Re}\{\mu_1^{(z)}[\Psi(z_1) + z_1 \Phi'(z_1)] + \gamma_1^{(2z)}(z_1)\}, \\
\frac{\partial u_k}{\partial x_k} &= \text{Re}\{\gamma_1^{(kz)}[\Psi(z_1) + z_1 \Phi'(z_1)] + \gamma_k^{(1z)}(z_1)\}, \quad k = 1, 2,
\end{align*}
\]

(4)

определяющие напряжения и производные от перемещений в материалах “1” и “2” (необходимо только поставить во всех величинах индекс “+” или “−”) через две аналитические функции соответствующих комплексных переменных в случае равных корней. Коэффициенты $\gamma_\theta^{(kz)}$, $\gamma_j^{(kz)}, i, j, k = 1, 2$ представляют собой известные функции компонент тензоров $\tilde{\omega}^{(z)}[4,5]$. При этом функции $\Phi^{(z)}$, $\Psi^{(z)}$ являются аналитическими в
полосе $0 < \text{Im} z^+_1 < |\mu^+_1| h$, а функции Φ^-, Ψ^- являются аналитическими в полуплоскости $\text{Im} z^-_1 < 0$.

Подставляя представления (4) в граничные условия (1) – (2) получаем граничные условия задачи, записанные через аналитические функции, в следующем виде:

\[
\text{Re}\{[\Psi^{(x)}(x_1) + x_1 \Phi^{(y)}(x_1)] + \gamma^{(2)(c)}_{22} \Phi^{(x)}(x_1)\} = 0,
\]

\[
\text{Re}\{\mu^{(c)}_{11} [\Psi^{(x)}(x_1) + x_1 \Phi^{(y)}(x_1)] + \gamma^{(2)(c)}_{11} \Phi^{(x)}(x_1)\} = 0, \quad |x_1| < a;
\]

\[
\text{Re}\{[\Psi^{(x)}(x_1) + x_1 \Phi^{(y)}(x_1)] - [\Psi^{(x)}(x_1) + x_1 \Phi^{(y)}(x_1)] + \gamma^{(2)(s)}_{22} \Phi^{(x)}(x_1) - \gamma^{(2)(c)}_{22} \Phi^{(c)}(x_1)\} = 0,
\]

\[
\text{Re}\{\mu^{(c)}_{11} [\Psi^{(x)}(x_1) + x_1 \Phi^{(y)}(x_1)] - \mu^{(c)}_{11} \gamma^{(2)(c)}_{21} [\Psi^{(x)}(x_1) + x_1 \Phi^{(y)}(x_1)] +
+ \gamma^{(2)(c)}_{21} \Phi^{(x)}(x_1) - \gamma^{(2)(c)}_{21} \Phi^{(c)}(x_1)\} = 0,
\]

\[
\text{Re}\{\gamma^{(2)(c)}_{21} [\Psi^{(x)}(x_1) + x_1 \Phi^{(y)}(x_1)] - \gamma^{(2)(c)}_{21} [\Psi^{(x)}(x_1) + x_1 \Phi^{(y)}(x_1)] +
+ (\gamma^{(2)(c)}_{21} - \gamma^{(2)(c)}_{11}) \Phi^{(x)}(x_1) - (\gamma^{(2)(c)}_{11} - \gamma^{(2)(c)}_{11}) \Phi^{(c)}(x_1)\} = 0, \quad |x_1| \geq a;
\]

\[
\text{Re}\{[\Psi^{(x)}(x_1 + \mu^{(c)}_1 h) + (x_1 + \mu^{(c)}_1 h) \Phi^{(y)}(x_1 + \mu^{(c)}_1 h)] + \gamma^{(2)(c)}_{22} \Phi^{(x)}(x_1 + \mu^{(c)}_1 h)\} = 0,
\]

\[
\text{Re}\{\mu^{(c)}_{11} [\Psi^{(x)}(x_1 + \mu^{(c)}_1 h) + (x_1 + \mu^{(c)}_1 h) \Phi^{(y)}(x_1 + \mu^{(c)}_1 h)] + \gamma^{(2)(c)}_{21} \Phi^{(x)}(x_1 + \mu^{(c)}_1 h)\} = 0.
\]

Стоит отметить, что все выражения, представленные выше, для каждой из областей “1” и “2” записаны через две функции комплексного переменного, аналитические в области, занимаемой соответствующим материалом. Одним из возможных подходов к решению поставленной задачи является переход в указанных выражениях к одной (для каждого из материалов) функции, аналитической во всей комплексной плоскости, что позволит выполнить сведение краевой задачи к задаче сопряжения двух аналитических функций, заданных во всей плоскости [6, 7]. Существенной сложностью на пути реализации этого подхода является тот факт, что сопряжение аналитических функций выполняется не на границе полуплоскости, а на внутренней линии раздела сред $x_2 = 0$, что приводит к появлению дополнительного условия, вытекающего из последнего из условий (5), уже на самой границе полуплоскости.

Воропаев Геннадий Александрович, доктор физ.-мат. наук, профессор,
Институт гидромеханики НАН Украины, Киев, Украина,
e-mail: voropaiev.gena@gmail.com
Загуменный Ярослав Викторович, кандидат физ.-мат. наук, ст. науч. сотр.,
Институт гидромеханики НАН Украины, Киев, Украина,
e-mail: zagumennyj@gmail.com
Баскова Александра Александровна, ведущий инженер,
Институт гидромеханики НАН Украины, Киев, Украина,
e-mail: BaskAleksandra@gmail.com

ЧИСЛЕННЫЙ АНАЛИЗ ПЕРЕХОДНЫХ ПРОЦЕССОВ
В ПОГРАНИЧНЫХ СЛОЯХ ВНУТРЕННИХ И ВНЕШНИХ ТЕЧЕНИЙ
Воропаев Г.А., Загуменный Я.В., Баскова А.А.

Ключевые слова: переходной режим течения, обтекаемая поверхность, бегущая волна, течение в трубе, градиент вязкости.
AMS Subject Classification: 76D55, 76D10, 65C20

Постановка обобщающей задачи определения условий устойчивости стационарных ламинарных течений, как разновидности динамических систем с бесконечным числом степеней свободы, без определения аналитических свойств течения, как правило, лишена смысла, так как к настоящему времени получено достаточно малое количество аналитических решений даже простых течений, которые можно положить в основу анализа их устойчивости. И, несмотря на то, что замена точных решений их приближенными аналогами в достаточно большом количестве течений, дает качественно одинаковый результат устойчивости течения относительно определенного типа возмущений, незначительно изменения численные значения критериев устойчивости, мы достаточно далеко от окончательного понимания перехода даже в простых течениях. В первую очередь это связано с тем, что при аналитическом решении нельзя отследить трансформацию вида возмущений в процессе их развития и взаимодействия как между собой, так и с задающим течением, с изменением не только мгновенных, но и осредненных значений задающего течения.

С развитием вычислительных мощностей появилась возможность не только численно получать характеристики задающего течения, но и непосредственно анализировать появление и развитие возмущений в потоке на основании прямого численного решения нестационарной системы уравнений Навье-Стокса [1, 2].

В представленной работе приведены результаты численного анализа развития возмущений и их трансформации в формирующихся пограничных слоях на пластине и на входном участке трубы, как в двухмерной, так и в трехмерной постановках, при переходных числах Рейнольдса с учетом изменяющихся физических свойств сред. Рассмотрены задачи о взаимодействии пограничного слоя с вынужденными возмущениями, генерированными локально деформирующейся обтекаемой поверхностью, а также появление и развитие собственных возмущений неизотермического течения на начальном участке трубы при фиксированном расходе с учетом зависимости динамического коэффициента вязкости от температуры.

Результаты трехмерного численного моделирования нестационарной задачи развития возмущений потока, генерированных локальными деформациями обтекаемой поверхности в форме плоской бегущей волны, показали появление сложной трехмерной структуры возмущенного течения, развивающейся вниз по потоку [3]. На рис. 1, а показана Q-
визуализация трансформации неустойчивой плоской волны в сложную вихревую систему. Источник возмущений изначально генерирует плоские волновые возмущения, которые по мере развития вниз по потоку достаточно быстро искажаются, трансформируясь в характерные Λ-структуры и продольно ориентированные вихревые образования. Эти структуры по мере дальнейшего развития вниз по потоку теряют четкость своих форм и постепенно разрушаются, приводя к потере изначально детерминированного характера возмущений и хаотизации течения вниз по потоку. На рис. 1, б, в показаны соответствующие распределения давления и напряжения сдвига на обтекаемой поверхности, отражающие изменение механизма перераспределения энергии по толщине пограничного слоя и скорость нарастания их вниз по потоку, что и определяет нелинейный механизм процесса трансформации масштабов и интенсивности вихревых структур в пограничном слое. Нелинейное моделирование развития возмущений (\(\lambda/\delta^*\)=30, \(C_f/U=0.5\)) в пограничном слое полностью соответствует линейной теории неустойчивости на стадии появления нейтральной волны Толлинга-Шлихтинга, но с конечной амплитудой.

Численное моделирование формирования нестационарного пограничного слоя неизотермического течения на начальном участке трубы в осесимметричной постановке демонстрирует зависимость начала перехода не только от числа Рейнольдса, но и от градиента температуры. При этом длины волн и фазовые скорости распространения возникающих возмущений практически не зависят от градиента температуры [4]. При
Re<2000 даже при наличии точки перегиба на профиле средней скорости возмущения отсутствуют. При числах Рейнольдса Re>2300 в неизотермическом течении, в отличие от изотермического, на некотором расстоянии от входа фиксируются низкочастотные возмущения по параметрам соответствующим волнам Толлмина-Шлихтинга в пограничном слое на пластине. При распространении возмущений вниз по потоку амплитуда их растет, увеличивается и длины волны (рис. 2, а) и фазовая скорость (рис. 2, б) их распространении, в то время как линейная теория устойчивости предсказывает затухание осесимметричных мод возмущений вниз по потоку.

Рис.2. Безразмерная длина возмущений (Re=5300) (а) и безразмерная фазовая скорость (б) при разных градиентах температуры в гладкой трубе

Дмитришин Ирина Сергеевна, аспирант,
ИПММ, Славянск, Украина,
e-mail: dmitrishin.ira@gmail.com;

ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК АСИНХРОННОГО ДВИГАТЕЛЯ В СЛУЧАЕ НЕПОЛНОТЫ ИНФОРМАЦИИ О РАБОТЕ РОТОРА

Дмитришин И.С.

Ключевые слова: нелинейный наблюдатель, инвариантные соотношения, асинхронный двигатель, устойчивость, динамическое расширение.
AMS Subject Classification: 93C41

Большинство электроприводов, используемых в современной промышленности, используют в качестве электропривода привод переменного тока на базе асинхронного электродвигателя (АД). Задача одновременной оценки состояния всех параметров АД, даже для достаточно простых моделей, в виду того, что необходимо обеспечить устойчивость данного процесса, до сих пор не была решена.

Труднодоступность прямого измерения вектора потокосцепления предписывает использование методов определения потокосцепления ротора по динамическим уравнениям, измеряя фазные токи, напряжения статора и скорость вращения ротора [1,2]. Точность таких расчетов прямо зависит от точности параметров АД, заявленных изготовителем, которые являются усредненными для выпускаемой серии двигателей. В тоже время их текущие значения могут меняться в зависимости от условий функционирования. В частности, практический интерес представляет оценка крутящего момента и скорости вращения ротора.

В работе рассматривается математическая модель двухфазного АД, записанная в системе координат, привязанной к статору [3].

\[
\begin{align*}
 \dot{y}_1 &= -a_0 y_1 + a_2 U_1 + a_1 \mu x_1 + a_1 y_3 x_2 \\
 \dot{y}_2 &= -a_0 y_2 + a_2 U_2 - a_1 y_3 x_1 + a_4 \mu x_2 \\
 \dot{y}_3 &= a_3 y_2 x_1 - a_4 y_1 x_2 - x_3 \\
 x_1 &= a_4 y_1 - \mu x_1 - y_3 x_2 \\
 x_2 &= a_4 y_2 + y_3 x_1 - \mu x_2 \\
 x_3 &= 0
\end{align*}
\]

В данной модели введены следующие обозначения: \(x = \left(\lambda_a, \lambda_b, n_p \cdot \tau_l / I_m\right)^T\), \(y = (i_a, i_b, n_p \cdot \omega)^T\), где \(i_a, i_b\) описывают токи статора, \(\lambda_a, \lambda_b\) – флюсы ротора, \(\omega\) – скорость вращения ротора, \(U_1, U_2\) – напряжения статора, \(n_p\) - число пар полюсов, \(I_m\) - момент инерции и \(\tau_l\) – крутящий момент ротора, \(a_0, a_1, a_2, a_3, a_4, \mu > 0\).

Основной целью работы является построение нелинейного наблюдателя для неизвестных компонент \(x_3, y_3\) в естественном предположении, что в процессе наблюдения
«потеряна» информация о двух параметрах системы, а именно: неизвестны крутящий момент и скорость вращения ротора ведущего тела. Такой наблюдатель может быть спроектирован методом инвариантных соотношений, схема синтеза которого описана в работах [4,5]. По этому способу неизвестные величины \(x_3, y_3 \) представляется в виде алгебраической суммы функций от известных значений:

\[
\begin{align*}
 x_3 &= \Phi_1(x_1, x_2, y_1, y_2) + \delta_1(t) + \varepsilon_1 \\
 y_3 &= \Phi_1(x_1, x_2, y_1, y_2) + \delta_2(t) + \varepsilon_2.
\end{align*}
\]

(2)

gде \(\Phi_1(\cdot), \Phi_2(\cdot) \) — неопределенные функции, зависящие от известных величин,

\[
\begin{align*}
 \dot{\delta}_1(t) &= \rho_1 \left(x_1, x_2, y_1, y_2, \Phi_1, \Phi_2, \frac{\partial \Phi_1}{\partial x_1}, \frac{\partial \Phi_1}{\partial x_2}, \frac{\partial \Phi_1}{\partial y_1}, \frac{\partial \Phi_1}{\partial y_2}, \delta_1(t), \delta_2(t) \right) \\
 \dot{\delta}_2(t) &= \rho_2 \left(x_1, x_2, y_1, y_2, \Phi_1, \Phi_2, \frac{\partial \Phi_2}{\partial x_1}, \frac{\partial \Phi_2}{\partial x_2}, \frac{\partial \Phi_2}{\partial y_1}, \frac{\partial \Phi_2}{\partial y_2}, \delta_1(t), \delta_2(t) \right)
\end{align*}
\]

(3)

\(\delta_1(t), -\delta_2(t) \) динамическое расширение исходной системы дифференциальных уравнений (1), а \(\varepsilon_1, \varepsilon_2 \) — отклонение от этого соотношения. Свободные функции \(\Phi_1(\cdot), \Phi_2(\cdot), \delta_1(t), \delta_2(t) \) выбираются таким образом, чтобы \(\varepsilon_1 \to 0, \varepsilon_2 \to 0 \), тем самым получая алгебраическую оценку наших неизвестных.

Показано, что построенный методом инвариантных соотношений нелинейный наблюдатель обеспечивает экспоненциальное затухание отклонений \(\varepsilon_1, \varepsilon_2 \).

2. Терёхин А.А., Даденков Д.А. Обзор способов идентификации параметров асинхронного электропривода/ Андрей Терехин, Дмитрий Даденков // Вестник ПНИПУ. — 2017.—№22.—С.56-66.

Жоголева Н.В.
Институт прикладной математики и механики НАН Украины
e-mail: zhogoleva.nadia@gmail.com

ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ
ЛОКАЛИЗОВАННЫХ ВОЛН СДВИГА И ИХ ВТОРЫХ
ГАРМОНИК В СОСТАВНОМ ВОЛНОВОДЕ ПРИ
НЕИДЕАЛЬНОМ МЕХАНИЧЕСКОМ КОНТАКТЕ
МАТЕРИАЛОВ

Жоголева Н.В.

Ключевые слова: упругие волны, ангармоничные волновые эффекты, составные анизотропные тела, слой между полупространствами, моноокристаллы кубической системы.

AMS Subject Classification: 74J06

Исследуется волноводная структура, состоящая из анизотропного упругого кристаллического слоя V1 класса m3m кубической системы, расположенного между одноатомными кристаллическими полупространствами V2 и V3 аналогичного класса анизотропии при неидеальном проскальзывающем контакте материалов. Задача основывается на модели геометрической и физической нелинейности, которая учитывает представления для упругого потенциала U с квадратичными и кубическими членами по деформациям, нелинейные представления для деформаций \(\varepsilon_{jk} \), напряжений \(\sigma_{jk} \):

\[
U = \frac{1}{2} c_{jqrk} \varepsilon_{jq} \varepsilon_{rk} + \frac{1}{6} c_{jqrklm} \varepsilon_{jq} \varepsilon_{rk} \varepsilon_{lm} \quad (j, q, r, k, l, m = 1, 3) \tag{1}
\]

\[
\varepsilon_{jk} = \frac{1}{2} (u_{r,k} + u_{k,r}) + u_{ij} u_{i,k}, \tag{2}
\]

где

\[
\sigma_{jd}^{(l)} = \sigma_{jd}^{(n)} + \sigma_{jd}^{(n)}, \tag{3}
\]

\[
\sigma_{jd}^{(l)} = c_{jdrk} u_{r,k}, \quad \sigma_{jd}^{(n)} = \frac{1}{2} c_{jdrk} u_{i,r} u_{i,k} + c_{jpdrl} u_{i,pr} u_{r,k} + \frac{1}{2} c_{jdrklm} u_{r,k} u_{m}. \tag{4}
\]

Уравнения движения для образующих рассматриваемую волноводную структуру упругих сред при отсутствии объемных сил можно представить в тензорном виде

\[
\rho u_{j}^{(p)} - \sigma_{jd,d}^{(p)} = \sigma_{jd,d}^{(p,m)}, \quad (j = 1, 3). \tag{5}
\]
В представлениях (5) и последующих соотношениях верхний индекс \(p \) у характеристики напряжено-деформированного состояния указывает на то, что соответствующая характеристика относится к компоненте \(V_p \) рассматриваемого волновода.

Используется подход, связанный с разложением характеристик неллинейных упругих волн в ряды по малому параметру \(\delta = u_s/R_s << 1 \), где \(u_s \) — максимальный уровень амплитуд, а \(R_s \) — толщина слоя \(V_1 \).

\[
u_j = u_j^{(l)} + \delta u_j^{(n)}.
\]

(6)

На первом этапе решения задачи определяются представления для \(u_j^{(p,l)} \) и дисперсионное соотношение, описывающее связь частоты \(\omega \) и волнового числа \(k \):

\[
u_{2q}^{(1,l)} = u_{2q}^{(0)} \cos(\alpha(q)x_3)e^{-i(\omega t-k_1x_1)},
\]

\[
u_{2q}^{(2,l)} = 0, \quad u_{2q}^{(3,l)} = 0,
\]

(7)

(8)

где \(q = (1, \infty) \), \(\alpha(q) = q\pi/2 \) \(\Omega_p = (p_pR_s^2\omega^2/c_s)^{1/2} \).

С использованием полученного решения линейной задачи (7), (8) находятся неллинейные "добавки" - вторые гармоники локализованных SH волн, которые являются волнами P-SV типа и характеризуются ненулевыми компонентами \(u_{1q}^{(p,n)} \) и \(u_{3q}^{(p,n)} \):

\[
u_{1q}^{(1,n)} = (u_{2q}^{(0)})^2(\tilde{\lambda}_{11}\cos(c_1^{(1)}x_3) + \tilde{\lambda}_{12}\cos(c_2^{(1)}x_3)) + \tilde{\mu}_{11}\sin(c_1^{(1)}x_3) + \tilde{\mu}_{12}\sin(c_2^{(1)}x_3) + \\
+ \nu_1 + \chi_1 \cos(2\alpha^{(1)}x_3) + \xi_1 \sin(2\alpha^{(1)}x_3) \exp(-2i(\omega t - kx_1)),
\]

(9)

\[
u_{3q}^{(1,n)} = (u_{2q}^{(0)})^2(\tilde{\lambda}_{31}\sin(c_1^{(1)}x_3) + \tilde{\lambda}_{32}\sin(c_2^{(1)}x_3)) + \tilde{\mu}_{31}\cos(c_1^{(1)}x_3) + \tilde{\mu}_{32}\cos(c_2^{(1)}x_3) + \\
+ \nu_3 + \chi_3 \sin(2\alpha^{(1)}x_3) + \xi_3 \cos(2\alpha^{(1)}x_3) \exp(-2i(\omega t - kx_1)),
\]

\[
u_{1q}^{(2,n)} = (u_{2q}^{(0)})^2(\beta_{11}^{(2)}\exp(\zeta_1^{(2)}x_3) + \beta_{12}^{(2)}\exp(\zeta_2^{(2)}x_3)) \exp(-2i(\omega t - kx_1)),
\]

(10)

\[
u_{3q}^{(2,n)} = (u_{2q}^{(0)})^2(\beta_{31}^{(2)}\exp(\zeta_1^{(2)}x_3) + \beta_{32}^{(2)}\exp(\zeta_2^{(2)}x_3)) \exp(-2i(\omega t - kx_1)),
\]

\[
u_{1q}^{(3,n)} = (u_{2q}^{(0)})^2(\tilde{\beta}_{11}^{(3)}\exp(\zeta_1^{(3)}x_3) + \tilde{\beta}_{12}^{(3)}\exp(\zeta_2^{(3)}x_3)) \exp(-2i(\omega t - kx_1)),
\]

(11)

\[
u_{3q}^{(3,n)} = (u_{2q}^{(0)})^2(\tilde{\beta}_{31}^{(3)}\exp(\zeta_1^{(3)}x_3) + \tilde{\beta}_{32}^{(3)}\exp(\zeta_2^{(3)}x_3)) \exp(-2i(\omega t - kx_1)).
Анализ энергетических эффектов при распространении локализованных SH волн базируется на расчёте компонент векторов плотностей среднего за период потока мощности. Получены представления

\[P_j = \delta P_j^{(l)} + \delta^3 P_j^{(n)} \]
\[P_j^{(l)} = \frac{\omega}{2} Im[\bar{u}_i^{(l)}(x_3)\sigma_j^{(ll)}], \]
\[P_j^{(n)} = \omega Im[\bar{u}_i^{(n)}(x_3)(\sigma_j^{(ln)} + \sigma_j^{(nl)})]. \]

Результаты исследований задачи получены в аналитическом виде, однако имеют крайне громоздкую формулировку. Расчеты энергетических характеристик (11), (12) проведены для волновода, в которых слой является монокристаллом германия, а полупространства монокристаллами кремния.

1. Зарембо Л. К., Красильников В. А. Нелинейные явления при распространении упругих волн в твердых телах. УФХ – 1970. – Т. 102, Вып. 4. – С. 549-586.
Устойчивость инвариантных множеств систем нелинейных дифференциальных уравнений со случайными воздействиями

Зуев А.Л., Васильева И.Г.

Ключевые слова: стабилизация; стохастическое дифференциальное уравнение Ито; инвариантное множество.

AMS Subject Classification: 93E15; 93D15; 34F05.

В докладе рассмотрена задача стабилизации по части переменных для управляемых систем, описывающих стохастическими дифференциальными уравнениями типа Ито. Исследуемая проблема связана со свойством асимптотической устойчивости инвариантных множеств и имеет важное приложение в механике и технике. Получены достаточные условия асимптотической устойчивости инвариантного множества нелинейных стохастических дифференциальных уравнений с использованием стохастической версии принципа инвариантности Ла-Салля [2]. Эти условия применимы для решения задач частичной стабилизации стохастических управляемых систем.

Рассмотрим систему стохастических дифференциальных уравнений типа Ито:

\[dx(t) = f(x)dt + \sigma(x)dW(t), \quad x \in \mathbb{R}^n. \]

Здесь \(x = (x_1, ..., x_n)^T \) — вектор состояния системы, функции \(f : \mathbb{R}^n \to \mathbb{R}^n \) и \(\sigma : \mathbb{R}^n \to \mathbb{R}^{n \times k} \) удовлетворяют условию Липшица на компактных подмножествах \(K \subset \mathbb{R}^n \). Система содержит \(k \)-мерный винеровский процесс \(W(t) \), компоненты которого \(w_j(t) \) \((j = 1, 2, ..., k)\) являются независимыми одномерными винеровскими процессами. При этих условиях существует единственный строго марковский процесс \(x(t; x^0, s) \), который является решением системы (1) при начальных условиях \(x(s; x^0, s) = x^0 \).

В дальнейшем предполагаем, что вектор состояния системы (1) может быть записан в виде \(x = (y^T, z^T)^T \), где \(y = (y_1, ..., y_m)^T \in \mathbb{R}^m \) и \(z = (z_1, ..., z_p)^T \in \mathbb{R}^p \), \(m + p = n \).

Для изучения устойчивости инвариантных множеств системы (1), будем рассматривать класс дважды непрерывно дифференцируемых функций \(V : \mathbb{R}^n \to \mathbb{R}^+ = [0; +\infty) \), \(V(0) = 0 \). Также с системой (1) связан дифференциальный оператор

\[\mathcal{L} = \sum_{i=1}^{n} f_i(x) \frac{\partial}{\partial x_i} + \frac{1}{2} \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j}, \]

где \([a_{ij}] = \sigma \sigma^T \). Введем в рассмотрение класс функций Хана \(K \), который состоит из непрерывных строго возрастающих функций \(\alpha : \mathbb{R}^+ \to \mathbb{R}^+ \), таких что \(\alpha(0) = 0 \).

Ниже представлены достаточные условия асимптотической устойчивости по вероятности инвариантных множеств системы (1).

Теорема. Пусть множество \(M = \{ x \in \mathbb{R}^n \mid y = 0 \} \) является инвариантным для системы (1) и функция \(V \in C^2(\mathbb{R}^n; \mathbb{R}^+) \) удовлетворяет следующим условиям:

236
1) $\alpha_1(\|y\|) \leq V(x) \leq \alpha_2(\|y\|)$ для всех $x \in \mathbb{R}^n$ при некоторых $\alpha_1, \alpha_2 \in K$;

2) $\mathcal{L}V(x) \leq 0$ для всех $x \in \mathbb{R}^n$;

3) существует такое $\Delta > 0$, что при всех $||y^0|| < \Delta$ соответствующие решения $x(t; x^0, s)$ ограничены при $t \geq s$ почти наверное;

4) множество $\{x \in \mathbb{R}^n | \mathcal{L}V(x) = 0\} \setminus M$ не содержит целых положительных полураекторий системы (1).

Тогда множество $M = \{x \in \mathbb{R}^n | y = 0\}$ является асимптотически устойчивым в вероятности для системы (1).

Полученная теорема была применена для одноосной стабилизации движения твердого тела, содержащего пару симметричных маховиков, со случайными воздействиями при управлении.

$$
\begin{align*}
\frac{d\omega_1}{dt} &= \left(\frac{A_2 - A_1}{A_1 - I_1} \omega_2 \omega_3 + \frac{I_0 \Omega_1}{A_1 - I_1} \omega_3 - \frac{1}{A_1 - I_1} u_1\right) dt + \omega_1 \sigma dW(t), \\
\frac{d\omega_2}{dt} &= \left(\frac{A_1 - A_2}{A_2 - I_2} \omega_1 \omega_3 - \frac{I_1 \Omega_1}{A_2 - I_2} \omega_3 - \frac{1}{A_1 - I_1} u_2\right) dt + \omega_2 \sigma dW(t), \\
\frac{d\omega_3}{dt} &= \left(\frac{A_1 - A_2}{A_2 - I_1} \omega_1 \omega_2 + \frac{I_1 \Omega_1}{A_3 - I_3} \omega_2 \right) dt, \\
\frac{d\Omega_1}{dt} &= \left(\frac{1}{I_2} u_1 - \frac{A_2 - A_1}{A_1 - I_1} \omega_2 \omega_3 - \frac{I_0 \Omega_1}{A_1 - I_1} \omega_3 + \frac{1}{A_1 - I_1} u_1\right) dt - \omega_1 \sigma dW(t), \\
\frac{d\Omega_2}{dt} &= \left(\frac{1}{I_2} u_2 - \frac{A_1 - A_2}{A_2 - I_2} \omega_1 \omega_3 + \frac{I_1 \Omega_1}{A_2 - I_2} \omega_3 + \frac{1}{A_2 - I_2} u_2\right) dt - \omega_2 \sigma dW(t), \\
\frac{d\nu_1}{dt} &= (\omega_1 \nu_1 - 2 \omega_1 \nu_2) dt, \\
\frac{d\nu_2}{dt} &= (\omega_2 \nu_2 - \omega_1 \nu_2) dt, \\
\frac{d\nu_3}{dt} &= (\omega_3 \nu_3 - \omega_2 \nu_3) dt.
\end{align*}
$$

Здесь ω_i координаты вектора угловой скорости, Ω_1, Ω_2 относительные угловые скорости первого и второго маховиков соответственно, A_i главные моменты инерции тела, I_1, I_2 моменты инерции первого и второго маховиков соответственно, u_1, u_2 моменты управления, приложенные к первому и второму маховику соответственно. Мы предполагаем, что $A_1 > I_1, A_2 > I_2$. Система (3) является стохастической версией системы, изученной в [1].

Для стабилизации множества $M = \{(\omega_1, \omega_2, \omega_3, \Omega_1, \Omega_2, \nu_1, \nu_2, \nu_3) : \nu_1 = \nu_2 = \omega_1 = \omega_2 = 0\}$ системы (3), мы применяем теорему, описанную выше со следующей функцией Ляпунова: $2V(x) = (A_1 - I_1)\omega_1^2 + (A_2 - I_2)\omega_2^2 + \nu_1^2 + \nu_2^2$.

И управлением:

$$
\begin{align*}
u_1 &= \nu_2 \nu_3 + (A_2 \omega_2 + I_2 \Omega_2) \omega_3 + \omega_1 (h + \frac{1}{2} \sigma^T (A_1 - I_1) + \frac{|A_1 - A_2|}{2} |\omega_3|), \\
u_2 &= -\nu_1 \nu_3 - (A_1 \omega_1 + I_1 \Omega_1) \omega_3 + \omega_2 (h + \frac{1}{2} \sigma^T (A_2 - I_2) + \frac{|A_1 - A_2|}{2} |\omega_3|).
\end{align*}
$$

Показав выполнение условий теоремы, получаем асимптотическую устойчивость множества $M = \{(\omega_1, \omega_2, \omega_3, \Omega_1, \Omega_2, \nu_1, \nu_2, \nu_3) : \nu_1 = \nu_2 = \omega_1 = \omega_2 = 0\}$ замкнутой системы (3), (4) в вероятности.

РОЗРАХУНОК ЕЛАСТОМІРНИХ КОНСТРУКЦІЙ З ПОЧАТКОВИМИ НАПРУЖЕННЯМИ

Козуб Ю. Г., Козуб Г. О.

Ключові слова: метод скінченних елементів, слабка стисливість, в'язкопружність, еластомер, початкові напруження.

У машинобудуванні і будівництві широкого поширення набули в'язкопружні демпфери елементи конструкцій. Найчастіше їх виготовляють у вигляді багатошарових гумо-металевих пакетів, в яких основну демпфіруючу функцію виконують еластомерні шари. Як правило, при монтажі такі конструкції отримують початкові деформації і напруження.

Дослідженню в'язкопружних властивостей гуми, аналізу деформування і руйнування еластомерних елементів конструкцій присвячено досить велику кількість робіт вітчизняних і зарубіжних авторів. Найбільш ефективним для опису в'язкопружних властивостей є застосування рівнянь Вольтерра. У динамічних розрахунках слід враховувати ефекти демпфірування гумових елементів конструкцій, випадковий характер збурюючих впливів і спадково-пружну реакцію на них [1-3].

Найчастіше при дослідженні поведінки гуми вводиться гіпотеза про нестисливість цього матеріалу. Однак при обмежених деформаціях ця гіпотеза неприйнятна. Аналітичні рішення рівнянь в задачах про деформацію конструкцій при циклічному навантаженні отримані лише для одновимірного випадку, що значно обмежує можливості отримати надійне рішення для елементів конструкцій, що мають складну форму. У цьому випадку найбільш ефективним є застосування чисельних методів розв'язання задач в тривимірній постановці, одним з яких є метод скінченних елементів.

Метою роботи є розробка ефективного методу розв'язання задачі про деформацію і визначення довговічності гумометалевих амортизаторів з урахуванням нелінійних властивостей еластомеру. Деформування конструкцій з еластомерів під дією динамічних навантажень супроводжується суттєвою диссипацією енергії, яка в свою чергу супроводжується саморозгева. Рішення завдання зводиться до вирішення пов'язаної системи, що складається з варіаційного рівняння Бю і рівняння теплопровідності. Використовуючи принцип Вольтерра зв'язок між компонентами напружень і деформацій для нелінійного в'язкопружного слабостисливого матеріалу можна прийняти у вигляді закону Гука, Пенга-Ландела або Линдли, замінюючи пружні константи інтегральними операторами Вольтерра.

Оскільки закони Пенга-Ландела та Линдли в граничному випадку мають вигляд закону Гука, то нелінійні рівняння можна лінеаризувати для випадку слабкої стисливості матеріалу. Тензор деформацій і інваріанти першої міри деформацій можна представити у вигляді суми лінійної і нелінійної складових.

Після підстановки в співвідношення для слабостисливого в'язкопружного матеріалу (наприклад, для закону Пенга-Ландела) можна отримати лінеаризовані співвідношення.
\[\bar{\sigma}^{ij} = 2\mu\bar{e}^{ij} + B\theta^{ij}G^{ij} - \frac{1}{3}\mu(H_1g^{ij} - H_2G^{ij}) + B\theta^{ij}G^{ij} - 2\mu \int_{-\infty}^{t} R_\mu(t-\tau)\bar{e}^{ij}(\tau)d\tau - \int_{-\infty}^{t} R_\theta(t-\tau)j^{ij}(\tau)G^{ij}d\tau - \frac{1}{3}\mu \int_{-\infty}^{t} R_\mu(t-\tau)(H_1g^{ij} - H_2G^{ij})d\tau + B \int_{-\infty}^{t} R_\theta(t-\tau)\theta^{ij}(\tau)G^{ij}d\tau\]

de \(H_1, H_2, \theta^{ij}\) - співвідношення, зумовлені нелінійними складовими інваріантів; \(g, G\) – метричні тензори базового та актуального стану, \(\theta\) – функція зміни об’єму

Модель в’язкопружного середовища визначається включення в неї пружними і в’язкими компонентами. Ускладнюючи структуру моделі, можна отримати хороший зв’язок між напружениями і деформаціями у часі. При цьому в граничному випадку можна розглядати моделі з нескінченною множиною пружних і в’язких елементів, що підвищує порядок диференціальних операторів і ускладнює їх застосування при вирішенні практичних задач.

Зв’язок між напружениями і деформаціями можна встановити і за допомогою інтегральних рівнянь стану. Пропорційність між приростом деформацій і напружень в інтегральних рівняннях встановлюється за допомогою функції, яка називається ядром рівняння. При розрахунку еластомерів використовуємо ядро релаксації Ю.Н. Работнова

\[R(z) = z^0 \sum_{n=0}^{\infty} \frac{(-\beta)^n z^{n(1+\alpha)}}{\Gamma[(n+1)(\alpha+1)]}\]

При побудові скінченноелементної моделі деформування конструкції з початковими напружениями використовуються інкрементальна теорія на основі підходу Лагранжа. В цьому випадку для лінійної складової рівнянь стану система рівнянь методу скінчених елементів має вигляд

\[
\{\ddot{u}\}^T [(K^0) + [K]]\{u\} - \{Q\} = 0,
\]

де \([K^0], [K]\) – інкрементальна матриця жорсткості та матриця впливу початкових напружень, \([u]\) – вектор вузлових переміщень, \([Q]\) – вектор вузлових сил.

Рішення нелінійної задачі здійснюється модифікованим методом Ньютона-Канторовича [4]

Для аналізу процесів динамічного деформування конструкції з еластомерів розроблений метод розрахунку конструкцій з урахуванням фізичної та геометричної нелінійності. Визначення довговічності елементів конструкцій виконується на основі розв’язання зв’язаної задачі термопружності слабо стисливого в’язкопружного тіла з використанням енергетичного критерію.

1. Определение реологических параметров эластомерных материалов / [В. И. Дырда, Ю. Г. Козуб, А. С. Кобен и др.]/ Геотехническая механика. – 2007. – Вып. 70. – С. 56-88.
Коннов Юрий Никитович, д.ф.-м.н., проф.,
Институт прикладной математики и механики НАН Украины, г. Славянск, Украина,
e-mail: kononov.yuriy.nikitovich@gmail.com;

Василенко Валерия Юрьевна, аспирантка третьего года обучения, факультет математики и компьютерных технологий,
Донецкий национальный университет имени Васыля Стуса, г. Винница, Украина,
e-mail: v.vasilenko@donnu.edu.ua

ОБ УСТОЙЧИВОСТИ ВРАЩЕНИЯ В СОПРОТИВЛЯЮЩЕЙСЯ СРЕДЕ ВОЛЧКА ЛАГРАНЖА С ИДЕАЛЬНОЙ ЖИДКОСТЬЮ ПОД ДЕЙСТВИЕМ ПОСТОЯННОГО МОМЕНТА

Коннов Ю.Н., Василенко В.Ю.

Key words: волчок Лагранжа, идеальная жидкость, сопротивляющаяся среда, устойчивость.
AMS Subject Classification: 70E05, 76U05

Рассмотрено вращение вокруг неподвижной точки тяжёлого динамически симметричного твёрдого тела с произвольной осесимметричной полостью, целиком заполненной идеальной несжимаемой жидкостью. На твердое тело, кроме силы тяжести, действуют диссипативный момент \(\bar{M}_d = -D\omega \) (\(D = \text{diag} (D_1, D_1, D_3) \), \(D_i > 0 \), \(i = 1,2 \)), моделирующий сопротивляющуюся среду, и постоянный в инерциальной системе координат момент \(\bar{M}_p = P\tilde{y} \), \(\tilde{y} \) – единичный вектор восходящей вертикали, \(P \) произвольная постоянная.

Исследована устойчивость равномерного вращения волчка Лагранжа с идеальной жидкостью в сопротивляющейся среде с учетом заданного постоянного момента в предположении, что в невозмущенном движении твердое тело и жидкость вращаются как одно целое с угловой скоростью \(\omega = \pm P/D_3 \). При отсутствии жидкости эта задача была рассмотрена в [1].

В настоящем сообщении, на основании иннорного подхода обобщены результаты статьи [2] на случай учета дополнительных тонов колебаний идеальной жидкости в произвольной осесимметричной полости.

Характеристическое уравнение возмущенного движения имеет вид

\[
A + \frac{iC\omega + D_1}{\lambda - i\omega} - \frac{\Gamma - iP}{(\lambda - i\omega)^2} - \sum_{n=1}^{\infty} \frac{E_n}{\lambda - i\omega\lambda_n} = 0, \tag{1}
\]

где \(A \) и \(C \) – соответственно экваториальный и осевой моменты инерции твердого тела и жидкости, \(\Gamma \) – опрокидывающий \((\Gamma > 0) \) или восстанавливающий \((\Gamma < 0) \) момент, \(\lambda_n \) – собственные частоты колебаний равномерно вращающейся идеальной жидкости в осесимметричной полости, \(E_n = 2a_n^2/N_n^2 > 0 \). Определения остальных величин приведены в работе [2].

С учетом основного и дополнительного тона колебаний жидкости \((n = 1,2) \) уравнение (1) примет вид

\[
a_4\lambda^4 + (a_3 + ib_3)\lambda^3 + (a_2 + ib_2)\lambda^2 + (a_1 + ib_1)\lambda + a_0 + ib_0 = 0. \tag{2}
\]

Для существования асимптотически устойчивых решений системы необходимо и достаточно, чтобы матрица седьмого порядка, составленная из коэффициентов многочлена (2) была иннорно-положительной [3], т.е. были положительно определены матрицы \(\Delta_1, \Delta_3, \Delta_5 \) и \(\Delta_7 \).

На основании проведенных аналитических и численных исследований неравенств \(|\Delta_i| > 0 \) \((i = 1,3,5,7) \) сделаны следующие выводы:
1. С учетом основного и дополнительного тонов колебаний идеальной жидкости асимптотическая устойчивость равномерного вращения в сопротивляющейся среде волчка Лагранжа с произвольной осесимметричной полостью определяется тремя неравенствами. При дальнейшем увеличении числа тонов колебаний жидкости число неравенств будет увеличиваться на единицу.
2. В сопротивляющейся среде положение равновесия \(\omega = 0 \) свободного волчка Лагранжа с идеальной жидкостью будет асимптотически устойчивым при \(C > A \) и \(\lambda_1 > 1, \lambda_2 > 1 \) и неустойчивым при \(C < A \).
В случае учета только основного тона колебаний жидкости \(n = 1 \) эти условия устойчивости и неустойчивости определяются соответственно только неравенствами \(\lambda_1 > 1 \) и \(\lambda_1 < 1 \).
3. В сопротивляющейся среде положение равновесия \(\omega = 0 \) невольного волчка Лагранжа с идеальной жидкостью \(\Gamma \neq 0 \) будет всегда неустойчиво. В случае учета только основного тона колебаний жидкости \(n = 1 \) положение равновесия будет асимптотически устойчивым при действии восстанавливающего момента и \(\lambda_1 > 1 \). В этом состоит принципиальное отличие в учете только основного тона колебаний жидкости.
4. Из основного неравенства \(\lambda_1 > 1 \) следует, что для эллипсоидальной полости асимптотическая устойчивость положения равновесия или равномерного вращения возможна только для поджатой эллипсоидальной полости.
5. В сопротивляющейся среде условия асимптотической устойчивости равномерного вращения невольного волчка Лагранжа с идеальной жидкостью при \(n = 1 \) определяются кубическим и квадратным неравенствами относительно \(x (x = D_1/D_3 > 0) \) и не зависит от знака величины \(P \), а для свободного волчка Лагранжа эти условия определяется уже двумя квадратными неравенствами и не зависит от величины \(P (P \neq 0) \).
6. При \(n = 1 \) показано, что с увеличением эваториального момента инерции твердого тела области устойчивости уменьшаются, а с увеличением осевого момента инерции твердого тела они увеличиваются.

Исследования выполнены в рамках программы фундаментальных исследований Министерства образования и науки, проект № 0119U100042.

ВТРАТА СТИЙКОСТІ ПЛОСКОЇ ФОРМИ ТОНКИХ КІЛЕЦЬ ПРИ ЇХ ОСЕСИМЕТРИЧНОМУ НАГРІВАННІ

Куценко О.Г., Харитонов О.М.

Ключові слова: тонке кільце, стійкість, колові напружения, температурне навантаження.

AMS Subject Classification: 74K10, 74F05, 74G60

Втрати стійкості елементів конструкції небезпечна тим, що приводить, як правило, до не менш катастрофічних наслідків ніж вичерпання конструкцією запасу міцності по статичній міцності. При цьому, що змінює останнього фактору можна відслідковувати по зміні кінематичних характеристик конструкції, то втрата стійкості відбувається раптово, без будь-яких попередніх ознак, які можуть на неї вказувати. Ось чому важливо вміти передбачати дане явище, ґрунтуючись на теоретичних та чисельних розрахунках. Особливо актуально дане питання постає у таких відповідальних галузях техніки та промисловості як енергетика (зокрема атомна), літако-та ракетобудування.

В даній роботі досліджено явище втрати стійкості кільця при його нагріванні. Важається, що кільце є плоским, тобто його вісь є колом, а поперечний переріз кільця є постійним. Виявляється, що якщо таке кільце достатньо сильно нагріти з внутрішньої сторони, то воно може “проклацнутися”, вийшовши з площини свого попереднього розташування. При цьому температурне поле всередині кільця може залежати лише від радіальної координати і зовсім не залежати від осьової та колової координат.

Оскільки кільцеві елементи часто зустрічаються у техніці, наприклад як ребра жорсткості або тарілки фланцевих з’єднань, то дане явище заслугує на детальне вивчення.

В роботі розглянута модельна задача для кільця прямокутного поперечного перерізу. У якості навантаження задавалося температурне поле у точках кільця, що лінійно змінювалося вздовж радіуса r від температури T_1 на внутрішньому радіусі кільця до температури T_0 на зовнішньому радіусі кільця. Відзначимо, що для виникнення явища втрати стійкості має виконуватися умова $T_1 > T_0$. Не зменшує загальності вважалося, що T_0 є початковою температурою.

Дослідження виконувалися за допомогою скінченно-елементного пакету CalculiX [1]. В залежності від співвідношення геометричних параметрів (радіуса вісі кільця r_0, товщини кільця в радіальному напрямку $2l$, товщини кільця в осьовому напрямку $2h$) знаходилася критична температура T_1^*, яка відповідає втраті стійкості плоскої форми кільця. Фізичні параметри вибирали такими, що відповідають сталі: модуль пружності $E = 200$ ГПа, коефіцієнт Пуассона $\nu = 0,3$, коефіцієнт лінійного температурного розширення $\alpha = 15 \cdot 10^{-6} ^\circ\text{C}^{-1}$. Початкова температура T_0 приймалася рівною $0 ^\circ\text{C}$.

За результатами досліджень встановлено, що критична температура T_1^* сильно залежить від співвідношення товщин кільца h/l і стрімко зростає з його збільшенням. Так при вказаних фізичних параметрах і $r_0 = 1$ м та $l = 10$ см критична температура T_1^* рівна...
1,3 °C при \(h = 1 \) мм, \(T^* \) \(= 33,6 \) °C при \(h = 5 \) мм, \(T^* \) \(= 134,4 \) °C при \(h = 1 \) см, \(T^* \) \(= 537,5 \) °C при \(h = 2 \) см. Подальше збільшення осьової товщини кільця призводить до нефізичних значень критичної температури, вищих за температуру плавлення сталі. Наприклад для \(h = 3 \) см маємо \(T^* \) \(= 1209 \) °C. Таким чином, можна стверджувати, що втрава стійкості при радіальному нагріванні кільця виникає лише для достатньо тонких кілець, товщина яких в осьовому напрямку як мінімум на порядок менше їх товщины в радіальному напрямку. Слід також відзначити, що навіть у випадку втрати стійкості поперечний переріз кільця практично не деформується, залишаючись прямокутним та повернутим на деякий кут відносно власної осі.

Одержані результати гарно узгоджуються з запропонованою раніше авторами теорією кручення тонких кілець [2, 3]. Вказана теорія дозволяє пояснити сам механізм втрати стійкості кільцю, а також пояснити, чому це явище притаманне саме тонким кільцям. У відповідності до неї основними напруженнями при крученні є колові напруження \(\sigma_r \) та відповідні їм коліві деформації

\[
\varepsilon_r = \frac{u_r}{r} = -\frac{\vartheta z}{r},
\]

(1)

Тут \(u_r \) — радіальні зміщення точок кільця, \(z \) — осьова координата, \(\vartheta \) — кут повороту поперечного перерізу кільця відносно власної осі.

Як слідує з (1), деформація розподілена за лінійним законом відносно \(z \), тобто у верхній частині поперечного перерізу колове волокно кільця стиснути, а в нижній — розтягнуті (чи навпаки, якщо \(\vartheta < 0 \) — це не принципово). При цьому залежність від \(r \) можна знехтувати, адже розглядаються тонкі кільця (\(h \) значно менше \(r_0 \)).

Температурна деформація слідує закону термопружності

\[
\varepsilon^\varphi = \alpha(T(r) - T_0) = \alpha \left(\frac{r_0 + l}{2l} \right) (T_i - T_0),
\]

(2)

тобто повторює розподіл температури, а отже лінійно розподілена за радіальною координатою. Суперпозиція розподілів (1) та (2) дає повну колову деформацію \(\varepsilon^\varphi \), квадрат якої пропорційний повній енергії пружної деформації кільця при втраві стійкості його плоскої форми. Показано, що для значень різниці \(T_i - T_0 \) інше деякого критичного \(T^* \) завжди можна вказати такий кут \(\vartheta \), що забезпечує мінімум інтегралу від квадрата \(\varepsilon^\varphi \) по площі поперечного перерізу. Іншими словами, відповідна неплоска форма кільця є стійкою.

Теорія кручення тонкостінних кілець вказує на те, що момент кручення необхідний для повороту кільця на заданий кут прямо пропорційний моменту інерції поперечного перерізу кільця відносно осьової товщини, який в свою чергу пропорційний \(h^3 \). Саме цим пояснюється різке зростання стійкості при збільшенні осьової товщини кільця, адже для встановлення мінімуму повної енергії деформації кільця баланс між складовими (1) та (2) має зберігатися.

ЭВОЛЮЦИЯ ВРАЩАТЕЛЬНЫХ ДВИЖЕНИЙ БЛИЗКОГО К ДИНАМИЧЕСКИ СФЕРИЧЕСКОМУ ТВЕРДОГО ТЕЛА С ПОЛОСТЬЮ, ЗАПОЛНЕННОЙ ВЯЗКОЙ ЖИДКОСТЬЮ

Лещенко Д.Д., Акуленко Л.Д., Палий Е.С.

Ключевые слова: сфероид, полость, вязкая жидкость, твердое тело, усреднение.

AMS Subject Classification: 70E15, 70E05, 70F15, 34C29, 76A02

Рассматривается движение относительно центра масс сфероида с полостью, заполненной жидкостью большой вязкости. Момент сил, действующих на тело со стороны вязкой жидкости в полости, определен по методике, развитой в работах [1, 2].

Рассмотрим свободное движение в пространстве твердого тела с вязкой жидкостью относительно центра инерции. Тензор P задается в виде $P_{ij} = P_0 \delta_{ij}$, где δ_{ij} – символ Кронекера, $P_0 > 0$. Данный вид тензора P имеет в случае сферической полости, для которой согласно [1, 2] значение $P_0 = 8\pi b^5/525$, где b – радиус полости. Через A, B, C обозначены главные центральные моменты инерции системы, через p, q, r – проекции абсолютной угловой скорости ω на главные центральные оси инерции. Уравнения движения в проекциях на главные центральные оси инерции (точка $–$ производная по времени) имеют вид:

$$A\dot{p} + (C - B)qr = \frac{\rho P_0}{\nu ABC} p \left[C(A - C)(A + C - B)q^2 + B(A - B)(A + B - C)p^2 \right]$$

(1)

Остальные уравнения получаются из (1) циклической перестановкой символов A, B, C и p, q, r.

Рассмотрен случай, когда главные центральные моменты инерции твердого тела близки друг к другу и представлены в виде:

$$A = J_0 + \varepsilon A', \quad B = J_0 + \varepsilon B', \quad C = J_0,$$

(2)

где $0 < \varepsilon << 1$ – малый параметр.

При $\varepsilon = 0$ уравнения (1) описывают движение сферически симметричного тела.

Также предполагается, что:

$$|A - B| = O(\varepsilon^2 J_0)$$

(3)

После формальных преобразований системы (1) с учетом соотношений (2), (3) получена возмущенная система типа Эйлера вида:

$$\frac{dp}{d\tau} = \frac{B'}{J_0} \left(1 - \varepsilon \frac{A'}{J_0} \right) qr + \varepsilon f_p (p, q, r), \quad p(0) = p_0$$

$$\frac{dq}{d\tau} = \frac{A'}{J_0} \left(-1 + \varepsilon \frac{B'}{J_0} \right) rp + \varepsilon f_q (p, q, r), \quad q(0) = q_0$$

$$\frac{dr}{d\tau} = \frac{\varepsilon}{J_0} \left(A' - B' \right) qp + \varepsilon f_r (p, q, r), \quad r(0) = r_0$$

(4)
Здесь р – медленная переменная. Система дифференциальных уравнений (4) – существенно нелинейная система, в которой частота зависит от медленного времени \(\tau = \varepsilon t \). В (4) введены возмущения:

\[
\varepsilon f_p(p, q, r) = \frac{\rho P_0 p}{v J_0^3} \{ A'[J_0 - \varepsilon(2A' + B')]r^2 + \varepsilon J_0(A' - B')q^2 \}
\]

\[
\varepsilon f_q(p, q, r) = \frac{\rho P_0 q}{v J_0^3} \{ B'[J_0 - \varepsilon(A' + 2B')]r^2 - \varepsilon J_0(A' - B')p^2 \}
\]

\[
\varepsilon f_r(p, q, r) = \frac{\rho P_0 r}{v J_0^3} \{ B'(\varepsilon A' - J_0)q^2 + A'(\varepsilon B' - J_0)p^2 \}
\]

Решение невозмущенной системы (4) при \(\varepsilon = 0 \), \(\frac{1}{\nu} = 0 \) имеет вид:

\[
p = a \sin(\omega \tau + \varphi), \quad q = a \sqrt{\frac{A'}{B'}} \cos(\omega \tau + \varphi)
\]

(5)

Здесь \(a = \sqrt{p_0^2 + \left(\frac{P_0}{\omega} \right)^2} \) – амплитуда (медленная переменная), \(\varphi \) – фаза, \(\omega = r_0 / \sqrt{A'B'} \), \(A'B' > 0 \) по предположению.

Проведен переход от медленных переменных (р, q, r) к новым медленным переменным (a, \(\varphi \), r) путем замены переменных:

\[
p = a \cos \varphi, \quad q = -J_0 a \omega \sin \varphi / B'r, \quad r = r
\]

(6)

После ряда преобразований и усреднения полученной системы по фазе \(\varphi \) находим систему для медленных переменных х, y:

\[
\dot{x} = 2\eta x(\alpha x + \beta y), \\
\dot{y} = \eta(\alpha + \beta) y
\]

(7)

Здесь \(\alpha = \frac{\sqrt{p_0^2 + \left(\frac{P_0}{\omega} \right)^2}}{\sqrt{J_0^3}} \), а также:

\[
\alpha = \frac{\varepsilon}{8B'}J_0(A' - B')^2, \\
\beta = \frac{1}{2}J_0(A' + B') - \varepsilon(A'^2 + A'B' + B'^2), \\
\gamma = \frac{1}{2}\varepsilon(A'^2 + A'B') - J_0A'
\]

Отметим, что в системе (7) х, y – медленные переменные. Разделим первое уравнение системы (7) на второе; получим скалярное уравнение, допускающее элементарное аналитическое интегрирование:

\[
\frac{dx}{dy} = \frac{2\alpha x}{\gamma} + \frac{2\beta}{\gamma}
\]

Для этого обозначим: \(z = \frac{x}{y} \). Имеем параметры \(\tilde{\alpha} = 2\alpha / \gamma, \tilde{\beta} = 2\beta / \gamma \) и выражение для производной \(z' = \frac{dz}{dy} \).

Получим линейное уравнение для переменной \(x \):

\[
\frac{dx}{dy} = yz' + z, \quad \text{в котором:}
\]

\[
yz' = y \cdot \frac{dz}{dy} = \frac{dz}{d\theta}
\]
Здесь введен аргумент \(\theta = \ln y \).

С учетом введенных ранее обозначений имеет место выражение:

\[
y'z + z = \tilde{\alpha} z + \tilde{\beta}
\]

В результате преобразований получим линейное неоднородное уравнение элементарного вида:

\[
\frac{dz}{d\theta} = (\tilde{\alpha} - 1) z + \tilde{\beta}
\]

Его решение записывается следующим образом:

\[
z = \frac{\tilde{\beta}}{1 - \tilde{\alpha}} + C_i e^{(\tilde{\alpha} - 1)\theta}, \quad C_i = \text{const}
\]

Раньше было получено уравнение вида: \(\frac{dx}{dy} = \tilde{\alpha} z + \tilde{\beta} \), после интегрирования которого, находим первый интеграл:

\[
x = \frac{\tilde{\beta}}{1 - \tilde{\alpha}} y + C_i y^{\tilde{\alpha}}, \quad C_i = \text{const}
\]

После ряда преобразований получено уравнение, допускающее разделение переменных \(y, \tau \) и интегрирование в квадратурах:

\[
y = \eta y^2 \left(\frac{\tilde{\beta}}{1 - \tilde{\alpha}} + C_i y^{\tilde{\alpha} - 1} \right)
\]

В силу выбранных значений параметров у системы (7) в первом случае коэффициенты имеют вид: \(\eta = 0.0224, \quad \alpha = 0.375, \quad \beta = -25, \quad \gamma = -30 \), и начальные условия: \(x(0) = 1, y(0) = 1 \).

Во втором расчетном случае рассматриваются те же начальные условия и коэффициенты: \(\eta = 0.6048, \quad \alpha = 0.00625, \quad \beta = 0.6, \quad \gamma = -2.5 \).

Численный анализ, проведенный на интервале \([0; 10]\), показывает, что в обоих случаях \(y(t) = r^2 \) убывает: в первом – асимптотически приближаясь к стационарному значению 0.397, а во втором – к нулю. Функция \(x(t) = a^2 \) в первом случае убывает, асимптотически приближаясь к нулю. Во втором – возрастает, достигая значения 1.6 на интервале \([0; 10]\).

Таким образом, исследовано движение близкого к динамически сферическому твердого тела (сфероида) с полостью, целиком заполненной вязкой жидкостью, при малых числах Рейнольдса.

Получена уточненная в квадратическом приближении по малому параметру система уравнений движения в стандартной форме. Проанализирована задача Коши для системы, определенной после усреднения. Эволюция движения твердого тела на бесконечном интервале времени описывается решениями, полученными асимптотически, аналитически и численно.

Исследуемая в работе модель представляет определенный естественнонаучный интерес для динамики фигуры Земли [3].

ОСОБЛИВОСТІ ФОРМУВАННЯ ХВИЛЬОВИХ РЕЗОНАНСНИХ ПРОЦЕСІВ В ЗАДАЧАХ ДИНАМІКИ РІДИНИ З ВІЛЬНОЮ ПОВЕРХНЕЮ

Лимарченко О.С.

Ключові слова: рідина з вільною поверхнею, резонансні коливання, модуляція, періодичність.

AMS Subject Classification: 76B10

Протягом останніх 15 років появилося чимало публікацій по експериментальному і теоретичному дослідженню резонансних коливань резервуарів з рідиною, в яких суттєвим є те, що коливання в системі розвиваються за неперіодичними законами [3, 9–11]. Ця властивість принципово відрізняється від поведінки лінійних систем і великої групи результатів, одержаних на основі нелінійних моделей, де механічний зміст задачі включає в себе прийняття ряду гіпотез, в яких саме за основу ставиться забезпечення періодичності коливань вільної поверхні рідини [3,4,7]. Через це виникає дуже важливим проаналізувати підстави для вироблення математично і механічно обґрунтованого підходу до побудови моделей резонансних процесів в системі резервуар – рідина.

До загальних підстав порушення періодичності коливань в таких системах слід віднести такі передумови.

1. Наявність широкого кола експериментів, в яких вихід на усталений режим коливань не спостерігається. В той же час спостерігається прояв модуляції коливань, суттєвий внесок вищих гармонік спектру і дрейф середнього значення коливань. Є навіть результати по експериментальному визначенню періодів модуляції коливань [3,9–11].

2. Наявність чисельних результатів по дослідженню резонансних коливань систем резервуар – рідина, одержаних переважно на основі методу скінчених елементів без використання попередніх гіпотез спрошукуючих механічні властивості об'єкту, в яких вихід на режим усталених коливань також не спостерігається, а результати переважно узгоджуються з даними експериментів [9,11].

3. Згідно загальних властивостей розвитку явищ в еволюційних і динамічних нелінійних системах, до яких належать і задачі коливань рідини з вільною поверхнею, процеси підкоряються так званому парадоксу Фермі–Паста–Улама. Цей парадокс був винайдений експериментально і доведений теоретично для різних класів задач. Зокрема, згідно з цим парадоксом в нелінійних системах дисперсія хвиль не відбувається на всю область, а енергія лишається зосередженою на певній частині простору (найбільш яскраво це проявляється для поодиноких хвиль), і через багаточастотність процесів коливання відбуваються неперіодичним чином, хоча інколи можуть наближатися до режимів, подібних до періодичних, але з певними відхиленнями від них [1,8].

4. Багаточастотність процесу коливань рідини з вільною поверхнею, обумовлена проявом нелінійності, взаємозалежності форм коливань як між собою і через зв'язок коливань за окремими формами від руху резервуару як твердого тіла. Зокрема, дослідження показують, що частотні характеристики системи суттєво залежать від врахування сумісного характеру руху рідини і резервуара, що може призвести до зміни частот навіть в декілька разів і призводить до зміни черги розташування форм коливань в порівнянні з випадком незв'язаного руху компонент системи при їх розташуванні в порядку зростання частот [2,6].

5. Згідно з дисперсійним співвідношенням частоти коливань рідини залежати від хвильових чисел переважно згідно за законом квадратного кореня. Тобто, навіть в найпростіших випадках зв'язок між частотами (і періодами) коливань буде трансцендентним, що в підсумку призводить до неперіодичних коливань. Така дисперсійна залежність ущільнює розташування частот і сприяє взаємозалежності коливань на основі нелінійних механізмів.

Виходячи з цих властивостей доречно переглянути ряд гіпотез, які раніше використовувалися при побудові нелінійних моделей динаміки резервуарів з рідиною з вільною поверхнею. Зокрема, необґрунтованими є наступні гіпотези.
1. Відмова від розгляду коливань на власних частотах форм коливань, які збуджуються через нелінійні механізми та через рух резервуара. Гіпотеза про швидке згасання коливань за такими формами, позичена з теорії коливань лінійних одночастотних систем тут не є доречною. В популярній лекції В.І. Арнольда про механіку стверджувалося, що нелінійні процеси можна умовно розглядати як нескінчену послідовність перехідних процесів. Тобто припущення про можливість нехтувати частотами власних коливань окремих форм для нелінійних систем є некоректним. Проте при сильній дисипації така гіпотеза є коректною. Але, як показують розрахунки, така дисипація відповідає рідині, в ’язкість якої штучно збільшена разів в 25-40.

2. Зведення коливань системи до однієї частоти вимушеного збурення руху резервуару (а також до подвоєної і потроєної частоти як для рівняння типу Дуффінга) наперед гарантує періодичність процесу, яка не підтверджується експериментально, не відображає силої модуляції коливань, яку реєструють всі експерименти. Відповідно, недоюрок по використання амплітудно-частотної характеристики для відображення динамічних властивостей системи. Варто відзначити, що навіть за загальними резонансних кривих значних диференційальних рівнянь слід шукати розв’язок задачі у вигляді суми всіх частинних розв’язків, які одержуються з характеристикного рівняння породжуючої системи, що відразу приводить до багаточастотного процесу.

3. Припускається можливість розгляду випадку руху резервуара за заданим гармонічним законом. Проте в найбільш важливих випадках розглядається система резервуар рідина для різних форм розхилок, за яких займає рідина, в рамках моделі сумісного поступального і кутового руху конструкції з рідиною [2,5,6].

1. Заславский Г.М., Сагдеев Р.З. Введение в нелинейную физику: От маятника до турбулентности и хаоса, Москва, Наука, 1988, 368
5. Limarchenko O.S. Peculiarities of application of perturbation techniques in problems of nonlinear oscillations of liquid with a free surface in cavities of non-cylindrical shape // Ukr. math. journal. – 2007.— 59, 1.—P. 44–70.
Вивчення руху гіроскопічних пристроїв починались з прецесійної теорії гіроскопічних явищ ще в 30-х роках попереднього століття. З робіт Ніколаї Е. з’явилися дослідження в яких враховувалось маса карданових кіл і можливість зсуву вільного гіроскопу в кардановому підвісі. В подальших роботах Магнуса, Лунца, Клімова, Ішлінського та багатьох інших розглядались можливості зсуву гіроскопа в різних ситуаціях та умовах. [1,2] Зокрема, в роботі [3] розглянуто поведінку трискепеневого гіроскопа, вісь якого робить вимушені коливання, викликані неаксіальністю ротора відносно осі його обертання на кут χ. В осіх карданового підвісу вражено малі моменти сил в’якого тертя та кути повороту зовнішньої та внутрішньої рамок кардану. В таких умовах, гіроскоп крім вільних коливань з частотою нутації λ0 здійснює вимушені коливання з частотою т. Нутаційні коливання приводять до «відхилення Магнуса», проте при наявності тертя ці коливання згасають, а це означає, що відхилення зникають. Вимушені коливання, навіть при наявності тертя, не зникають, і можуть бути джерелом нестійкості руху у резонансному випадку. Деякі умови виконуються завжди при наявності тертя, але можуть виникати умови при яких коливання осі ротора (коливання нутації) не загасають і «відхилення типу Магнуса» не зникає у резонансному випадку, навіть при наявності в’якого тертя. Розроблена математична модель мікромеханічного вибраційного гіроскопу з резонатором у вигляді чотирьох однакових пружних пластин, жестко закріпленіх по краям на рамкі, яка з’єднана пружними торсіонами з основою гіроскопа. Визначено вплив кінцевих деформацій пружної системи на покази пристрою, що встановлений на рухомій основі. Знайдений розв’язок нелінійної задачі про коливання пружної системи дозволяє покращити точність гіроскопа за допомогою аналітичної компенсації похібок.
В роботах останніх років (з 2003 по 2015) досліджено і побудовано багато цікавих математичних моделей пов’язаних з функціонуваннях гіроскопа в різних ситуаціях та умовах, що є підставою для постановки нових задач.

Зокрема, враховуючи результати разробки макетного зразка безплатформенної інерціальної навігаційної системи на базі твердотельного хвільового гіроскопа (ТХГ) і маятникових кремніевих акселерометрів. описано структурну схему системи. Особливу увагу приділено описанню математичної моделі, яка використовується при калібруванні ТХГ, і проблемам калібрування.

В результаті досліджень побудований інтерференційний волокно-оптичний гіроскоп ОІУС-1000 із замкненим контуром оберненого зв’язку навігаційного класу точноності. Результати вимірювань показали, что волокно-оптичний гіроскоп ОІУС-1000 задовольняє всі вимоги, до гіроскопів, що використовуються для побудови точних навігаційних систем.

Серед останніх наукових досліджень цікавими є результати по виявлению впливу технологічних прийомів, які використовують розмірні характеристики високоточних берилиевих конструкцій на прикладі різних модифікацій сферичних роторів електростатичного гіроскопа.

Обґрунтовано використання в якості технологічної операції на фінішній стадії процеса виготовлення, термоциклічній обробці, що дозволяє покращити розмірну стабільність роторів. Визначено режими термоциклування і подані дані по зміні в часових розмірних характеристиках ротори різних типів. [4]

1. Боголюбов Н.Н., Митропольський Ю.А. Асимптотические методы в теории нелинейных колебаний. – М.: Наука, 1974, - 504с.
Изучение разрушения материалов при сжатии вдоль трещин является отдельной проблемой механики разрушения. В этом случае невозможно использовать критерий Гриффита-Ирвина и другие подходы, предложенные в рамках классической механики разрушения. Существует два подхода для исследования таких задач [1, 2]. Первый базируется на использовании приближенных расчетных схем, когда отдельный трещиной и свободной поверхностью (трещинами) элемент заменяют балкой, пластиной или оболочкой [2]. Однако этот метод имеет существенные недостатки: необходимо проводить отдельные исследования для определения возможностей его применения с точки зрения тонкостенности и условий закрепления выделенного трещинным элемента. Второй подход в качестве критерия разрушения использует критерий локальной потери устойчивости материала вблизи трещины в рамках трехмерной линеаризированной теории упругости. За этим подходом разрушение инициирует момент локальной потери устойчивости материала вблизи трещин, а критические параметры разрушения определяются из решения соответствующих задач на собственные значения, используя трехмерную линеаризированную теорию стойкости деформируемых тел.

Исследовалась сжатие полупространства вдоль дискообразной приповерхностной трещины радиуса \(a \), с расстоянием \(\beta \) между трещиной и свободной поверхностью.

Для композитных материалов с приведенными характеристиками трансверсально-изотропной среды, когда размеры трещин в материале значительно больше характерных размеров составляющих композита и высокоэластичных материалов в рамках второго подхода, задача сводится к решению системы интегральных уравнений Фредгольма с дополнительным условием [1, 3]

\[
\begin{align*}
\frac{f(\xi)}{\pi k} + \frac{1}{\pi k} \int_{0}^{\pi} M_1(\xi, \eta) f(\eta) d\eta - \frac{2}{\pi k} \int_{0}^{\pi} N_1(\xi, \eta) g(\eta) d\eta &= 0; \\
g(\xi) + \frac{1}{\pi k} \int_{0}^{\pi} M_2(\xi, \eta) g(\eta) d\eta - \frac{2}{\pi k} \int_{0}^{\pi} N_2(\xi, \eta) f(\eta) d\eta + \tilde{\gamma} &= 0; \\
\int_{0}^{\pi} g(\xi) d\xi &= 0,
\end{align*}
\]

(1)

с соответствующими ядрами.

Для дальнейших исследований применялась численно аналитическая методика решения интегральных уравнений Фредгольма, позволившая получить результаты при исследовании упругих высокоэластичных материалов, предложенная в [4, 5]. Для поиска критических укорочений, и напряжений из интегральных уравнений (1) использовалась процедура, построенная на методе Бубнова-Гальоркина. В качестве системы координатных функций использовались степенные функции.
В отличии от предыдущих робот [1, 3], где после подстановки координатных функций в (1) при дальнейшем исследовании сразу проводилось численное интегрирование системы, предложенная численно-аналитическая методика, позволяет, используя современный пакет символьных вычислений, аналитически найти интегралы от ядер интегральных уравнений (1). Это позволило при дальнейших расчетах получить большую точность. Для ускорения вычислений интегралов использовались рекуррентные соотношения, предложенные в [4].

Для композитных и высокоэластичных материалов после использования данной методики, система интегральных уравнений (1) сводится к решению системы из 2N+3 линейных уравнений:

\[\sum_{i=0}^{N} F_{ij} + \sum_{i=0}^{N} G_{ij} = 0; \quad \sum_{i=0}^{N} F_{2ji} + \sum_{i=0}^{N} G_{2ji} + \tilde{C}_i = 0; \quad \sum_{i=0}^{N} \frac{1}{1+1} G_i = 0, \quad 0 \leq j, i \leq N \]

(2)

с неизвестными величинами \(F_i, G_i, \tilde{C}_i, i \in [0, N], \) где \(F_{kji}, G_{kji} \) – точные выражения, найденные аналитически, зависящие от констант материала и безразмерного расстояния между трещиной и свободной поверхностью \(\beta = ha^{-1}. \)

В качестве примера проведено исследование композита с приведенными характеристиками трансверсально-изотропной среды \(\nu = 0.3; \quad \nu' = 0.2; \quad G'/E = 0.1; \quad E'/E = 0.5, \) и высокоэластичных материалов с потенциалом Трелоара и потенциалом Бартеньева-Хазановича.

Анализ критических напряжений и укорочений полученных при решении задач говорит о применимости численно-аналитического метода, разработанного для высокоэластичных материалов, при исследовании композитных материалов. В обоих случаях при малых расстояниях между свободной поверхностью и плоскостью трещины, критические укорочения (напряжения) имеют квадратичную зависимость от расстояния между трещиной и свободной поверхностью. Применение численно аналитической методики также позволяет определить применимость приближенных расчетных схем [1], как с точки зрения условий закрепления вычисленного трещиной и свободной поверхности элемента, так и его тонкостенности.

Нефьодов Олександр Олексійович
КНУ імені Тараса Шевченка, Київ, Україна
e-mail: garonmail@gmail.com
Семенович Катерина Олексіївна, кандидат фіз.-мат. наук
КНУ імені Тараса Шевченка, Київ, Україна
e-mail: kateryna.semenovych@gmail.com

ОСОБЛИВОСТІ РОЗВИТКУ РЕЗОНАНСНИХ ПРОЦЕСІВ В СИСТЕМІ
РЕЗЕРВУАР – РІДИНА НА МАЯТНИКОВОМУ ПІДВІСІ
Нефьодов О.О., Семенович К.О.

Ключові слова: нелінійна механіка, кутовий рух системи, система резервуар – рідина з вільною поверхнею, сумісний рух.

AMS Subject Classification: 76B10

Дослідження задач динаміки систем резервуар – рідина з вільною поверхнею тривають вже довгий час. Проте постійне поставлення структур машинобудівних і транспортних конструкцій і умов їх експлуатації висуває багато нових наукових задач. Одним з таких напрямків – проблема вібродинаміки систем з рідиною. Для структурного розглядіння умов резонансу використовується внесення в систему додаткового ступеня вільності, закріплення конструкцій на маятниковому підвісі. Це сприяє зміщенню зон пройву резонансів, але ставить ще одне чере задачу дослідження нелінійних задач динаміки конструкцій з рідиною при кутових рухах системи, які до теперішнього часу досліджені дуже мало. Саме таке коло питань включає в цю роботу.

Для вивчення нелінійної задачі динаміки резервуара з рідиною з вільною поверхнею застосовано математичну модель, створену на основі [1], в якій по частині змінних (параметри поступального руху) рух вважається заданим, а по іншим змінним (кутовий рух резервуару та коливання вільної поверхні рідини) – сумісний. На прикладі маятникового підвісу резервуара з рідиною досліджуються випадки прояву резонансів при відношенні маси резервуару до маси рідини $M_r = 0.1 M_i$, глибині заповнення та радіусі резервуару $H = R = 1$. Рух точки підвісу задається по гармонічному закону:

$$e_x = A \sin \omega t$$

Використання маятникового підвісу як засобу сейсмозахисту з теоретичної точки зору є доцільним через те, що при розгляді сумісного руху відбувається значна зміна значення резонансної частоти першої, антисиметричної, форми, що в переважній більшості випадків збільшує резонансну частоту поступального руху. Це призводить до того, що частота першої антисиметричної форми зростає і відбувається зміна порядку частот при їх розміщенні за ступенем зростання, що в свою чергу призводить до зменшення інтенсивності прояву резонансу.

Так, для випадку розгляду парціальних частот, значення частоти для форм $m=1$ рівні $\omega = 4.14$, при цьому значення резонансних частот по формам $m=2, m=0$ рівні $\omega = 5.45$ та $\omega = 6.12$ відповідно. При визначенні частот в сумісній постановці, при довжині маятникового підвісу $l = R$, значення частоти для $m=1$ стає рівним $\omega = 6.69$. (Зростає в 1.5 разів). Тобто, для довжини підвісу $l = R$ ми маємо, що резонанс по антисиметричній формі стає третім, найменш інтенсивним (у порівнянні з $m=2, m=0$). Така зміна порядку частот дає можливість значно зменшувати прояви резонансних властивостей для різного роду конструкцій.

Значення частоти резонансу по куту, в сумісній постановці, теж змінюється. Загальну зміну частоти зображено на рис.1, де «*» позначено парціальні частоти, стрілками показано їх нові значення.
Чисельне моделювання поведінки системи для різних частот кінематичного збурення горизонтального руху точки підвісу показує (рис. 2), що для коротких та середніх довжин підвісів найбільш інтенсивніше проявляються резонансні властивості на частоті, що відповідає коловому номеру $m = 2$ [2], для даних параметрів системи $\omega = 5.4571$. На всіх графіках дається збурення вільної поверхні рідини на стінці бака, віднесене до радіуса незбуреної вільної поверхні, в часі, який приводиться в секундах.

![Графік збурення вільної поверхні рідини та кута відхилення резервуару](image.png)

Рис. 2. Збурення вільної поверхні рідини та кут відхилення резервуару ($\omega = 5.4571$)

Аналіз чисельних прикладів показує, що практично для усього діапазону коротких та середніх довжин підвісів резонанс по формі $m = 0$ не проявляється. Але, в роботі [3], виконано режим налаштування на внутрішній резонанс, який відповідає формам $m = 0$ та $m = 1$, та вдалося знайти прояв такого резонансного явища. Так, для значення довжини підвісу $l = 1.95R$ та частоти $\omega = 6.1261$ отримано наступні збурення вільної поверхні рідини на стінці, рис. 3.

![Графік збурення вільної поверхні рідини на стінці](image2.png)

Рис. 3. Збурення вільної поверхні рідини на стінці. Частота $\omega = 6.1261$.

При чому, збільшення результуючого значення збурень вільної поверхні рідини на стінці за останні 100с. відбувається за рахунок першої осесиметричної форми (рис. 4).

Висновки. Внесення в систему маятникового підвісу суттєво змінює розподіл частот в системі і процеси розвитку резонансів. Фактично в системі вже проявляється чотири частини, на яких може відбуватися резонанс. Першою частотою є частота наближенна до маятникової коливань.
резервуару. Вона завжди має мінімальне значення і може поступитися цією позицією лише для дуже коротких підвісів, які не мають практичного значення через наближення до порогу втрати стійкості саме маятникової форми коливань. Далі відповідно йдуть частоти, що відповідають значенням колових номерів 1, 2 і 0. При цьому в залежності від довжини маятникового підвісу частота антисиметричної форми (коловий номер 1) може лишитися на другому місці (довгі підвіси), зайняти позицію між частотами форм з коловими номерами 2 і 0 (середній підвіс), а може бути більшою за ці обидві частоти (короткий підвіс). Виходячи з загальних властивостей розвитку резонансних процесів в багато частотних системах слід очікувати, що більший провід резонансних властивостей буде мати процес якому відповідає друга по черзі частота. Саме цю властивість і підтверджує розглянута група прикладів. Важливо також відзначити, що положення частоти, що відповідає коловому номеру 0 завжди буде не менше ніж третім. Відповідно, для кротких і середніх довжин підвісів слід очікувати суттєвого прояву резонансу на частоті, що відповідає коловому номеру 2.

Рис.4. Перша осісиметрична форма. Частота $\omega = 6.1261$.

Загальною властивістю розвинення резонансних процесів є те, що як резонанси в околі частоти маятникової форми коливань, так і на частотах форм коливаннях з коловими номерами 1 і 2, коливання вільної поверхні рідини відбувається переважно за першою антисиметричною формою. Фактично форма коливань з коловим номером 2 відіграє роль своєрідного каталізатора. Сама ця форма за амплітудою збуджується в 10–12 разів менше ніж форма з коловим номером 1, але саме через неї відбувається спрямування енергії в коливання по першій антисиметричній формі.

В процесі розвитку коливань спостерігається суттєвий провід модуляції в зміні динамічних параметрів системи (збурень на вільній поверхні, зміні кута коливань резервуара), внеску вищих гармонік спектру, що узгоджується з даними експериментальних робіт [4, 5]. Для всіх випадків резонансів, приведених в даній роботі, не спостерігається асимптотичний вихід коливань системи на постійне значення, що також відповідає результатам експериментів [4, 5].

ДИЯ ДРОБОВИХ ОПЕРАТОРІВ САЙГО НА УЗАГЛЯНЕНУ ГІПЕРГЕОМЕТРИЧНУ ФУНКЦІЮ

Овчаренко О.В.

Ключові слова: гіпергеометрична функція, бета-функція, дробові інтегральні оператори Сайго, оператори Рімана-Ліувіля

AMS Subject Classification: 33C15, 33D60.

Спеціальні функції широко використовуються при побудові різноманітних інтегральних перетворень (наприклад, операторів Сайго, Ердеї, Кобера, Саксени [1-3]). Такі узагальнені інтегральні перетворення з ядрами у вигляді спеціальних функцій дають можливість отримати розв’язки в аналітичному вигляді багатьох важливих класів диференціальних інтегральних рівнянь.

Розглянемо узагальнену гіпергеометричну функцію у вигляді:

$$F_{\tau,\beta}^{r,\lambda,\nu}(a, b; c; z) = \frac{1}{B(b, c-b)} \sum_{n=0}^{\infty} (a)_n \bar{B}^r (b + n, c - b; \lambda, \nu) \frac{z^n}{n!},$$ (1)

de $\{a, b, c\} \subset C$, $\text{Re}(c) > \text{Re}(b) > 0$, $\text{Re}(\nu) > 0$; $\tau - \beta < 1$, $\tau > 0, \beta > 0$, $\text{Re}(\lambda) > 0, \text{Re}(\nu) > 0$, $(a)_n$ – символ Похгаммера:

$$(a)_n = \frac{\Gamma(a + n)}{\Gamma(a)} = (a + 1) ... (a + n - 1),$$

$B(x, y)$ – класична бета-функція:

$$B(x, y) = \int_0^1 t^{x-1} (1 - t)^{y-1} dt, \quad \text{Re}(x) > 0, \text{Re}(y) > 0,$$

$$B^r(x, y; \lambda, \nu) = \int_0^1 t^{x-1} (1 - t)^{y-1} \Phi_{1 \tau,\beta}^r (a; \nu; t) dt.$$

Частинним випадком функції (1) при $r = 0$, $\lambda = 1$, $\nu = 1$ є функція $2F_1^{r,\beta}(a, b; c; z)$ [2]:

$$2F_1^{r,\beta}(a, b; c; z) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)\Gamma(c-b)} \int_0^1 t^{b-1} (1-t)^{c-b-1} \Phi_{1 \tau,\beta}^r (a, b; c; x) dx.$$

Якщо покласти $\beta = \tau$ у формулу (2), то отримаємо τ-узагальнену гіпергеометричну функцію Гаусса [2]:

$$2F_1^{\tau,\beta}(a, b; c; z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_0^1 (1-x)^{c-b-1} x^{b-1} (1-zx)^{-a} dx.$$

При $\beta = \tau = 1$ матимемо класичну гіпергеометричну функцію Гаусса $2F_1(a, b; c; z)$ [1].

Розглянемо дробові інтегральні оператори Сайго [11]:

$$(J_{\mu,\alpha,\eta}^r f(t)) (x) = \frac{x^{\mu-\alpha}}{\Gamma(\mu)} \int_0^x (x-t)^{\mu-1} 2F_1^{\tau,\beta} (\mu + \alpha, -\eta; \mu + 1 - \frac{t}{x}) f(t) dt,$$

$$(J_{\mu,\alpha,\eta}^- f(t)) (x) = \frac{1}{\Gamma(\mu)} \int_0^x (t-x)^{\mu-1} t^{-\mu-\alpha} 2F_1^{\tau,\beta} (\mu + \alpha, -\eta; \mu + 1 - \frac{X}{t}) f(t) dt.$$
Зауважимо, що при $\alpha = -\mu$ з (3) та (4) отримуємо, відповідно, лівосторонній та правосторонній оператори Рімана—Ліувіля [5]:

\[(I_{b+}^\mu f)(x) = \frac{1}{\Gamma(\mu)} \int_{x}^{\infty} \frac{f(t)}{(t-x)^{1-\mu}} dt, \]

\[(I_{-}^\mu f)(x) = \frac{1}{\Gamma(\mu)} \int_{x}^{\infty} \frac{f(t)}{(t-x)^{1-\mu}} dt. \]

Теорема 1. За умов існування інтегрального оператора (3) та функції $rF_3(a,b;c;z)$, має місце наступна інтегральна формула:

\[\left(\int_{0+}^{\nu,\eta,\delta} \left[\left(a,b;c;\frac{e}{x} \right) \right] \right)(x) = x^{\nu-\delta-1} \frac{\Gamma(\sigma)\Gamma(\sigma-\alpha+\eta)}{\Gamma(\sigma+\nu+\alpha)\Gamma(\sigma-\alpha)} \times \]

\[\times rF_3(a,b;c;ex) * f(x), \quad x > 0, \]

(7) \]

(f * g) добуток Адамара для рядів [5]:

\[(f * g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n, \text{де } f(z) = \sum_{n=0}^{\infty} a_n z^n, g(z) = \sum_{n=0}^{\infty} b_n z^n. \]

Теорема 2. За умов існування інтегрального оператора (4) та функції $rF_3(a,b;c;z)$, при $x > 0$ має місце наступна інтегральна формула:

\[\left(\int_{-}^{\nu,\eta,\delta} \left[\left(a,b,c;\frac{e}{x} \right) \right] \right)(x) = x^{\nu-\delta-1} \frac{\Gamma(\nu+\sigma+\alpha)\Gamma(1-\sigma+\alpha+\eta)}{\Gamma(1-\sigma)\Gamma(1-\sigma-\eta+\nu+\alpha)} \times \]

\[\times rF_3(a,b;c;\frac{e}{x}) * f(x), \quad x > 0, \]

(8) \]

Доведення теорем 1 та 2 використовує відомі властивості операторів Сайго [5]:

\[(I_{0+}^{\nu,\eta,\delta} t^{k-1})(x) = \frac{\Gamma(k)\Gamma(k-\alpha+\eta)}{\Gamma(k-\alpha)\Gamma(1+\nu+\eta)} x^{k-\alpha-1}, \text{Re}k > 0, \text{Re}(k-\alpha+\eta) > 0 \]

\[(I_{-}^{\nu,\eta,\delta} t^{k-1})(x) = \frac{\Gamma(\alpha-k+1)\Gamma(\eta-k+1)}{\Gamma(1-k)\Gamma(\alpha-k+\nu+\eta)} x^{k-\alpha-1}, \]

\[\text{Re}(\alpha-k+1) > 0, \text{Re}(\eta-k+1) > 0. \]

Розглядається нелінійна задача про вимушені коливання нециліндричного резервуару і рідини з вільною поверхнею при їх сумішному русі. Порівнюються рух резервуарів у формі одно- та двопорожнинного гіперболоїда.

Метою роботи є дослідження поведінки системи гіперболоїдальній резервуар—рідина при силовому резонансному збудженні руху. Дослідження такого типу задач практично відсутні. Особливу складність представляє врахування сумісного характеру руху складових компонент системи (резервуар, рідина) і створення нелінійної математичної моделі динаміки рідини з вільною поверхнею, яка забезпечує задоволення граничній умові неперетикання рідини на стінках резервуара, куди можуть досягати хвилі, тобто за межами початково незбуреної області, яку займає рідина.

Вивчається динамічна поведінка резервуара в формі тіла обертання під дією гармонічної сили в рамках моделі сумісного руху. Для аналізу особливостей поведінки системи порівнюються розвиток хвилеутворення для резервуарів гіперболоїдальної (однопорожнинний і двопорожнинний) форми.

Для випадку резервуарів з похилими стінками виникають значні математичні складності при описі руху рідини з вільною поверхнею. Це спричинено тим, що в системі додатково з'являються різні геометричні нелінійності, і тим, що область визначення вільної поверхні рідини весь час змінюється у порівнянні з циліндричним випадком. Методика розв’язання такого типу задач була розроблена в попередніх роботах і було зазначено застосування цього підходу до резервуарів конічної, сферичної, параболічної та еліпсоїдальної форм.

Розглянемо випадок резервуару обертання, твірна якого представляє собою гіперболу. В нашій задачі будемо розглядати два варіанта резервуара: однопорожнинний та двопорожнинний гіперболоїд обертання. Відповідні рівняння твірної тіла обертання для цих випадків будуть

\[r = a \cdot \sqrt{1 + \left(\frac{z + H}{b^2}\right)^2} ; \quad r = b \cdot \sqrt{\left(\frac{z + H + a}{a^2}\right)^2 - 1} . \]

\(H \) – глибина заповнення, \(a \) і \(b \) – довжини півосей гіперболоїда. Для випадку резервуару у формі однопорожнинного гіперболоїда передбачається наявність відповідного дна. Для такого типу резервуарів на основі сукупного застосування методу допоміжної області та ітераційного уточнення були одержані частоти і форми коливань рідини в порожниках з точністю задоволення граничних умов на змоченій граничі порядку \(10^{-5} \) та на гребенях хвиль на стінках бака над вільною поверхнею порядку \(10^{-3} \) (наведено значення похибки, віднесеної до амплітуди збурень рідини на вільній поверхні на стінці резервуара).

Для резервуарів одно- та двопорожнинного гіперболоїда проведено дослідження переважно в лінійному наближенні. Тому задача нелінійної динаміки сумісного руху таких резервуарів з рідиною розглядається при силовому збудженні з частотами в малому оквілі резонансної частоти сумісного руху системи.

Розглядається сума руху в горизонтальній площині резервуарів у формі одно- та двопорожнинного гіперболоїду радіуса \(R \) і рідини з вільною поверхнею під дією заданої зовнішньої періодичної сили \(F = A \sin \omega t \). Рівень заповнення резервуарів рідиною \(H = R \).

Будемо проводити дослідження поведінки рідини під дією гармонічної сили в дорезонансному, резонансному та зарезонансному діапазонах частот. А також досліджимо особливості впливу
геометричної форми на розвиток динамічних процесів.

Задача досліджується для значень частот збудження 0.5ωₙ, 0.75ωₙ, 0.98ωₙ, 1.02ωₙ, 1.25ωₙ, де ωₙ – власна частота сумісного руху рідини та резервуару, яка залежить від співвідношення їх мас. Амплітуда гармонічної сили підбиралася так, щоб максимальні амплітуди коливань вільної поверхні були (0.15 + 0.2)R, де Rₙ – радіус вільної поверхні рідини.

Поведінка системи розглядається на проміжку часу до 50 с. Приймалося, що маса резервуару складає 0.2 маси рідини. Для чисельних розрахунків приймалася модель, яка включає 10 форм коливань, приймалося також R=1м,. Одночасно з дослідженням поведінки руху рідини в резонансному діапазоні зміни частот ставиться задача дослідити особливості впливу геометричної форми резервуару на розвинення динамічних процесів. Порівнюються коливання в баках одно- та двопорожнинного гіперболоїдів.

Проаналізуємо амплітуду збурень рідини на стінці резервуару в часі.

На рис. 1-8 показано залежності амплітуди від часу в секундах. Параметр A – амплітуда сили збудження, K – коефіцієнт відхилення від власної самоти системи. Розглянемо випадок в дорезонансному діапазоні частот (Рис. 1–4) для частот 0.5ωₙ та 0.75ωₙ.

![Рис. 1. Однопорожнинний гіперболоїд](#)

К = 0.5 A = 0.42

![Рис. 2. Однопорожнинний гіперболоїд](#)

К = 0.75 А = 0.3

![Рис. 3. Двопорожнинний гіперболоїд](#)

К = 0.5 A = 0.4

![Рис. 4. Двопорожнинний гіперболоїд](#)

К = 0.75 А = 0.25

Для першого діапазону частот проявляється дрейф середнього значення амплітуд коливань. У той же час наявність високочастотних форм коливань в результуючій амплітуді коливань є значним.

Загальна тенденція поведінки амплітуду часової залежності для різних форм резервуарів схожа. Проте для випадку двопорожнинного резервуара вже суттєвим є прояв модуляції коливань. Прояв високочастотних гармонік для однопорожнинного гіперболоїда набагато сильніший, ніж для двопорожнинного.

Загальна властивість в обох випадках форм резервуарів і для обох діапазонів частот полягає в тому, що система не прагне до стійкого режиму руху при сталій амплітуді коливань вільної поверхні рідини. Ця властивість підтверджується результатами експериментів. Слід також зазначити, що при збільшенні частоти збурень внесок високочастотних форм зменшується і домінує ефект модуляції коливань.

Перейдемо до випадку резонансного діапазону (рис. 5-8) для частот 0.98ωₙ та 1.02ωₙ.
З рисунків видно, що незважаючи на незначну зміну частоти збудження коливання вільної поверхні для частот $0.98\omega_N$ і $1.02\omega_N$ суттєво відрізняються. Для двох випадків резервуарів на обох частотах збудження суттєво проявляється ефект модуляції коливань. Дослідження коливань для більшних часових інтервалів свідчить про те, що коливання на частоті $0.98\omega_N$ також є коливаннями з модуляцією, але зі значно більшим періодом модуляції ніж для частоти $1.02\omega_N$. Для обох частот проявляється ефект антирезонансу, коли протягом декількох періодів коливання на вільній поверхні рідини практично відсутні.

У всіх випадках проявляється асиметрія і дрейф середнього в розвитку коливання рідини, що найбільш суттєво проявляється для випадку двопорожнинного гіперболоїда. Ця властивість відповідає відомому ефекту перевершення висоти гребня хвиль над глибиною впадини. Також розглянутий випадок зарезонансного для частоти збудження $25.1\omega_N$.

В даному випадку спостерігається прояв високочастотних модуляцій та ефект антирезонансу. Отже, розроблено математичну модель і алгоритм дослідження нелінійної динаміки нециліндричних резервуарів з рідиною з вільною поверхнею. Цю модель застосовано для дослідження коливань рідини в малому окопі резонансних частот у випадку резервуарів у вигляді однопорожнинного і двопорожнинного гіперболоїдів. Для злівняння дослідження проводилося на основі нелінійної моделі сумісного руху системи для резервуарів циліндричної, конічної, сферичної форм. Встановлено, що при розвиненні коливань суттєво проявляється модуляція, дрейф середнього і явище антирезонансу. Зазначено, що основні властивості, одержані на основі математичного моделювання якісно добре узгоджуються з даними експериментів. Відзначимо також, що асимптоматичний вихід системи на коливання із сталою амплітудою взагалі не відбувається, що підтверджується експериментами.
Подчасов Николай Павлович, кандидат физ.-мат. наук, доцент.
Институт механики имени С.П. Тимошенко НАНУ, Киев, Украина.
e-mail: nikolay.podchasov@ukr.net

РЕЗОНАНСНЫЕ КОЛЕБАНИЯ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ, РАСПОЛОЖЕННОЙ В ЖЕСТКОМ ЦИЛИНДРЕ И ВЗАИМОДЕЙСТВУЮЩЕЙ С ВНЕШНИМ И ВНУТРЕННИМ ПОТОКАМИ ЖИДКОСТИ, ПРИ ФИНИТНЫХ ВОЗМУЩЕНИЯХ ДАВЛЕНИЯ ВО ВНУТРЕННЕМ ПОТОКЕ

Подчасов Н.П.

Ключевые слова: цилиндрическая оболочка, идеальная жидкость, финитные гармонические возмущения, резонансная зона.

Рассматривалась свободно опертая на торцах круговая цилиндрическая оболочка, внутри которой под действием давления в продольном направлении действует жидкость с плотностью \(\rho_0 \). Оболочка коаксиально расположена внутри жесткой трубы. В трубе под действием давления \(P_1 \) в продольном направлении течет жидкость со скоростью \(U_1 \) (Рис.1). Жидкости предполагались идеальными и несжимаемыми. Внутреннее давление \(P \) рассматривалось как результат наложения давления \(P_{in}(t,x) \), создаваемого внешним источником перепада давлений на входе (при \(x=0 \)) и на выходе из оболочки (при \(x=L \)), а также давления \(P_{ob}(t,x,y) \), обусловленного колебаниями оболочки. Предполагалось, что \(P_{in}(t,x) \) складывается из постоянного рабочего давления \(P_p \), при котором в покоящейся оболочке жидкость течет со скоростью \(U_p \), и возмущений давления \(\Delta P(t,x) \), т.е. \(P = P_{in}(t,x) + P_{ob}(t,x) = P_p + \Delta P(t,x) + P_{ob}(t,x) \). Считалось, что перепад давления во внешнем потоке не подвержен возмущениям, в силу чего справедливо выражение \(P(t,x) = P_{in} + P_{ob}(t,x) \). Здесь \(P_{in} \) – постоянное рабочее давление во внешнем потоке; \(U_1 \) – постоянная скорость течения в нем; \(P_{ob}(t,x) \) – давление, обусловленное колебаниями оболочки. Нестационарные колебания оболочки индуцируются возмущениями давления, действующими на интервале времени \([0, \tau] \) и линейно убывающими с ростом продольной координаты \(x \), вида \(\Delta P(t,x) = [kP_p - a(t)x / L]g(t) \). Здесь \(g(t) \) – безразмерная функция времени, определяющая характер изменения возмущений во времени; \(k \leq 1 \) – постоянный безразмерный коэффициент; \(kP_p g(t) \) – величина возмущения давления на входе в оболочку;

\[a(t)g(t) = \Lambda_{p}L_{0}U_1^2(t)/(4R) \] (аналог формулы Дарси–Вейсбаха). При финитных возмущениях рассматривалась следующая возмущающая функция \(g(t) \): если \(t > \tau \), то \(g(t)=0 \), иначе \(g(t)=[4(\tau-t)/\tau^2] \sin(\Lambda t) \), где \(\Lambda = \text{const} \) – частота гармонической составляющей возмущения, близкая к первой резонансной частоте колебательной системы \(\Lambda_{p} \).

Разработана, численно-аналитическая методика исследования нестационарных радиальных колебаний исследуемой оболочки, изложенная в [1]. Эта методика позволяет определять моменты времени \(t_{max} \), координаты точки оболочки \(X_{max}, Y_{max} \), в которых
абсолютные значения, отнесенных к толщине оболочки, ее радиальных прогибов достигают максимальных значений \(\text{Max} |w|/h = |w(X_{\text{max}}, Y_{\text{max}}, t_{\text{max}})|/h \). В дальнейшем эти величины интерпретируются как “амплитуды” всего переходного колебательного процесса. Строются аналоги амплитудно-частотных характеристик (АЧХ), т.е. зависимости таких “амплитуд” от частоты возмущений \(\Lambda \), изменяющейся в окрестности \(\Lambda_{\text{рез}} \).

На примере конкретной оболочки (трубы ПНД марки SDR-41), построены АЧХ при различных значениях параметров \(P_p \) и \(\tau \), представленные на Рис. 2, для значений \(\Lambda < \Lambda_{\text{рез}} \) и для значений \(\Lambda > \Lambda_{\text{рез}} \) – на Рис. 3. Отметим, что величина \(\Lambda_{\text{рез}} \) зависит от значения \(P_p \). Так при \(P_p = 0,1 \) атм. значение \(\Lambda_{1_{\text{рез}}} = 10,605 \) Гц., а при \(P_p = 0,2 \) атм. – \(\Lambda_{2_{\text{рез}}} = 10,596 \) Гц.

Представленные результаты позволяют сделать следующие выводы:

1. Увеличение рабочего давления внутри оболочки приводит к расширению резонансных зон, на границах которых прогибы становятся недопустимо большими.
2. При одинаковых максимальных амплитудах возмущений давления во внутреннем потоке увеличение длительности возмущений сужает резонансные зоны.
3. Показано, что при определенных значениях параметров возмущений внутреннего потока и постоянном внешнем потоке радиальные прогибы оболочки могут существенно превышать амплитуды ее колебаний при установившихся режимах и выходить за рамки допустимых конструктивных ограничений.

1. Подчасов Н.П. Нестационарные колебания цилиндрической оболочки, расположенной в жесткой трубе и взаимодействующей с потоками жидкости при импульсных возмущениях давления во внутреннем потоке // Прикл. механика. – 2017.– 53, N 4. – С. 32 – 43.
КАНОНИЧНИ ДЕФОРМАЦІЇ МЕТРИК ПСЕВДОРІМАНОВОГО ПРОСТОРУ

Потапенко І.В.

Keywords: канонічна інфінітезимальна деформація, варіація, простір, тензор Рімана.

AMS Subject Classification: 514.765.1+512.813.4

В роботі вводиться поняття канонічної інфінітезимальної деформації метрики pseudorіmanового простору та отримано формулу варіацій основних геометричних об'єктів для даного виду деформацій.

Нехай \((V_n, g_{ij})\) pseudorіmanовий простір, віднесений до локальних координат \((x^1, x^2, \ldots, x^n)\), а \(\xi^\alpha = \xi^\alpha(x^1, x^2, \ldots, x^n)\) деяке контраваріантне векторне поле \((V_n, g_{ij})\). Індекси \(\alpha, \beta, \ldots\), а також \(i, j, \ldots\) відповідно 1, 2, \ldots, \(n\).

Пseudorіmanовий простір \((\tilde{V}_n, \tilde{g}_{ij})\) називається інфінітезимальною деформацією pseudorіmanового простору \((V_n, g_{ij})\), якщо його локальні координати \((\tilde{x}^1, \tilde{x}^2, \ldots, \tilde{x}^n)\) визначаються формулою

\[
\tilde{x}^\alpha = x^\alpha + \epsilon\xi^\alpha(x),
\]

де \(\epsilon\) - малий числовий параметр. Вектор \(\xi^\alpha(x)\) називається вектором змінення.

Нехай \(R(x)\) та \(R_t(x, t)\) - інваріантні характеристики pseudоріmanових просторів \((V_n, g_{ij})\) та \((\tilde{V}_n, \tilde{g}_{ij})\) відповідно. Припустимо, що приріст \(\Delta R(x, t) = R_t(x, t) - R(x)\) функції \(R(x)\) при деформації лінійно залежить від \(\epsilon\). Тоді у розкладі

\[
R_t(x, t) = R(x) + \epsilon\delta R(x)
\]

коefficient \(\delta R\) називають варіацією геометричної величини \(R(x)\).

З \((2)\) отримуємо формулу обчислення варіації

\[
\delta R(x) = \frac{\partial R_t(x, t)}{\partial t}|_{t=0}
\]

В роботі обмежуємося розглядом виключно інфінітезимальних деформацій виду \([1]\).

Вивчено властивості внутрішніх геометричних об'єктів \(V_n\) \([1]\) та їх варіацій.

Теорема 1. Коваріанта похідна варіації метричного тензора, варіації взаємного метричного тензора, ріманової зв'язності, тензорів кривини Rімана типу \([3,1]\), тензорів Річчі та скаларної кривини pseudorіmanового простору \((V_n, g_{ij})\) при інфінітезимальній деформації \([1]\) визначається за формулами

\[
\delta g_{ij,k} = g_{mj}\delta \Gamma_{ik}^m + g_{mi}\Gamma_{jk}^m;
\]

\[
\delta g^{ij} = -g^{\alpha\beta}g^{ij}\delta g_{\alpha\beta};
\]

\[
\delta g^{ij} = \frac{1}{2}g^{\alpha\beta}(\delta g_{\alpha,j} + \delta g_{j,i} - \delta g_{ij,\alpha});
\]

\[
\delta \Gamma_{ijk}^h = (\delta \Gamma_{ik}^h)_{,j} - (\delta \Gamma_{ij}^h)_{,k};
\]

\[
\delta R_{ijkl} = \frac{1}{2}g^{\alpha\beta}(\delta g_{k\alpha,ij} + \delta g_{ij,\alpha k} - \delta g_{ij,k\alpha} - \delta g_{\alpha ij,\alpha} - \delta g_{ij,\alpha k} - \delta g_{\alpha ij,k});
\]

\[
\delta R_{ij} = \frac{1}{2}g^{\alpha\beta}(\delta g_{j\alpha,ij} + \delta g_{ij,\alpha j} - \delta g_{ij,j\alpha} - \delta g_{\alpha ij,j} - \delta g_{\alpha ij,\alpha});
\]
Вариация метрики

\[\delta g_{ij} = \tau_1 g_{ij} + \tau_2 R_{ij}, \]

(4)

de \(\tau_1, \tau_2 \) довільні інваріантні функції, що підлягають визначенню.

Теорема 2. Коваріантна погідна варіації метричного тензора, варіації взаємного метричного тензора, ріманової з'єднаності, тензора кривини Рімана типу (3,1), тензора Річчі та скалярної кривини псевдоріманового простору \((V_n, g_{ij})\) при канонічній інфінітезимальній деформації \(\Box \) визначається через варіацію метрики за формулами

\[\delta g_{ij,k} = (\tau_1)_k g_{ij} + (\tau_2)_k R_{ij} + \tau_2 R_{ij,k}; \]

\[\delta g^{ij} = -\tau_1 g^{ij} - \tau_2 g^{ja}g^{jb}R_{a\beta}; \]

\[\delta \Gamma^h_{ij} = \frac{1}{2}((\tau_1)_j \delta^h_{ik} - (\tau_1)_i \delta^h_{jk} - (\tau_1)^h_{ij}g_{ij} + (\tau_2)_j R^h_{ik} + (\tau_2)_i R^h_{jk} - (\tau_2)^h_{ij}R_{ij} + \]

\[\quad + \tau_2 (R^h_{ij} + R^h_{ji} - g^{ah}R_{aj}; \alpha)); \]

\[\delta R^h_{ijk} = \frac{1}{2}((\tau_1)_{ij} \delta^h_{ik} - (\tau_1)_{ik} \delta^h_{ij} - (\tau_1)^h_{ij}g_{ik} - (\tau_1)^h_{ij}g_{ik} + (\tau_2)_i R^h_{jk} - (\tau_2)_j R^h_{ik} + \]

\[\quad + (\tau_2)^h_{ij}R_{ij} - (\tau_2)^h_{ij}R_{ik} - (\tau_2)^h_{ij}R_{jk} - g^{ah}R_{ik; \alpha}) - \]

\[- (\tau_2)_k (R^h_{ij} + R^h_{ji} - g^{ah}R_{ij; \alpha}) + \tau_2 (R^h_{ik; \alpha} + R^h_{ik; \beta} - R^h_{jk; \beta} + g^{ah}(R_{ij, \alpha k} - R_{ik, \alpha j}); \]

\[\delta R_{ij} = \frac{1}{2}g^{\alpha\beta}(\delta g_{\alpha,i; j} + \delta g_{\beta,j; i} - \delta g_{\beta,i,j} - \delta g_{\alpha,j; i} - \delta g_{\alpha,i; j} - \delta g_{\beta,i,j}); \]

\[\delta R = g^{ij}g^{\alpha\beta}\delta g_{ij,\alpha\beta} - g^{ij}g^{\alpha\beta}\delta g_{ij,\alpha\beta} - g^{ij}g^{\alpha\beta}R^m_{ij,\alpha\beta}\delta g_{ma} - g^{ij}g^{\alpha\beta}R^m_{ij,\alpha\beta}\delta g_{ma} - g^{ij}g^{\alpha\beta}R^m_{ij,\alpha\beta}\delta g_{ma}. \]

Інфінітезимальна деформація псевдоріманового простору \(V_n \), при якій його геодезичної лінії переходить в геодезичні лінії \(\bar{V}_n \) називається інфінітезимальною геодезичною деформацією \([2]\).

Теорема 3. Будь-яка інфінітезимальна геодезична деформація псевдоріманового простору \((V_3, g_{ij})\) є канонічною інфінітезимальною деформацією \([4]\) при цьому функції \(\tau_1, \tau_2 \) пов’язані формуллю

\[(\tau_1)_k = \frac{1}{n} g^{ij}((\tau_2)_j R_{ki} + (\tau_2)_i R_{kj} + \tau_2 (R_{ki,j} - R_{kj,i}) - R(\tau_2)_k - \delta^k R_{\alpha}). \]

Таким чином, показано, що клас введених канонічних інфінітезимальних деформацій не пустий. В випадку тримірних псевдоріманових просторів до цього класу належать вивчені раніше \([2]\) геодезичні деформації

МОДЕЛЮВАННЯ ПОШИРЕННЯ ПЛОСКИХ ХВИЛЬ
В НАНОКОМПОЗИТНИХ МАТЕРІАЛАХ

Савельєва К.В., Дашко О.Г., Симчук Я.В.

Ключові слова: кубічна нелінійність, пружна плоска гармонічна хвиля, поздовжня хвиля, поперечна хвиля, метод повільно змінних амплітуд, самоперемикання, метод збурень.

AMS Subject Classification: 74J30

Предметом публікації є аналіз результатів теоретичного дослідження взаємодії плоских кубічно нелінійних гармонічних хвиль в нанокомпозитних матеріалах. Нелінійні властивості матеріалів моделюються пружним потенціалом Мурнагана, представлення якого у вигляді

\[
W = \left(\lambda + 2\mu \right) \left(u_{1,1} \right)^2 + \frac{1}{2} \mu \left(u_{2,1}^2 + u_{3,1}^2 \right) + \left(\mu + \frac{1}{2} \right) \lambda + \frac{1}{3} A + B + \frac{1}{3} C \left(u_{1,1}^2 \right)^3 + \frac{1}{2} \left(\lambda + B \right) u_{1,1} \left(u_{2,1}^2 + u_{3,1}^2 \right) + \frac{1}{8} \left(\lambda + 2\mu + A + 2B \right) \left(u_{1,1}^2 + u_{2,1}^2 + u_{3,1}^2 \right)^2 + \frac{1}{8} \left(3A + 10B + 4C \right) \left(u_{1,1}^2 + u_{2,1}^2 + u_{3,1}^2 \right)^2
\]

дозволяє враховувати нелінійності, до четвертого порядку включно, відносно компонентів градієнта деформації. Вектор переміщення залежить від однієї просторової змінної \(x_1 \) та часу \(t \). Нелінійні хвильові рівняння відносно компонент вектора переміщення \(\hat{u}(x_1,t) \) для продольних, горизонтально та вертикально поляризованих хвиль мають вигляд:

\[
\rho u_{1,t} - \left(\lambda + 2\mu \right) u_{1,11} = N_1 u_{1,11} u_{1,1} + N_2 \left(u_{2,1} u_{2,1} + u_{3,1} u_{3,1} \right) + N_3 u_{1,11} \left(u_{1,1} \right)^2 + N_4 \left(u_{2,1} u_{2,1} u_{1,1} + u_{3,1} u_{3,1} u_{1,1} \right)^2;
\]

\[
\rho u_{2,t} - \mu u_{2,11} = N_2 \left(u_{2,1} u_{2,1} + u_{1,1} u_{2,1} \right) + N_3 u_{2,11} \left(u_{2,1} \right)^2 + N_4 u_{2,11} \left(u_{1,1} \right)^2 + N_5 u_{2,11} \left(u_{3,1} \right)^2;
\]

\[
\rho u_{3,t} - \mu u_{3,11} = N_2 \left(u_{3,1} u_{2,1} + u_{1,1} u_{3,1} \right) + N_3 u_{3,11} \left(u_{3,1} \right)^2 + N_4 u_{3,11} \left(u_{1,1} \right)^2 + N_5 u_{3,11} \left(u_{2,1} \right)^2.
\]
В рівняннях (1) – (4) використані стандартні позначення [1-3]: \(\rho \) – стала густина; \(\lambda, \mu \) - пружні сталі другого порядку (сталі Ламе); \(A, B, C \) - пружні сталі третього порядку (сталі Мурнагана);

\[
N_1 = 3(\lambda + 2\mu) + 2(A + 3B + C); \quad N_2 = \lambda + 2\mu + \frac{1}{2}A + B; \quad N_3 = \frac{3}{2}(\lambda + 2\mu) + 6(A + 3B + C);
\]

\[
N_4 = \frac{1}{2}[2(\lambda + 2\mu) + 5A + 14B + 4C]; \quad N_6 = 3A + 10B + 4C.
\]

Дослідження поширення хвиль здійснювалося двома методами.

Метод повільно змінних амплітуд був використаний окрім для дослідження взаємодії кубічних, виключно поздовжніх (за рівнянням (2)) та виключно поперечних хвиль однієї, горизонтальної (за рівнянням (3)), або вертикальної (за рівнянням (4)) поляризації.

Відповідні рівняння для таких досліджень мають вигляд:

\[
\rho u_{1,tt} - (\lambda + 2\mu) u_{1,11} = N_3 u_{1,11}(u_{1,1})^2
\]

для поздовжної хвилі, при умові відсутності поперечних переміщень, та

\[
\rho u_{2,tt} - \mu u_{2,xx} = N_4 u_{2,xx}(u_{2,x})^2; \quad \rho u_{3,tt} - \mu u_{3,xx} = N_4 u_{3,xx}(u_{3,x})^2
\]

для поперечних хвиль (при цьому поздовжні переміщення та взаємодія поперечних хвиль різної поляризації не враховуються). За цим методом проаналізовано механізм самогенерації відповідних хвиль. Метод передбачає, в кожному зазначеному випадку, послідовну побудову вкороченого рівняння, еволюційних, при умові виконання умови частотного синхронізму, рівнянь та співвідношень Менлі-Рова.

Графічний аналіз останнього дає можливість стверджувати, що, при одночасному збудженні потужної хвилі накачки та слабкої сигналної хвилі, відбувається міжхвильове перепомповування енергії і, в результаті, перемикання кубічно нелінійної поздовжньої хвилі, або, відповідно, поперечної хвилі з основної (\(\omega \)) на потрійну (\(3\omega \)) частоту. Найбільш ясно це явле я ілюструється графіком зміни інтенсивностей цих взаємодіючих хвиль, згідно якому енергія потужної хвилі накачки (\(P \)-хвилі) основної частоти перепомповується до слабкої сигналної хвилі (\(S \)-хвилі). На рисунку представлено зазначений графік для поздовжніх хвиль.

Метод збурень використовувався для дослідження одночасного поширення двох поперечних хвиль різної поляризації. Нелінійні хвильові рівняння для поперечних, горизонтально та вертикально поляризованих хвиль, використані при цьому дослідженні, мали вигляд:

\[
\rho u_{2,tt} - \mu u_{2,11} = N_4 u_{2,11}(u_{2,1})^2 + N_4 u_{2,11}(u_{3,1})^2; \quad (5)
\]

\[
\rho u_{3,tt} - \mu u_{3,11} = N_4 u_{3,11}(u_{3,1})^2 + N_4 u_{3,11}(u_{2,1})^2. \quad (6)
\]
його розв'язок

\[u_2(x,t) = u_2^0 \cos(kx - \omega t) - \frac{k^3}{6\mu \rho} u_2^0 \left(\left(u_2^0 \right)^2 N_4 + \left(u_2^0 \right)^2 N_6 \right) x \sin(3(kx - \omega t)), \quad (7) \]

\[u_3(x,t) = u_3^0 \cos(kx - \omega t) - \frac{k^3}{6\mu \rho} u_3^0 \left(\left(u_3^0 \right)^2 N_4 + \left(u_3^0 \right)^2 N_6 \right) x \sin(3(kx - \omega t)) \quad (8) \]

dозволив встановити, що при одночасному поширенні поперечних хвиль різної поляризації відбувається спотворення їх профілів. Внаслідок нелінійної хвильної взаємодії, хвилі поступово трансформуються в свої треті гармоніки. За умови різної початкової інтенсивності хвиль різної поляризації, відбувається перепомпування енергії з потужної хвилі в слабку [3]. Для отримання цього висновка, крім сутто аналітичних досліджень поширення хвиль методом збурень, були проведено відповідні чисельні дослідження. Для обчислення в цьому дослідженні було використано значення ефективних сталих для чотирьох типів нанокомпозитних матеріалів, відповідних до моделі 3nano, з роботи [2]. Складовими зазначених нанокомпозитів є: матриця, представлена в двох варіантах (N1 - суміш смоли Епон-828 і поліестеру, з м'якою характеристикою нелінійності; N2 - суміш смоли Епон-828 і скла-пирекс, з жорсткою характеристикою нелінійності), і наповнювач - вуглецеві нанотрубки двох різних типів (N1 - звивисті вуглецеві нанотрубки; N2- хіральні вуглецеві нанотрубки). Характеристики та властивості матеріалів та їх складових представлені і детально описані в роботі [2]. Розрізняються використані при дослідженні матеріали також об'ємним вмістом наповнювача. Дослідження проводилось для п'яти варіантів концентрації наповнювача в чотирьох видах нанокомпозитів. Хвильові параметри \(\omega = 1.0 \text{ МГц} \), \(u_2^0 = u_0 = 1 \cdot 10^{-7} \text{м} \), \(k \approx 0,5 \cdot 10^{-6} / \text{м} \) обиралися однаковими для всіх розглянутих варіантів матеріалу. Обґрунтування вибору значень цих величин викладено в роботі [3].

Було побудовано графіки зміни профілю хвилі в залежності від просторової координати \(x \); горизонтально поляризованої поперечної хвилі, згідно формулі (7); та для вертикально поляризованої поперечної хвилі, згідно (8). Амплітуда горизонтально поляризованої хвилі, що була задана початково малою в порівнянні з амплітудою вертикально поляризованої хвилі, при поширенні збільшується, зменшуєчи при цьому амплітуду останньої. Це свідчить про перепомпування енергії з більш потужної вертикальної поперечної хвилі до початково слабкої горизонтальної.

Основним явищем, виявленим за допомогою обох методів, є перемикання хвильового процесу з основної на третю частоту кубично нелінійних поперечних хвиль, як для однаково поляризованих хвиль, так і для поперечних хвиль різної поляризації.

ДИНАМИКА ТРУБОПРОВОДУ З РІДИНОЮ, ЩО ЗДІЙСНЮЄ ОБЕРТАЛЬНИЙ РУХ ПРИ РІЗНИХ ЧАСТОТАХ ОБЕРТАННЯ

Ключові слова: нелінійна динаміка, обертальний рух, трубопроводи, коливання

AMS Subject Classification: 74F10

Наголошення задачі про коливання трубопроводу з рідиною, закритого на рухомій основі, що обертається в поздовжньому напрямку, метою дослідження є вивчення впливу обертання основи трубопроводу на рух системи при різних частотах обертання. Складність задачі обумовлена мішаним ейлерово-лагранжевим описом руху компонент системи, який потребує брати до уваги при розгляді частот обертання.

Зокрема, проявляється вихід на режими коливань відносно альтернативного основи трубопроводу досліджено поведінку консольно закріпленого трубопроводу з вільним кінцем, для якого прояв нестійкості руху є найбільш суттєвим.

Розглянуто динаміку системи, яка складається з рухомої основи, що обертається зі заданою кутовою швидкістю ω; трубопроводу довжиною l, який описується за моделлю балки зі згнітною жорсткістю EJ, з площею поперечного перерізу F та лінійною густиною μ. В трубопроводі із заданою повздовжньою швидкістю V тече ідеальна, однорідна, нестислива рідина з лінійною густиною ρ і внутрішнім тиском P. Поперечні коливання трубопроводу описуються функцією $u(t, x)$. Труба кругового перетину консильно закріплене на рухомій основі, інший кінець труби вільний. Вважаємо, що деформівний рух системи відбувається лише в меридіанальній площинах. Для дослідження руху трубопроводу з рідиною використовуємо мішаний ейлерово-лагранжевий опис руху складових системи, описаний в роботах [4, 5] та метод модальної декомпозиції.

У системі, яка складається з рухомої основи, що обертається зі заданою кутовою швидкістю ω; трубопроводу довжиною l, який описується за моделлю балки зі згнітною жорсткістю EJ, з площею поперечного перерізу F та лінійною густиною μ. В трубопроводі із заданою повздовжньою швидкістю V тече ідеальна, однорідна, нестислива рідина з лінійною густиною ρ і внутрішнім тиском P. Поперечні коливання трубопроводу описуються функцією $u(t, x)$. Труба кругового перетину консильно закріплене на рухомій основі, інший кінець труби вільний. Вважаємо, що деформівний рух системи відбувається лише в меридіанальній площинах. Для дослідження руху трубопроводу з рідиною використовуємо мішаний ейлерово-лагранжевий опис руху складових системи, описаний в роботах [4, 5] та метод модальної декомпозиції. Враховуючи то, що компонента швидкості, обумовлена обертанням трубопроводу, перпендикулярна меридіанальній площині, в якій відбувається деформаційний рух системи, функція Лагранжа системи набуває вигляду

$$L = \frac{1}{2} \rho \int_0^l \left(V^2 + \left(\frac{\partial u}{\partial t} \right)^2 + \omega^2 u^2 + \frac{7}{2} V^2 \left(\frac{\partial u}{\partial x} \right)^2 + 4V \frac{\partial u}{\partial t} \frac{\partial u}{\partial x} - \frac{13}{8} V^4 \left(\frac{\partial u}{\partial x} \right)^4 + \frac{1}{2} \left(\frac{\partial u}{\partial t} \right)^2 \left(\frac{\partial u}{\partial x} \right)^2 \right) dx +$$

$$+ \frac{1}{2} \mu \int_0^l \left(\frac{\partial u}{\partial t} \right)^2 + \frac{1}{2} \left(\frac{\partial u}{\partial t} \right)^2 \left(\frac{\partial u}{\partial x} \right)^2 + \omega^2 u^2 \right) dx - \frac{1}{2} EJ \int_0^l \left(\frac{\partial^2 u}{\partial x^2} \right)^2 dx,$$

$$- \frac{1}{4} EJ \int_0^l \left(\frac{\partial^2 u}{\partial x^2} \right)^2 \left(\frac{\partial u}{\partial x} \right)^2 dx - \frac{1}{2} PF \int_0^l \left(\frac{\partial u}{\partial x} \right)^4 \left(\frac{\partial u}{\partial x} \right)^2 dx .$$

Для побудови дискретної моделі системи виконаємо дискетизацію функції Лагранжа за методом Канторовича. Подамо зміщення точок трубопроводу у вигляді

$$u(t, x) = \sum_{i=1}^N c_i(t) A_i(x),$$

де N — кількість форм коливань трубопроводу. Оскільки
трубопровод розглядаемо у наближенні балки, то за координатні функції \(A_i(x) \) беремо форми коливань труби як балки з нерухомою рідинною.

В результаті дискретизації функції Лагранжа рівняння Лагранжа 2-го роду відносно амплітудних параметрів \(c_i(x) \) набудуть вигляду

\[
\ddot{c}_r = -\frac{EI}{\rho + \mu} \kappa^2 c_r + \frac{7}{2} \frac{\rho V^2}{(\rho + \mu) N_r} \sum_i c_i \beta_{ir}^2 + \frac{2\rho V}{(\rho + \mu) N_r} \sum_i c_i \left(\beta_{ir}^i - \beta_{ir}^0 \right) + \omega^2 c_r - \frac{PF}{(\rho + \mu) N_r} \sum_i c_i \beta_{ir}^2 - \frac{2\rho V}{(\rho + \mu) N_r} \sum_i c_i \beta_{ir}^2 - \frac{1}{2} \sum_{ijk} \ddot{c}_r \beta_{kj}^i \frac{1}{N_r} \left(d_{jkr}^2 - \frac{1}{2} d_{krij}^2 \right) - \frac{E J}{(\rho + \mu) N_r} \sum_{ijk} c_i \beta_{kj}^i d_{jkr}^3 - \frac{2E F}{(\rho + \mu) N_r} \sum_{ijk} c_i \beta_{kj}^i d_{jkr}^3 \frac{13}{4} \frac{\rho V^2}{(\rho + \mu) N_r} \sum_{ijk} c_i \beta_{kj}^i d_{jkr}^4. \tag{2}
\]

Введені в рівняннях індексні величини є квадратурами від відомих форм коливань \(A_i(x) \) по відомій області \([0, l]\) та визначаються чисельно. Виключення другої похідної амплітудного параметру в правій частині рівняння виконується на основі заміни цього значення з лінійного наближення. Звернені вуагу на внесок окремих членів системи рівнянь (1) в формування динамічних процесів. Перший і четвертий члени в правій частині рівняння характеризують поновлюючу силу і обумовлені пружністю балки і внутрішнім тиском рідини. Саме ці фактори сприяють відновленню прямолінійної форми трубопроводу. Другий і останній члени в правій частині рівняння навпаки сприяють подальшому викривленню трубопроводу. Третій член в правій частині рівняння представляє собою силу Коріоляса. За своїм характером ця сила в різних фазах руху допомагає або уповільнює дію сил пружності. Проте специфіка цієї сили полягає в тому, що вона на лінійному рівні бере участь в перерозподілі енергії між формами коливань, що значно переважає подібний механізм, який виникає внаслідок дії нелінійних механізмів. Роль нелінійних членів зводиться до підсилення або послаблення цих головних ефектів.

Розглянуто чисельний приклад коливання трубопроводу при швидкості рідини \(V = 1 \text{ m/s} \) для різних частот обертання трубопроводу. В початковий момент часу задавалося збурення \(c_1(0) = 0,01 \). На Рис. 1 показано зміну в часі коливань вільного кінця трубопроводу. При цьому крива 1 відповідає відсутності обертання трубопроводу; крива 2 – \(\omega = 12\pi \); крива 3 – \(\omega = 15\pi \); крива 4 – \(\omega = 17\pi \) і крива 5 – \(\omega = 20\pi \). На Рис. 1 можемо спостерігати коливальний рух трубопроводу при відсутності обертання, а також при всіх частотах обертання.

Спочатку (криві 1-2) можемо спостерігати коливання відносно прямолінійного стану. При збільшенні частоти обертання відбувається зменшення частоти коливань, амплітуда коливань – стала. При подальшому збільшенні частоти обертання (криві 3-4) відбувається переход до коливань навколо альтернативного положення рівноваги та збільшення амплітуди та частоти коливань. При цьому значний прояв вищих гармонік, який найбільше спостерігається при переході до коливань навколо альтернативного положення рівноваги. При подальшому збільшенні частоти прояв вищих гармонік майже не спостерігається та можливий переход до коливань з великою амплітудою навколо стійкого положення рівноваги.
Рис. 1 Коливання кінця трубопроводу при різних значеннях частот обертання

Підсумовуючи, можемо зазначити, що в роботі розглянуто задачу динаміки трубопроводу з рідинною на основі, що обертається. Розроблено модель руху такої системи та проаналізовано поведінку системи при різних частотах обертання. Показано суттєву відмінність поведінки системи через значний прояв ефекту коливань відносно альтернативного динамічного положення рівноваги. Відмічені також відмінність прояву вищих гармонік спектру і тенденції зростання частоти коливань трубопроводу в залежності від зростання частоти обертання.

Сенченков Игорь Константинович, доктор физ.-мат. наук, старший научный сотрудник, Институт механики им. С.П.Тимошенко, Киев, Украина, e-mail: term@inmech.kiev.ua;
Червинко Ольга Петровна, кандидат физ.-мат. наук, старший научный сотрудник, Институт механики им. С.П.Тимошенко, Киев, Украина, e-mail: term@inmech.kiev.ua;
Доля Елена Викторовна, кандидат физ.-мат. наук, доцент кафедры прикладной математики, Киевский национальный университет строительства и архитектуры, Киев, Украина, e-mail: elena_367@ukr.net

ИССЛЕДОВАНИЕ ДИНАМИЧЕСКИХ ПРОЦЕССОВ В ПОДКРЕПЛЕННОМ ОБОЛОЧКОЙ ВЯЗКОУПРУГОМ ЦИЛИНДРЕ ПРИ ИМПУЛЬСНОМ НАГРУЖЕНИИ

Сенченков И.К., Червинко О.П., Доля Е.В.

Ключевые слова: полый цилиндр, подкрепляющая оболочка, импульсное нагружение, метод конечных элементов, напряженно-деформированное состояние.

AMS Subject Classification: 74H99.

Проектирование ракетных двигателей с твердым топливом привело к изучению системы, состоящей из полого вязкоупругого цилиндра, заключенного в тонкую упругую оболочку [1, 2]. Динамические эффекты до недавнего времени исследовались, как правило, в рамках задачи о плоской деформации в предположении несжимаемости вязкоупругого топлива [1, 3]. Последнее предположение влечет отсутствие переходного процесса при внезапном приложении нагрузки. Вместе с тем, учет физически реальной сжимаемости необходимо для оценки динамических напряжений в переходном процессе.

Аналитические методы не позволяют получить решения указанных задач для реальной геометрии двигателя. Поэтому наиболее адекватный подход состоит в использовании численных, в частности, конечно-элементных, методов [4].

В данной работе получены количественные оценки двух наиболее важных факторов: растягивающих напряжений на поверхности контакта топливо-оболочка и растягивающих напряжений в оболочке в условиях внезапного изменения давления на внутренней или внешней поверхности двигателя.

Математическая постановка динамической задачи линейной вязкоупругости включает кинематические уравнения, уравнения движения, определяющие уравнения

\[\varepsilon = \nabla \cdot \mathbf{u}, \]
\[\sqrt{\sigma} = \rho \ddot{\mathbf{u}}, \]
\[tr \sigma = 3K tr \varepsilon, \quad K = const, \]
\[s = 2 \int_{-\infty}^{t} G(\tau - \tau') (\partial \mathbf{e}(\mathbf{x}, \tau) / \partial \tau) d\tau, \quad K = const; \]

условия на поверхности нагружения

\[(\sigma \cdot \mathbf{n}) \cdot \mathbf{n} = \begin{cases} -p_0 / t_p, & 0 < t < t_p \\ -p_0, & t \geq t_p \end{cases}, \quad \tau = 0; \]

и начального условия

\[\mathbf{u} = 0, \quad \dot{\mathbf{u}} = 0 \quad t = 0, \]
где ε, σ — тензоры деформаций и напряжения, e, s — девиаторы этих тензоров, u — вектор перемещений, ρ — плотность, K — модуль объемного сжатия, $G(t)$ — функция сдвиговой релаксации, n — вектор нормали к поверхности, τ — касательная нагрузка на поверхности, p_0 — давление и t_p — время нарастания давления.

Для упрощения постановки задачи используется метод Шепери [5]. В соответствии с этим методом задача вязкоупругости с функцией релаксации при одноосном растяжении

$$E_{rel}(t) = E_\infty + \sum_{k=1}^{n} A_k \exp(-t/2\tau_k)$$

сводится к задаче квазиупругости с переменным модулем упругости

$$E(t) = s \Lambda(E_{rel}(t)|_{t=\frac{1}{2}t_p}) = E_\infty + \sum_{k=1}^{n} A_k / (s + 2\tau_k)|_{t=\frac{1}{2}t_p},$$

где $\Lambda()$ — оператор преобразования Лапласа с параметром s.

Задача решается с использованием конечно-элементной методики, развитой в работах [4, 6], основанной на Лагранжевой вариационной формулировке

$$\int F (\sigma \delta e + \rho \delta \dot{u}) dF - \int S \delta u dS = 0.$$

Использование метода конечных элементов приводит к векторной линеаризованной задаче динамики в виде

$$K\ddot{u} + M\ddot{u} = f, \quad u(0) = u_1, \quad v(0) = v_1,$$

где K и M — матрицы жесткости и масс, u, v, f, u_1, v_1 — векторы узловых перемещений и скоростей, внешних сил, начальных перемещений и скоростей, соответственно. Для интегрирования уравнений движения по времени используется метод Ньюмарка [5].

На рис. 1 представлена конечно-элементная разбивка меридианального сечения демонстрационного варианта РДТТ с указанием фрагментов сечения А–А, где точка 1 расположена в топливе на границе с оболочкой, а точка 2 — в корпусе оболочки.

Вязкоупругие характеристики материала топлива и упругие характеристики оболочки взяты из работ [8, 9].

Результаты расчетов для заданной геометрии тела и времени нарастания давления $t_p = 10^{-4}$ с представлены на рис. 2 и 3.

На рис. 2 показаны изменения напряжений в точке 2 (оболочка). Импульс давления действует на внутренней поверхности. Видно, что имеет место существенная перегрузка по окружным напряжениям в оболочке, что может привести к разрушению оболочки по образующей. При этом растягивающие напряжения в точке 1 не превышают 0.4p_0.

Рис. 1
Иная картина наблюдается при действии импульса давления на наружной поверхности (рис. 3). В этом случае отрывные напряжения σ_{rr} на границе топливо-оболочка достигают уровня приложенного давления, что может нарушить целостность конструкции.

Разработанная методика позволяет оценить прочность элементов данной конструкции в зависимости от времени действия импульса t_α, давления p_0, а также размеров составляющих ее элементов.

Сенченков Игорь Константинович, доктор физ.-мат. наук, старший научный сотрудник, Институт механики им. С.П.Тимошенко, Киев, Украина, e-mail: term@inmech.kiev.ua;
Червинко Ольга Петровна, кандидат физ.-мат. наук, старший научный сотрудник, Институт механики им. С.П.Тимошенко, Киев, Украина, e-mail: chop497@gmail.com;
Якименко Сергей Николаевич, кандидат физ.-мат. наук, доцент кафедры высшей математики, Центральноукраинский национальный технический университет, Кропивницкий, Украина, e-mail: yasm@i.ua;

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ТЕРМИЧЕСКИХ ПРОЦЕССОВ НАРАЩИВАНИЯ ТОНКОСТЕННЫХ ПРИЗМАТИЧЕСКИХ ТЕЛ

Сенченков И.К., Червинко О.П., Якименко С.Н.

Ключевые слова: листовые детали, наплавка, микроструктура, остаточные прогибы
AMS Subject Classification: 74F05

В аддитивных технологиях детали изготавливаются путем последовательного наложения на поверхность тела слоев жидкого материала [1, 2]. Моделирование таких процессов при наращивании массивных тел, в частности, роликов МНРЗ валков горячей прокатки и т.п. посвящены работы [3, 4]. При обработке тонкостенных элементов важное значение имеют оценки не только текущего и остаточного НДС, но и вызванное ими коробление изделия. Настоящий доклад посвящен расчету НДС и коробления тонкостенных призматических (листовых) изделий при наращивании по одной из поверхностей расплавленным материалом.

Натурный и модельный объект исследования представлен на рис. 1а, б.

Рис. 1

Принимается \(l_x = 100 \text{ мм}, \ l_y = 3 \text{ мм}, \ l_z = 200 \text{ мм}, \ \Delta h = 2.3 \text{ мм} \).

В прямоугольной системе координат \(Oxyz \) Лагранжева формулировка задачи записывается в виде

\[
\delta I = \int_F \left[\frac{1}{2} \left(\frac{\partial \theta}{\partial x} \delta \frac{\partial \theta}{\partial x} + \frac{\partial \theta}{\partial y} \delta \frac{\partial \theta}{\partial y} + \frac{\partial \theta}{\partial z} \delta \frac{\partial \theta}{\partial z} \right) + (\sigma_x \cdot \dot{\theta} - Q) \frac{\partial \theta}{\partial x} \right] dx dy dz + \int_S (q + \gamma(\theta - \theta_c) + c_0 \sigma \theta^4 - c_0) \frac{\partial \theta}{\partial s} ds = 0, \quad (1)
\]

\[
\delta \Phi = \int_F \left(\sigma_{xx} \delta \epsilon_{xx} + \sigma_{yy} \delta \epsilon_{yy} + \sigma_{zz} \delta \epsilon_{zz} + 2 \sigma_{xy} \epsilon_{xy} + 2 \sigma_{yz} \epsilon_{yz} + 2 \sigma_{zx} \epsilon_{zx} \right) dx dy dz - \int_S \left(t_{nx} \delta u_x + t_{ny} \delta u_y + t_{nz} \delta u_z \right) ds = 0. \quad (2)
\]

причем
$$s_{ij} = 2G(e_{ij} - e_{ij}^p - e_{ij}^s), \quad \sigma_{kk} = 3K_Y (e_{kk}^p - e_{kk}^{\theta ph} - e_{kk}^*)$$ \hspace{1cm} (3)

Здесь θ – температура, $e_{ij}, \sigma_{ij}, e_{ij}^s, s_{ij}$ – тензоры деформации, напряжения и девиаторы соответствующих тензоров, u_i – перемещения, q – тепловой поток на поверхности, Q – объемный тепловой источник, c_i и c_0 – параметры конвективного и лучевого теплообмена, G и K_Y – сдвиговой и объемный модули, λ и c_v – коэффициенты теплопроводности и объемной теплоемкости, $e_{ij}^p, e_{kk}^{\theta ph}$ – неупругая (вязко-пластическая) и термофазовая деформация, e_{ij}^* и θ^* – деформация и температура элемента объема в процессе заполнения нарашиваемым материалом [4]. Для основного металла $e_{ij}^* \equiv 0$.

Определенные надлежащим образом величины e_{ij}^* и θ^* позволяют удовлетворить на поверхности нарашивания S^* некlassическим граничным условиям

$$\sigma_{ij}(e_{kl}, \theta^*) = 0; \quad i, j, k, l = x, y, z, \quad t = t^*,$$ \hspace{1cm} (4)

где t^* – момент времени присоединения материала в точке x, y, z на поверхности S^*.

Микроструктурные превращения в сталях при охлаждении после наращивания определяются с помощью термокинетических диаграмм [5]. Термомеханическое поведение основного и наращиваемого материалов описывается моделью течения Боднера-Партома [6].

Задача (1) – (4) решается методом конечных элементов. На основе представленной постановки исследована задача наплавки пластин из стали Ст3сп тремя сталями: Св08А, 1Х8Н10, и 25Х5ФМС. Размеры показаны на рис. 1 б.

В качестве примера на рис. 2 показаны изменения температуры и перемещений пластины под 11-м валиком при наплавке сталью 25Х5ФМС.

![Рис. 2](image)

Определяющим механизмом формирования остаточного прогиба пластины является наличие мартенситного превращения в наплавленном металле. Температурно-временная область мартенситного превращения показана штриховыми линиями.

На рис.3 показан прогиб при короблении пластины. Сплошная линия отвечает случаю наплавки при гладком закреплении правой кромки (рис. 1), а штриховая – жесткому защемлению. В обоих случаях левый конец защемлен жестко. Видно, что жесткая заделка кромок обеспечивает меньший остаточный прогиб.
Для сравнения на рис. 4 и рис. 5 показаны прогибы пластины при аналогичных условиях наплавки сталями 1X18Н10, и Св08А, соответственно.

В материалах без мартенситных превращений прогибы заметно меньше.
Развитый подход позволяет на основе численного моделирования дать практические рекомендации по материалам наплавки, условиям закрепления элементов и параметрам режима с целью минимизации остаточных напряжений и коробления листовых элементов при наплавке.

2. Ковалев О. Б. Фундаментальные проблемы моделирования и диагностики процессов в лазерных технологиях аддитивного производства объемных металлоизделий. Сб. трудов XI Всероссийского съезда по фундаментальным проблемам теоретической и прикладной механики, Казань, 20–24 августа 2015 года. С. 1836 – 1838.
Слюсарчук Юлія Анатоліївна, аспірант, механіко-математичний факультет, Київський національний університет імені Тараса Шевченка, Київ, Україна, e-mail: julija0711@gmail.com

ДИНАМІЧНА ПОВЕДІНКА ВІЛЬНОЇ ПОВЕРХНІ РІДІНИ В РЕЗЕРВУАРАХ СФЕРИЧНОЇ ФОРМИ ПРИ СИЛОВОМУ ЗБУДЖЕННІ РУХУ

Ключові слова: резервуар, коливання, сумісний рух, діапазон частот.

AMS Subject Classification: 76B10

Конструкції з рідиною є складовою частиною багатьох інженерних систем. У випадку водонапірних башт і висотних споруд треба враховувати пружність закріплення резервуарів. Для таких інженерних систем коливання рідини можуть істотно впливати на стійкість споруд. Також існують приклади застосування коливань резервуарів з рідиною для стабілізації хмарочосів.

В математичному плані нелінійна задача про вимушені коливання нециліндричного резервуару і рідини з вільною поверхнею ускладнюється потребою врахування сумісного характеру руху резервуару з рідиною і конструкції. Також при такому закріпленні резервуар буде виконувати поступальний і обертальний рух одночасно. Такого типу задачи практично не розглядалися у нелінійній постановці в сучасних дослідженнях.

Тому досліджується нелінійна задача динаміки сумісного руху сферичного резервуару з рідиною при силовому збудженні системи на різних частотах в околі резонансів. Одержані числові результати порівнювалися з результатами для циліндричного та конічного резервуарів. Для дослідження задачі було використано модель [1, 2], яка була протестована для задач динаміки резервуарів з рідиною з вільною поверхнею.

Побудова нелінійної дискретної моделі динаміки сумісного руху тіла з рідиною з вільною поверхнею здійснюється на основі методу Канторовича, що застосовується до варіаційного формульовання задачі динаміки системи, отриманої на основі варіаційного принципу Гамільтона – Остроградського. Були введені наступні узагальнені координати: a_i – амплітуди збудження форм коливань рідини; ε_i – параметри поступального руху резервуару і залежні параметри b_i розкладу в ряди потенціалу швидкостей φ.

Розклади шуканих змінних представляються у вигляді:

$$
\xi = \tilde{\xi}(t) + \sum_i a_i \psi_i(\alpha) T_i(\theta);
\varphi = \dot{\xi} \cdot \tilde{r} + \sum_i b_i \overline{\psi}_i(\alpha, \beta) T_i(\theta);
$$
de

$$
\overline{\psi}_i(\alpha, \beta) = \left(\frac{1}{f} \frac{\partial \psi_i}{\partial \beta} - \frac{\partial \varphi_i}{\partial \alpha} \right)_{\beta=0}.
$$

Рівняння сумісного руху системи резервуар – рідина можна представити в наступному вигляді:

$$
\sum_{n=1}^{N} p_m(a_n, t) \ddot{a}_n + \sum_{n=N+1}^{N+3} p_m(a_n, t) \ddot{\omega}_{n-N} = q_r(a_k, \dot{a}_k, t), r = 1, N + 3.
$$

де–квадратна матриця p_m і вектор q_r мають розмірність N, де N – кількість форм коливань, що розглядаються в моделі. Вирази для p_m та q_r записуються як алгебраїчні форми від нульового до третього порядків від амплітудних параметрів a_i та швидкостей \dot{a}_i.

Досліджено поведінку руху рідини в дорезонансному (частоти збуження $0.5\omega_N$ та $0.75\omega_N$), резонансному (частоти $0.98\omega_N$ та $1.02\omega_N$) та зарезонансному (частоти $1.25\omega_N$ та $1.5\omega_N$) діапазонах зміни частот, де ω_N – власна частота сумісного руху рідини та резервуару, яка залежить від співвідношення їх мас. Амплітуда гармонічної сили підбиралася так, щоб максимальні амплітуди вільної поверхні були $(0.15 + 0.20)R_0$, де R_0 – радіус вільної поверхні рідини. Поведінка системи

277
розглядалась на проміжку часу до 50 с (приблизно 32 періоди коливань рідини за першою формою). Припускалося, що маса резервуару складає 0.2 маси рідини.

Також проаналізовано особливості впливу геометричної форми резервуарів на розвинення динамічних процесів. З’ясовано, що в усіх частотних зонах поведінка системи суттєво відрізняється. В дорезонанському діапазоні зміни частот спостерігається суттєвий прояв дрейфу середнього значення амплітуд коливань системи. У випадку коливань з частотою 0.75ω, переважає наявність модуляції. Для конічного резервуару ці нелінійні ефекти проявляються сильніше ніж для сферичного і циліндричного.

В резонанському діапазоні коливань спостерігається суттєвий прояв ефекту модуляції коливань зі значно більшим періодом коливань для частоти 0.98ω. Період модуляції не є однаковим для розглянутих резервуарів. Це визначається суттєвою залежністю частоти коливань від амплітуди в околі резонанських частот, яка для кожного резервуару відрізняється через різну геометрію в околі вільної поверхні. Також в цьому діапазоні проявляється ефект антірезонансу, коли протягом декількох періодів коливання на вільній поверхні рідини практично відсутні. Відмічено прояв дрейфу середнього та асиметрія розвитку коливань рідини, що найбільш суттєво проявляється у випадку сфери.

Для зарезонанського діапазону коливань характерні такі нелінійні ефекти як модуляція, асиметрія поверхневого хвилеутворення, вплив вищих гармонік, який більш суттєво проявляється для частоти 1.5ω. Це явища спостерігаються для всіх розглянутих резервуарів. Явище антірезонансу практично непомітне. Проте поряд з амплітудною модуляцією для коливань з не максимальною амплітудою проявляється явище частотної модуляції.

Отже, для всіх вказаних форм резервуарів і різних значень власних частот вихід системи на режим усталених коливань не спостерігається. Ця властивість підтверджується результатами експериментів [3, 4], хоча для частот, більших за резонансну, проявлявся ефект виходу системи на впорядковані коливання з суттєвою модуляцією.

Отже, коливання рідини в резонансній області розглядаються як різних значень при збудженні руху системи резервуар – рідина гармонічною силою спостерігається коливання (для всіх трьох частотних діапазонів), дрейф середнього значення амплітуд коливань системи (для дорезонанських та резонансних частот збудження), вплив коливань вищих гармонік (передбачено для зарезонанських частот збудження), асиметрія.

1. Limarchenko O.S. Peculiarities of application of perturbation techniques in problems of nonlinear oscillations of liquid with a free surface in cavities of non-cylindrical shape // Ukr. math. journal.—2007.—59, 1.—Р. 44–70.
2. Limarchenko O., Parankina O., Slyusarchuk Yu. Dynamical behavior of liquid in reservoir of revolution under harmonic force disturbance in the below resonant frequency range // Mathematical Modeling and Computing.—2017.—4, 2.—Р. 156-161. 2
Сокіл Богдан Іванович, доктор технічних наук, професор,
НАСВ імені Петра Спагайдацького, Львів, Україна,
e-mail: sokil_b_i@ukr.net;
Сокіл Марія Богданівна, кандидат технічних наук, доцент,
НУ «Львівська Політехніка»

e-mail: sokil_b_i@ukr.net;
Сокульська Наталія Богданівна, кандидат фіз.-мат. наук,
НАСВ імені Петра Спагайдацького, Львів, Україна,

e-mail: natalya.sokulska@gmail.com

ПРИНЦИП ОДНОЧАСТОТНОСТІ КОЛИВАНЬ У НЕЛІНІЙНИХ СИСТЕМАХ ТА ХВИЛЬОВА ТЕОРЕЯ РУХУ У ДОСЛІДЖЕННІ ДИНАМІЧНИХ СИСТЕМ, ЯКІ ХАРАКТЕРИЗУЮТЬСЯ СТАЛОЮ СКЛАДОВОЮ ШВІДКОСТІ РУХУ

Сокіл Б.І., Сокіл М.Б., Сокульська Н.Б.

Ключові слова: нелінійні коливання, резонанс, амплітуда, частота, дисперсійне співвідношення, хвильове число.

AMS Subject Classification: 37N15

Динамічні процеси багатьох систем із розподіленими параметрами характеризуються поздовжньою складовою швидкості руху. Вона спричиняє появу мішаної похідної за лінійною та часовою змінними у математичних моделях коливань, що зображаються змінними Ейлера. Остання, в свою чергу (навіть для спрощених лінійних аналогів математичних моделей коливань), не дозволяє безпосередньо використовувати класичні методи інтегрування рівнянь з частинними похідними Фур'є чи Д'Аламбера. А наближені аналітичні методи Бубнова – Гальоркіна, Ван-дер-Поля та ін. [1, 2] недостатньо точно описують вказаний процес. Попри те, у [3, 4] доведено, що одно- чи багаточастотний динамічні процеси для незбурених аналогів вказаних систем можна трактувати як накладання хвиль різних довжин, проте однакових частот. Тому методика дослідження динаміки систем, які характеризуються сталою складовою швидкості руху потребує деякого узагальнення - урахування повільної зміни в часі деяких параметрів систем. Ці питання на прикладі неавтономних моделей динаміки гнучких елементів привідних систем (ГЕ) є предметом розгляду роботи.

За фізичну модель ГЕ привідних систем приймається одновимірне тіло, згинальною жорсткістю котрого можна знехтувати. Їхньою математичною моделлю поперечних коливань може слугувати диференціальне рівняння

\[u_{xx}(x,t) + 2Vu_x(x,t,\tau) - \left((\alpha(\tau))^2 - V^2 \right) u_x(x,t,\tau) = \varepsilon f(\tau,u,u_x,u_t,\theta), \quad \tau = \mu t + \theta_0, \]

де \(u(x,t,\tau) \) - відхилення від рівноважного положення поперечного перерізу ГЕ із Ейлеровою координатою \([5-7] \) в довільний момент часу \(t \); \(V \) - поздовжня складова швидкості руху ГЕ; \((\alpha(\tau))^2 = \frac{T(\tau)}{m} \); \(T(\tau), m \) відповідно сила натягу та маса одиниці довжини ГЕ, \(\varepsilon \) - малий параметр, \(\tau = \omega t \) - "повільний" час, \(f(\tau,u,u_x,u_t,\theta) \) - аналітична \(2\pi \) -періодична за \(\theta \) функція, яка описує нелінійні та періодичні сили, що діють на ГЕ; \(\mu, \theta_0 \) - частота та початкова фаза останніх. Приймається, що максимальне значення нелінійних сил є малою величиною у порівнянні із максимальним значенням відновлювальної сили (\(\max \varepsilon f(\tau,u,u_x,u_t,\theta) << \max \varepsilon (\alpha(\tau))^2 u_x(x,t) \)). Не зважаючи на вказане обмеження щодо нелінійних та періодичних сил, з часом їхня дія може збільшуватися, і вони можуть суттєво впливати на закони зміни визначальних параметрів динамічного процесу ГЕ. Особливо згадані зміни проявляються у
так званому резонансному випадку, коли власна частота коливань ГЕ співпадає із частотою зовнішнього збурення, яке діє на нього, або зв'язана рациональним співвідношением із останньою.

Власні коливання систем із розподіленими параметрами визначаються не лише внутрішніми її чинниками (розподіл маси, внутрішні сили та ін.), але й крайовими умовами. Припустимо, що останні мають вигляд

\[u(t, x)|_{t=0} = u(t, x)|_{t=l(t)} = 0, \]

де \(l(t) \) - повільно змінна функція. Задача полягає у визначенні впливу всієї множини параметрів та нелінійних сил на динаміку системи, яка описується крайовою задачею (1), (2).

Найважливіший із практичної сторони резонансний випадок – це випадок, комі
а) динамічний процес необхідно вивчати як в самій резонансній області, так і при наблизенні до неї;
б) резонансний процес становить інтерес тільки у зоні резонансу.

Для першого випадку треба розглянути доволі широкий інтервал частот. Тут потрібно отримати залежності для нерезонансних коливань. Для нього, взагалі кажучи, різниця фаз амплітуди та частоти динамічного процесу залежить від різниці фаз

\[\vartheta = \omega - \frac{s}{n}\mu + \vartheta. \]

Таким чином, для широкого діапазону частот зовнішнього збурення розв’язок крайової задачі (1), (2) для першого асимптотичного наближення шукається у вигляді

\[u(t, x) = a \left[\cos(\kappa(t)x + \frac{s}{n}\mu + \vartheta) - \cos(\chi(t)x - \frac{s}{n}\mu - \vartheta) \right] + eU_1(t, \tau, \rho, x, \theta) \]

де \(\kappa(t) = \frac{k\pi}{\alpha(t)l(t)}(\alpha(t) + V), \chi(t) = \frac{k\pi}{\alpha(t)l(t)}(\alpha(t) - V), \omega(t) = \frac{k\pi}{\alpha(t)l(t)}((\alpha(t))^2 - V^2) \), а амплітуда хвильового процесу та різниця фаз \(\vartheta \) пов’язані системою диференціальних рівнянь

\[a_i = eA_i(\tau, \rho, \vartheta), \ vartheta_i = \omega(t) - \frac{s}{r}\mu + eB_i(\tau, \rho, \vartheta). \]

Для загального випадку періодичного збурення, знайти співвідношення у замкнутому вигляді, які б визначали у першому наближенні \(\frac{da}{dt} \) і \(\frac{d\vartheta}{dt} \), не вдається навіть накладаючи на функцію \(U_1(\tau, \rho, x, \rho, \theta) \) додаткові умови. Проте, праві частини згаданих співвідношень є періодичними функціями різниці фаз \(\vartheta \), тобто їх можна зобразити сумами вигляду \(\sum_{q} f_q(a)\exp(inq \theta) \). Тому і розв’язок для функцій \(A_i(\rho, \vartheta) \), і \(B_i(\rho, \vartheta) \) варто шукати у вигляді аналогічних сум. Всі викладки при визначенні функцій \(A_i(\rho, \vartheta) \), і \(B_i(\rho, \vartheta) \) вказаним способом зводяться до чисто тригонометричних операцій.

Дещо простіші результати стосуються розгляду коливань тільки у резонансній зоні, коли величина \(\omega(t) - \frac{s}{r}\mu \) є малою. В цьому випадку перше наближення асимптотичного розв’язку поставленаї крайової задачі (1), (2) знаходиться у вигляді (3). Однак тут параметри \(a \) та \(\vartheta \) пов’язані диференціальних рівняннями
\[A_1(a,\theta) = \frac{\varepsilon a}{2\pi^2\Delta} \sum_q \exp(inq\theta) \left\{ \rho(\tau) \int_0^{2\pi} \int_0^{2\pi} f_1(a,x,\phi,\theta) \exp\left(-inq \left(\phi - \frac{s}{n} \theta \right) \right) \cos \phi \, d\phi \, d\theta \, dx - \right. \\
\left. \tilde{h}(\tau) \int_0^{2\pi} \int_0^{2\pi} f_1(a,x,\phi,\theta) \exp\left(-inq \left(\phi - \frac{s}{n} \theta \right) \right) \sin \phi \, d\phi \, d\theta \, dx \right\}, \]
\[B_1(a,\theta) = \frac{\varepsilon}{2\pi^2\Delta} \sum_q \exp(inq\theta) \left\{ \rho(\tau) \int_0^{2\pi} \int_0^{2\pi} f_1(a,x,\phi,\theta) \exp\left(-inq \left(\phi - \frac{s}{n} \theta \right) \right) \sin \phi \, d\phi \, d\theta \, dx + \right. \\
\left. \tilde{h}(\tau) \int_0^{2\pi} \int_0^{2\pi} f_1(a,x,\phi,\theta) \exp\left(-inq \left(\phi - \frac{s}{n} \theta \right) \right) \sin \phi \, d\phi \, d\theta \, dx \right\}, \]
dе \(\Delta = a(\rho(\tau))^2 + a(\tilde{h}(\tau))^2 \).

Запропонована методика дає можливість дослідити вплив на коливання гнульких елементів систем приводу та транспортування нелінійних сил, швидкості поздовжнього руху та збурень крайових умов. Отримані результати показують, що навіть для лінійного аналогу системи повільноусилення в часі величина швидкості спричиняє зміну основних параметрів хвиль. До того ж, за певних умов, вона може впливати на стійкість динамічного процесу. Так зі зменшенням сили натягу ГЕ (за сталої швидкості руху та незмінних точок дотику ГЕ та шківів) амплітуда коливань зростає і існує таке значення швидкості для котрого процес стає нестійким.

Рух дисперсної суміші біля шершавої поверхні

Ткаченко Н. Є.

Ключові слова: дисперсна суміш, кінетичне рівняння, шершава поверхня, взаємодія між фазами.

AMS Subject Classification: 70E55 Dynamics of multibody systems

Розглянемо рух дисперсної суміші в шершавій трубці з ідеально рідиною, на одному з кінців якої в початковий момент часу вприснуються тверді частинки під деяким кутом до нормалі до середньої поверхні рідини. Другий кінець труби відкритий. Не існує єдиного підходу для дослідження руху дисперсної суміші. Кожен автор будує свою модель [1]. Більшість авторів використовує феноменологічний підхід, який не може застосовуватися при розгляді руху поблизу твердої поверхні, особливо - шершавої. В кнудсеновському шарі (величину середнього пробігу частинок потрібно розраховувати для кожної суміші окремо) біля твердої поверхні потрібно використовувати методи молекулярно-кінетичної теорії навіть для дослідження руху рідини, причому застосовуючи дві одночастинні функції розподілу [2].

Побудуємо модель дисперсної суміші. Розміри частинок значно менші відстаней, на яких осереднені параметри фаз суттєво змінюються. Сили в'язкості рідини враховуються лише при її взаємодії з частинками, сили взаємодії між окремими частинками враховуємо осереднено через зміну гідродинамічного тиску рідини. Тобто, на окрему частинку діють сила тяжіння, сила тертя, сила Архімеда, сила, обумовлена прискореним рухом частинок відносно рідини, сила Жуковського і випадкова сила типу Ланжевенського джерела. Для опису непотенціального руху частинок використовується статистичний підхід, описаний в роботах [3,4]. Вважаємо, що початкові умови для кожній частинки являються випадковими величинами. Методом статистичної механіки будемо кінетичне рівняння Ліувілля для опису непотенціального руху частинок [4]. Розв'язком цього рівняння буде несимветрична N-частинна функція розподілу (густини ймовірності розподілу систем в фазовому просторі), з умовою нормировки функції на одиницю. Інтегруючи по фазових координатах N-1 частинок отримуємо систему рівнянь для одночастинних функцій розподілу.

Моделі для опису руху системи частиноок і рідини будемо на різних рівнях: систему частинок описуємо на кінетичному рівні в фазовому просторі однієї частинки (середні величини, що відносяться до фізичного простору, визначаються шляхом осереднення по фазовому простору); рідина описується на гідродинамічному рівні в фізичному просторі. В нашому випадку частики займають менший об’єм ніж рідина, і середня густина \(\rho \) сусільного середовища, яким замінююємо систему частинок, значно менша густина рідини без частинок \(\rho' \). При великій кількості частинок неможливо задати початкові та граничні умови для кожної них, а й зручніше задавати для всієї сукупності частинок на кінетичному рівні. Цей підхід дає можливість описати перехідні процеси в дисперсній суміші. Відмітимо, що на відміну від молекулярно-кінетичної газів, в нашому випадку для частинок маємо два параметри релаксації: густинний – \(n_0 r_0^3 \) і дисипативний – \(\gamma \). Тут \(n_0 = N/V \), де \(n_0 \) – середня густина числа часинок при відсутності зовнішніх полів, \(N \) загальне число частинок, \(V \) – весь об’єм, \(r_0 \) – приведений радіус частинок. Параметр \(\gamma \) визначає час релаксації по швидкості в дисипативній системі – час за який встановлюється локальна рівновага системи по швидкостях. (Для лінійних сил тертя \(\gamma = k/\overline{m} \), де \(k \) – коефіцієнт опору, \(\overline{m} \) – приведена
маса частины). Мы можем сказать, что параметр \(\gamma \) назначает ширину спектра флуктуаций скорости частины. Цей параметр также назначает режимы руху системы: кинетический и диффузионный. На кинетическом режиме в основном локальная редкость системы частины по швидкостям, а характеристики редкости не меняются. Рух системы частины описывается уравнением типа уравнения Колмогора-Фокера-Планка, в котором коэффициент при похаждных импульсов относительной скорости определяет участки взаимодействия меж фазами. Диффузионный режим назначает эволюцию системы в пространстве и времени. Для системы частины мы назначаем кинетическое уравнение типа уравнения Ейнштейна-
Смолуховского.

Щоб визначити осреднені сили взаємодії між фазами будемо систему рівнянь переносу, що характеризують сукцільне середовище, яким можемо замінити систему частины. В цих рівняннях в явному вигляді маємо осреднені сили взаємодії між фазами.

Метод дослідження руху дисперсної суміші в шершавій циліндричній трубі залежить від радіуса труби. Якщо радіус трубки більше 4 шарів Кнудсена, то поблизу стінки (в так званому кнудсівському погранслої) використовуємо кинетичну модель з двох функцій розподілу. Одна з них характеризує розподіл системи частины, які падають на стінку з заданою швидкістю під деяким кутом \(\theta \), а друга розподіл відбива частины. Вона суттєво залежить від властивостей поверхні, характеристики якої визначаються експериментально.

Тут для системи частины маємо кинетичне уравнение типу уравнения Ейнштейна-
Смолуховского. Для визначення розподілу системи частины маємо взаємопов'язану систему двох рівнянь типу уравнения Ейнштейна-
Смолуховского.

Начальные условия для первого уравнения задаем в виде градиентов \(\delta \)-функций по координатам. Задаем условия нормировки для загальні функції розподілу. Гранничні умови задаем через локальні коефіцієнт обміну масою, імпульсом і енергією або коефіцієнтами акомодаций, які пов'язані з середніми величинами, що вираховуються з допомогою загальної функції розподілу [6]. Рідина описує кінетичним рівнянням для густих газів. Початкові і граничні умови задаем для осреднених величин з умовою прилипання на стінці. Розв'язки знаходимо використовуючи розклад по малому параметру. Обмежуємо двома наближеннями. Отримані розв'язки будуть граничними умовами для дослідження руху суміші в центральні частиин трубки. Крім рух частины описується новим рівнянням типу рівняння Ейнштейна-
Смолуховского, а рідина - рівняннями Ейлера с добавленнями в правих частинах осредненными силами взаимодействия меж фазами. Якщо радиус трубки буде порядку 4-х шарів Кнудсена, то обмежуємо розв'язками на кинетичному рівні.

При розгляді руху азбестового пилу з воді в трубці малого радіуса при \(\theta = 30 \) градусів. Индикатриса розсреднення характеризуется різким пиком. Збільшенням \(\theta \) ширина піку збільшується. При збільшенні швидкості впливу частины збільшується маса частины, які осідають на стінці. Густина розподілу частины має експоненціальний характер з пульсациями.

2. Струминский В.В..Аэродинамика и молекулярная газовая динамика. – М."Наука", 1985. – 240с.
Улітко Ігор Андрійович, кандидат фіз.-мат. наук, доцент, КНУ імені Тараса Шевченка, Київ, Україна, e-mail: ulitko@univ.kiev.ua
Борисейко Олександр Віталійович, кандидат фіз.-мат. наук, доцент, Київський національний університет імені Тараса Шевченка, Київ, Україна, e-mail: b12313@ukr.net

СЕНСОРНИЙ СИГНАЛ ВІБРАЦІЙНОГО П'ЄЗОГІРОСКОПУ КАМЕРТОННОГО ТИПУ

Улітко І.А., Борисейко О.В.

Ключові слова: п'єзорезонансний сенсор, гіроскопічний ефект, згинні коливання, обертовий рух.
AMS Subject Classification: 70E05,74K10,74H45,74F99

П'єзоелементи у вигляді камертонів – здвоєних стержнів квадратного або прямокутно-го поперечного перерізу зі спільною основою – мають широке застосування як резонансні сенсори різноманітного призначення [1]. У випадку сенсорики гіроскопічного ефекту камертонні резонатори мають одну перевагу, суть якої полягає у тому, що на зв'язаних згинних коливаннях стержнів автоматично компенсуються бічні прискорення як у напрямку прогинів первинної несучої моди, так і у напрямку вторинної сенсорної моди. Саме тому камертонні гіроскопи широко застосовуються в сучасних інерціальних навігаційних системах [2]. Розрахунок камертонних гіроскопів виконується здебільшого скінчено-елементними методами [3,4], а відповідні аналітичні моделі, що спираються на Браянівський ефект розщеплення частот [5], неодноразово розглядалися у попередніх публікаціях авторів [6,7].

Зв'язані рівняння руху камертона зі стержнями квадратного поперечного перерізу в рухомій системі відліку мають вигляд

\[
\frac{\partial^4 u_x}{\partial z^4} + \frac{\rho h^2}{EJ} \left(\frac{\partial^2 u_x}{\partial t^2} - \Omega_0^2 u_x - 2\Omega_0 \frac{\partial u_x}{\partial t} \right) = 0,
\]

де \(u_x \) – прогин первинної моди у площині камертона \(Oxz \), \(u_y \) – прогин вторинної (сенсорної) моди у площині \(Oyz \), \(\rho \) – густина матеріалу, \(EJ \) – момент інерції, \(\Omega_0 \) – кутова швидкість обертання у напрямку осі \(Oz \). Розв'язки рівнян (1) будується при системі граничних умов та умов спряження, що налічує десять алгебраїчних рівнянь. При цьому, суттєві спрощення досягаються, виходячи з припущення, що довжина стержнів \(l \) є набагато більшою за характерний розмір основи камертона \(r \):

\[
\frac{1}{l^2} < \frac{r}{l} \leq 1.
\]

З уведенням цього малого параметру з'ясовується, що резонансні властивості камертонного гіроскопа можна дослідити із задовільною точністю у простій аналітичній формі з рівняння

\[
\Delta^+(\lambda l)\Delta^-(\lambda l) - \frac{\pi}{8} \left[\left(\frac{r}{l} \right)^2 (A^+(\lambda l)\Delta^-(\lambda l) - A^-(\lambda l)\Delta^+(\lambda l)) \right] = 0,
\]

де \(\lambda \) – хвильове число, \(\omega \) – кругова частота, \(k \) – параметр основи, \(A^+(\lambda l) = \sin(\sqrt{1+\varepsilon l}l)\chi(\sqrt{1+\varepsilon l}l) - \cos(\sqrt{1+\varepsilon l}l)\hat{\chi}(\sqrt{1+\varepsilon l}l) - \text{шаль} \) – балочні функції. Рівняння

\[
\Delta^+(\lambda l) = 0
\]

при \(\varepsilon = 0 \) співпадають з частотним рівнянням С.П. Тимошенка для балки з одним жорстко закріпленим кінцем [8]. Наприклад, при \(r/l = 0.1 \), \(\varepsilon = 10^{-5} \) отримуємо такі значення хвильових чисел на першому резонансі: \(\lambda_0l = 1.617 \), \(\lambda_1l = 1.751 \), при цьому \(\lambda_0l = 1.875 \).
хвильове число першого резонансу нерухомої жорстко закріпленої балки [8]. Для наближеного визначення пари Браянівських частот камертона можна увести формули

\[\omega_0^+ \Leftrightarrow \lambda_0^+ l = \frac{x_0}{\sqrt{1 + \varepsilon}}, \quad \omega_0^- \Leftrightarrow \lambda_0^- l = \frac{x_0}{\sqrt{1 - \varepsilon}}, \quad x_0 = 1.875. \tag{3} \]

Для того, щоб здійснити збуження коливань на цих резонансних частотах одночасно, що вимагає Браянівська модель хвильового гіроскопа [5], необхідно враховувати реальну механічну добротність \(Q \) камертонного резонатора. Важливо, що для низькодобротних камертонів зі штучних п’єзоелектричних матеріалів, резонансні криві амплітудно-частотних характеристик на частоті нерухомого камертона і на частотах камертона при обертанні \(\omega_0^- \) і \(\omega_0^- \) перекриваються, якщо добротність \(Q \) скінчена. Тому будемо приймати за частоту вимушених коливань значення \(\omega_0 = \sqrt{2}(\omega_0^+ + \omega_0^-) \). Тоді, прогини стержнів камертона на торцях \(z = l \) можна подати у вигляді [7]

\[
u_s(l, t) = \frac{2M_0Ql^2}{EJ}N(x_0)\cos\left(\omega_0^t + \frac{\pi}{2}\right)\cos\Omega_0t, \\
u_y(l, t) = \frac{Q\omega_0}{\omega_0} \frac{2M_0Ql^2}{EJ}N(x_0)\sin\left(\omega_0^t + \frac{\pi}{2}\right)\sin\Omega_0t. \tag{4} \]

З (4) видно, що на сумарних переміщениях торців траекторією руху буде еліпс з більшою піввісю \(u_s \) та в \(Q\cdot(\Omega_0/\omega_0) \) разів меншою піввісю \(u_y \). Обидві амплітуди залежать від величин момента зовнішнього навантаження \(M_0 \). Математична модель гіроскопа в [7] побудована таким чином, що у вирази для еквівалентного моменту від електричного навантаження \(M_0 \) враховуються всі приведені характеристики п’єзоелектричного матеріалу

\[M_0 = 3\bar{D}(1 - \nu^2) \frac{1 - \nu}{1 - \nu} \frac{V_0}{h}, \tag{5} \]

де \(\bar{D} = \frac{h^4}{12s_{11}(1 - \nu^2)} \left(1 + \frac{1 + \nu}{8} k^2_p \right), \quad \nu = \left(\frac{1 + \nu}{8} k^2_p \right) \left(1 + \frac{1 + \nu}{8} k^2_p \right), \quad \nu = -\frac{s_{12}}{s_{11}} \), а саме: \(\bar{D} \) – згина жорсткість, \(\nu \) – приведений та \(\nu \) – звичайний коефіцієнти Пуасона, причому \(EJ = \bar{D}(1 - \nu^2) \); \(k^2_p = 2d_{31}^2 \left[(1 - \nu)s_{11}^E e_{13}^T \right] \) – планарний статичний коефіцієнт електромеханічного зв’язку, \(s_{11}^E, s_{12}^E \) – пружні податливості, \(d_{31} \) – п’єзомодуль та \(e_{13}^T \) – діелектрична стала. Момент \(M_0 \) прямо пропорційний величині збуджуючого електричного поля \(V_0 \).

Крім функцій прогинів (4), важливою характеристикою п’єрозонансного гіроскопічного сенсора є різниця електричних потенціалів на вимірювальному електроді. Після того, як функція прогину \(u_y \) встановлена в (4), функція сенсорного сигналу \(V(t) \) має вираз

\[
\frac{V(t)}{h} = -\frac{h}{8} \frac{1 - \nu}{d_{31}} k^2_p \frac{1}{1 - k^2_p} \frac{1}{l} \frac{1}{\varepsilon^2} u_y \left|_{\omega_0} \right. = \frac{M_0Q}{EJ}K(x_0)\frac{h}{8} \frac{1 - \nu}{d_{31}} k^2_p \cos\left(\omega_0^t + \frac{\pi}{2}\right)\cos\Omega_0t. \tag{6} \]

Значення амплітудних функцій в (4), (6) при \(x_0 = 1.875 \) складають \(K(x_0) = 0.23 \), \(N(x_0) = 0.11 \).

Використання у якості джерела сенсорного сигналу функції вихідної різниці електричних потенціалів (6) має очевидні переваги у порівнянні зі схемами, де сенсорний сигнал відбувається на основі функцій прогинів (4). Так, для типового п’єзоматеріалу PZT-4 з характеристиками \(s_{11}^E = 12.3 \times 10^{-12} \) м²/Н; \(s_{12}^E = -4.05 \times 10^{-12} \) м²/Н; \(\nu = 0.329 \), \(\rho = 7.5 \times 10^3 \) кг/м³, \(k^2_p = 0.319 \), \(\nu = 0.38 \) для стержня камертона, що має довжину \(l = 10 \) мм та товщину \(h = 0.5 \)
мм частота основної форми згинних коливань складає \(f_R^{(9)} = 2513.27 \) Гц, тобто \(\omega_0 = 400 \text{ рад/с} \). При кутовій швидкості обертання \(\Omega_0 = 0.1 \text{ рад/с} \), механічній добротності \(Q = 500 \) і амплітуді збуджуючої різниці потенціалів 0.01 В/м на часовому проміжку \(t = 120с \) сенсорний сигнал (6) матиме вигляд, зображений на Рис. 1, що якісно узгоджується з експериментальними діаграмами сигналу гіроскопічного сенсора до фільтрації. Чутливість гіроскопа складає \(V/V_0 = 7.5 \times 10^{-2} \) при \(\varepsilon = 2 \times 10^{-5} \), що відповідає кутовій швидкості 1 оберту за 6 хвилин.

З формули (6) слід виділити три важливі для практики характеристики, а саме: функція модуляції, показана пунктиром на Рис. 1, а також частота та період модульованого сигналу

\[
V_{mod}(\Omega_0 t) = \cos \Omega_0 t, \quad \omega_{mod} = \Omega_0, \quad T_{mod} = \frac{2\pi}{\Omega_0}.
\]

Саме ці величини доцільно використовувати на практиці як критерії для обробки сенсорного сигналу.

Усов Анатолий Васильевич, доктор технических наук, профессор
Одесский национальный политехнический университет, Одесса, Украина,
e-mail: usov_a_v@opu.ua;
Сикираш Юлия Евгеньевна, ассистент,
Одесский национальный политехнический университет, Одесса, Украина,
e-mail: juler@ukr.net

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕРМОМЕХАНИЧЕСКИХ ПРОЦЕССОВ
В УПРУГИХ ОБЪЕКТАХ, ПОДВЕРЖЕННЫХ ТЕПЛОВОМУ ВОЗДЕЙСТВИЮ
Усов А.В., Сикираш Ю.Е.

Ключевые слова: математическая модель, термомеханические процессы, объекты с распределенными параметрами,
AMS Subject Classification: 35Q79 Partial differential equations in connection with classical thermodynamics and heat transfer

Процессы в распределенных звеньях объектов характеризуются, прежде всего числом переменных состояния, определяющих порядок дифференциального уравнения относительно переменной времени. Распределенный объект характеризуется размерностью, то есть числом геометрических координат, необходимых для полного описания процесса. При этом следует иметь в виду, что хотя реальные физические объекты трехмерны, их математические модели могут иметь и меньшую размерность [1].

Среди явлений, сопровождающих функционирование объекта с распределенными параметрами, подверженных тепловому воздействию, важное место принадлежит термомеханическим процессам. Они протекают во всех без исключения элементах технологической системы (металлорежущем оборудовании, инструменте, трущихся парах, обрабатываемой детали и т.д.). Наибольшее влияние термомеханические процессы оказывают на уровень нагрева элементов объекта и их напряженно-деформированное состояние [2,3,4].

Анализ существующих математических моделей, описывающих термомеханические процессы в объектах, свидетельствует об отсутствии сведений об их адекватности и идентификации [5,6]. В связи с развитием технологий и систем, которые определяют современные подходы к моделированию, анализу и синтезу теплофизических процессов в объектах с распределенными параметрами появилась возможность внедрения компьютерной поддержки рассматриваемых вопросов.

Качество рабочих поверхностей объектов, подверженных тепловому воздействию, формируется под действием термомеханических явлений. Так, из-за высокой теплонапряженности [2] некоторых видов обработки или эксплуатации, на обрабатываемых поверхностях объектов формируются дефекты типа трещин, структурных и фазовых превращений, изменяющих исходную твердость. Являясь концентраторами напряжений, указанные дефекты в процессе эксплуатации приводят к преждевременным отказам механизмов. В некоторых случаях их наличие на рабочих поверхностях тяжелонагруженных изделий является критерием брака.

Поэтому разработка математических моделей термомеханических процессов в объектах, подверженных тепловому воздействию, их идентификация в пространстве состояний и на их основе разработка оптимальных критериев являются актуальными.

Известно, что при высокотемпературном нагреве теплофизические параметры нагреваемых материалов (предел прочности – σ, коэффициент теплопроводности – λ и др.) претерпевают значительные изменения. Однако в виду сложности соответствующих выкладок при исследовании задач оптимального нагрева с фазовыми ограничениями, эти
факторы, как правило, не учитываются, либо учитываются частично, не в полной мере [3].

В настоящей работе предлагается математическая модель, алгоритм выбора управляющих параметров системы стабилизации теплофизических процессов, формирующихся в объектах при тепловом воздействии. Исходная математическую модель с нелинейными параметрами, описывающая термомеханические процессы в объектах, подверженных тепловому воздействию методом последовательных приближений сведена к итерационному процессу, где на каждом шаге решается задача, описываемая линейным уравнением параболического типа с нелинейными фазовыми ограничениями.

Процесс нагрева поверхностного слоя объекта под температурным воздействием описывается следующими соотношениями [4]:

\[c\rho \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda(T) \frac{\partial T}{\partial x} \right), \quad x \in (0,l), t \in (0,\infty) \]

(1)

\[T(x,0) = T^0 = \text{const}, \quad x \in [0,l] \]

(2)

\[\lambda(T) \frac{\partial T(l,t)}{\partial x} = \alpha[v(t) - T(l,t)], \quad t \in [0,\tilde{t}], \quad 0 < \tilde{t} < \infty, \]

(3)

\[\frac{\partial T(0,t)}{\partial x} = -\frac{q}{\lambda(T)}, \quad t \in [0,\tilde{t}], \]

(4)

где \(T \) – температура \((C^\circ) \); \(t \) – время; \(c \) – коэффициент теплоемкости; \(\rho \) – плотность; \(\lambda \) – коэффициент теплопроводности; \(l \) – толщина поверхностного слоя; \(x \) – пространственная координата; \(\alpha \) – коэффициент теплообмена; \(v(t) \) – управление, \(v(t) \in V \), \(V = \{ v = v(t) : v(t) \in L^1_2[0,\tilde{t}] \}; q \) – тепловой поток, поступающий на поверхностный слой.

В промежутке изменения температур \([T_1,T_2] \) функция \(\lambda(T) \) положительна и в силу теплофизических свойств материала имеет ограниченную производную по \(T \). Кроме того, предположим, что в рамках возможных значений рабочих температур \(T \in [T_1,T_2] \) значения функции \(\lambda(T) \) определяются выражением:

\[0 < \beta_1 \leq \lambda(T) \leq \beta_2. \]

(5)

При указанных условиях система уравнений (1) – (4) при каждом фиксированном \(v(t) \in V \) имеет обобщенное решение из пространства \(V^1_{2,0}(\Omega_i) \), где \(\Omega_i = \{(x,t) : x \in (0,l), t \in (0,\tilde{t})\} \).

По условию задачи недопустимо, чтобы поверхностный слой под температурным воздействием был нагрет за пределами упругопластической зоны деформации и потерял несущие свойства.

Обычно в объектах используются материалы, разрушающиеся при нагреве хрупко, без сколь-нибудь заметных деформаций или материалы, переходящие под воздействием термонапряжений в пластическое состояние.

Модель термоупругости в квазистатической постановке и в предположении, что \(\alpha_T \) – коэффициент линейного расширения, \(E \) – модуль упругости не зависят от температуры, решается аналитически [4,5]. Анализ термонапряжений показывает, что в условиях рассматриваемой модели растягивающие напряжения наибольших значений достигают на оси, а сжимающие – на поверхности нагреваемого объекта. С учетом вышесказанного, ограничения на термонапряжения можно записать в виде:

\[\frac{\alpha_T E}{1-\psi} \left[-T(0,t) + \frac{1+3\Gamma}{l} \int_0^l T(\xi,t) d\xi - \frac{6\Gamma}{l^2} \int_0^l \xi T(\xi,t) d\xi \right] \leq \sigma_1[T(0,t)], \]

(6)

\[\frac{\alpha_T E}{1-\psi} \left[T(l,t) - \frac{1-3\Gamma}{l} \int_0^l T(\xi,t) d\xi - \frac{6\Gamma}{l^2} \int_0^l \xi T(\xi,t) d\xi \right] \leq \sigma_2[T(l,t)], \]

(7)
где \(\sigma_1[T(0,t)] = \begin{cases} \sigma_p[T(0,t)] & \text{для хрупких материалов,} \\ \sigma_{0,2}[T(0,t)] & \text{для пластичных материалов;} \end{cases} \)

\(\sigma_2[T(L,t)] = \begin{cases} \sigma_1[T(L,t)] & \text{для хрупких материалов,} \\ \sigma_{0,2}[T(L,t)] & \text{для пластичных материалов;} \end{cases} \)

\(\psi \) – коэффициент Пуассона; \(\Gamma \in [0,1] \) – параметр, характеризующий степень защемления от поворота края обрабатываемого слоя; \(\sigma_p(T) , \sigma_s(T) , \sigma_{0,2}(T) \) – пределы прочности на растяжение, сжатие и предел текучести соответственно.

Кроме выполнения неравенств (6) – (7), потребуем, чтобы в модели учитывались ограничения на максимальную температуру в поверхностном слое. Она не должна превышать, например, температуру структурных превращений \(T_s \) в материале поверхностного слоя, т.е.:

\[T(l,t) \leq T_s. \] (8)

Найдем управление \(V^o(t) \in V, t \in [0,t^*] \), переводящее за минимальное время \(t^* \), \(0 < t^* < \bar{t} \), термомеханическое состояние поверхностного слоя, которое описывается системой уравнений (1) – (4) из начального положения (2) в заданное конечное тепловое положение \(\bar{T}(x) \) с фиксированной точностью:

\[
\int_0^l [T(x,t^*,v^*) - \bar{T}(x)]^2 dx \leq \varepsilon, \quad \varepsilon \geq 0,
\]

так, чтобы при всех \(t \in [\varphi,t^*], \varphi = const > 0 \), были бы выполнены неравенства (6) – (8).

Для решения поставленной задачи использован метод последовательных приближений, конечные интегральные преобразования Фурье. Задача оптимального моделирования объекта с ограничениями на термонарежение и на наибольшую температуру свелась к решению системы линейных обыкновенных дифференциальных уравнений с ограничениями на фазовые переменные и управление. Для оптимизации управления термомеханическим состоянием объекта в ограничительную часть идентификационной модели внесены критерии качества обрабатываемых поверхностей объекта при максимальных показателях теплового воздействия.

Наличие идентификационной математической модели, описывающей термомеханические процессы при тепловом воздействии на моделируемый объект, позволяет проектировать системы управления для получения оптимальных характеристик обрабатываемых поверхностей деталей машин.

4. Вигак В.М. Управление температурными напряжениями и перемещениями / В.М. Вигак. – Киев: Наукова думка,1 988. - 313 с.
МОДЕЛИРОВАНИЕ МЕХАНИЧЕСКОГО КОМПЛЕКСА ПРОВОД – ОПОРА ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧ ПРИ ДИНАМИЧЕСКИХ ВОЗДЕЙСТВИЯХ

Чупрынин А. А., Кузнецов А. Н., Скурихин В. И., Зубенко Д. Ю.

Ключевые слова: надежность, долговечность, колебания, электрические провода, дифференциальные уравнения.

AMS Subject Classification: 74B20.

В настоящее время в условиях ускоренного развития высоких технологий все острее встает вопрос развития исследований в направлении повышения надежности, обобщенного технического ресурса и экономической эффективности воздушных линий электрических передач (ЛЭП), на которые влияют параметры прочности, жесткости и долговечности в эксплуатации основных звеньев воздушных ЛЭП (проводов, опор, арматуры, фундаментов и оснований) и механических комплексов. На практике динамическое поведение отдельных механических комплексов, их взаимодействие и поведение ЛЭП в целом зависят от механических, геометрических и конструктивных характеристик основных звеньев. От срока службы взаимодействующих звеньев воздушных ЛЭП зависит также периодичность их замены, то есть финансовые затраты на приобретение запасных частей и техническое обслуживание.

В этом направлении появляются новые модели, которые описывают поведение упругих систем механических комплексов воздушных ЛЭП, анализ которых позволяет получить данные о напряженно-деформированном состоянии (НДС) отдельных звеньев. Одним из ключевых вопросов здесь является оценка усталостного износа проводов и пути его уменьшения, что способствует внедрению ресурсосберегающих технологий.

Опыт эксплуатации воздушных ЛЭП показывает, что в механическом комплексе «провод – опора» показатели надежности и долговечности существенно зависят от особенностей процессов взаимодействия провода и опоры ЛЭП, а также условий эксплуатации рассматриваемой системы. Следствием указанных процессов становится возникновение усталостных повреждений в механическом комплексе «провод – опора» ЛЭП. Наибольший уровень усталостных повреждений возникает в проводе в месте жесткого крепления провода в стыковых зонах на опоре. Это связано с тем, что в этих местах обычно возникает наибольшее силовое взаимодействие между проводом и опорой ЛЭП.

Для анализа взаимодействия провода и опоры ЛЭП возникает необходимость решения нескольких связанных между собой задач. В наиболее общем случае наиболее простой механической моделью провода ЛЭП является гибкая механическая связь - тело, у которого поперечные размеры мальы по сравнению с его длиной. В такой постановке действующие на
провода нагрузки можно разделить на статические и динамические, которые удобней представить как погонные усилия. К статическим нагрузкам относится собственный вес провода с учетом возможного оледенения (вертикальные нагрузки). К динамическим нагрузкам - ветровая нагрузка. Она направлена горизонтально \((q_2^a) \), и ее нормальную составляющую можно описать в виде:

\[
q_2^a = \alpha_w K_1 K_w C_x W F \sin^2 \varphi ,
\]

где: \(\alpha_w \) - коэффициент, учитывающий неравномерную нагрузку ветрового давления по пролету ЛЭП; \(K_1 \) - коэффициент, учитывающий длину пролета; \(K_w \) - коэффициент, учитывающий изменение ветрового давления по высоте; \(C_x \) - коэффициент лобового сопротивления; \(F \) - площадь продольного сечения провода; \(\varphi \) - угол между направлением ветра и осью ЛЭП;

\[
W = \frac{p V^2}{2} \quad - \text{ветровое давление;}
\]

\(p \) - плотность воздуха, зависимая от его влажности, температуры и атмосферного давления; \(V \) - скорость ветра [1].

Для построения математической модели провода приняты уравнения движения абсолютно гибкого стержня, который работает исключительно на растяжение. Кроме того, они дополняются уравнением изменения угла поворота сечения, куда входят слагаемые, которые учитывают несовпадение центра сечения с центром масс голого провода (рис. 1).

![Рис. 1. Механическая модель анкерного пролета воздушной ЛЭП](image)

Приняты гипотезы малых деформаций и упругого деформирования как при растяжении-скатии, так и при кручении, и что наличие обледенения на проводе не влияет на его жесткость при растяжении и кручении. В такой постановке колебания провода будут описываться системой нелинейных дифференциальных уравнений в частных производных в виде [2,3]:

\[
\frac{\partial}{\partial \xi_0} \left(\frac{Q}{1 + \frac{Q}{EF} \frac{\partial \xi_1}{\partial \xi_0}} \right) + C_1 - \rho g \frac{\partial^2 \xi_1}{\partial t^2} = 0 ,
\]

\[
\frac{\partial}{\partial \xi_0} \left(\frac{Q}{1 + \frac{Q}{EF} \frac{\partial \xi_2}{\partial \xi_0}} \right) + C_2 + \left(1 + \frac{Q}{EF} \right) q_2^a - \rho g \frac{\partial^2 \xi_2}{\partial t^2} - \rho h \left(\sin(\theta_s + \theta) \frac{\partial^2 \theta}{\partial t^2} + \cos(\theta_s + \theta) \left(\frac{\partial \theta}{\partial t} \right)^2 \right) = 0 ,
\]
\[
\frac{\partial}{\partial S_0} \left(\frac{\bar{Q}}{1 + \bar{q}' / \bar{E} \bar{F}} \frac{\partial \bar{x}_3}{\partial S_0} \right) + \bar{C}_1 + \left(1 + \frac{\bar{Q}}{\bar{E} \bar{F}} \right) \bar{q}' = \bar{q} \bar{n} - \bar{\rho} \bar{g} \frac{\partial^2 \bar{x}_1}{\partial t^2} - \bar{p}_h \left(\cos(\theta_s + \theta) \frac{\partial^2 \theta}{\partial t^2} - \sin(\theta_s + \theta) \left(\frac{\partial \theta}{\partial t} \right)^2 \right) = 0 , \tag{4}
\]

\[
\left(\frac{\partial \bar{x}_1}{\partial S_0} \right)^2 + \left(\frac{\partial \bar{x}_2}{\partial S_0} \right)^2 + \left(\frac{\partial \bar{x}_3}{\partial S_0} \right)^2 = \left(1 + \frac{\bar{Q}}{\bar{E} \bar{F}} \right)^2 , \tag{5}
\]

\[
-1 \frac{\partial^2 \theta}{\partial t^2} + \bar{C}_\rho + \bar{M}' + \bar{GJ} \frac{\partial^2 \theta}{\partial t^2} - \bar{p}_h \left(\sin(\theta_s + \theta) + \cos(\theta_s + \theta) \frac{\partial^2 \bar{x}_3}{\partial t^2} + g \cos(\theta_s + \theta) \right) = 0 \tag{6}
\]

где в формулах (2-5) представлены приведенные к безразмерному виду величин: \(\bar{Q}(\bar{\sigma}, \bar{t}) \) - тяжение провода; \(\bar{f} \) - момент инерции сечения провода относительно центра; \(\bar{q}'(\bar{\sigma}, \bar{t}) \), \(i = 2, 3 \) - погонные аэродинамические силы в направлении осей \(x_2 \) и \(x_3 \), соответственно; \(\bar{M}'(\bar{\sigma}, \bar{t}) \) - аэродинамический момент; \(\bar{C}_1, \bar{C}_2, \bar{C}_3, \bar{C}_\rho \) - функции демпфирования; \(\theta_s(\bar{\sigma}) = \theta_0 + \theta_s(\bar{\sigma}), \theta_s(\bar{\sigma}) \) - угол поворота сечения в естественном состоянии. Проведены расчеты НДС согласно представленной модели анкерного пролета длиной \(L = 150 \text{ м} \) со стрелой провисания \(F = 2 \text{ м} \) [3]; провод марки АС 150/24, для которого \(EF = 1.38 \cdot 10^7 \text{ Н} \) - жесткость сечения на растяжение; \(\rho = 0.55 \text{ кг/м} \) - погонная плотность; \(GJ = 1.05 \cdot 10^2 \text{ Н·м}^2/\text{рад} \) - жесткость на кручение; \(d = 0.17 \cdot 10^{-2} \text{ м} \) - диаметр провода.

Скорость ветра принималась \(V = 80 \text{ м/с} \), а направление давления ветра - перпендикулярно оси провода. Были рассмотрены два варианта граничных условий при кручении для \(x_2 = \frac{L}{2} \) (рис. 1), которые соответствуют заделке (угол закрутки равен нулю) и шарниру (момент равен нулю). Для них были определены эквивалентные напряжения \(\sigma_{\text{экв}} \) с учетом того, что НДС провода является сложным и сочетает в себе нормальные напряжения от растяжения и касательные от кручения. С учетом действующих эквивалентных напряжений определен срок службы провода \(T \). Для заделки: \(\sigma_{\text{экв}} = 32.351 \text{ МПа}, T = 9.97 \text{ лет} \). Для шарнира \(\sigma_{\text{экв}} = 14.520 \text{ МПа}, T = 126.39 \text{ лет} \). Расчеты показали увеличение более чем 12.6 раз срока службы провода в случае его шарнирного крепления в стыковой зоне на опоре.

Комплексные исследования приведенной модели позволяют установить параметры динамического взаимодействия в механическом комплексе «провода – опора» ЛЭП и НДС с учётом характеристик звеньев, а также разработать технические предложения по усилению проблемных участков воздушных ЛЭП, способствуют адекватной оценке срока их эксплуатации и выбору рациональных конструктивных решений.

Шпачук Володимир Петрович, доктор техн. наук, професор, Харківський національний університет міського господарства імені О.М. Бекетова, Харків, Україна, e-mail: v.p.shpachuk@gmail.com;
Рубаненко Олександр Ігоревич, кандидат техн. наук, доцент, Харківський національний університет міського господарства імені О.М. Бекетова, Харків, Україна, e-mail: Oleksandr.Rubanenko@kname.edu.ua

ОСОБЛИВОСТІ СПЕКТРА ЧАСТОТ І ВЛАСНИХ ФОРМ ПОПЕРЕЧНИХ КОЛИВАНЬ СТРИЖНЯ З ПРУЖНО ПРИЄДНАНОЮ МАСОЮ

Шпачук В.П., Рубаненко О.І.

Ключові слова: поперечні коливання стрижня, власна частота, власна форма.
AMS Subject Classification: 74H45.

Багато елементів конструкцій і агрегатів представляють множину з’єднаних між собою об’єктів з розподіленими і зосередженими параметрами. Одне з розрахункових схем таких конструкцій можна прийняти стрижень з пружно приєднаною масою. Реакція конструкції на динамічні навантаження, що виникають при випробуваннях і експлуатації, суттєво залежить від її власних динамічних характеристик. Основними з них є власні частоти і форми коливань. Тому дослідження цих характеристик представляє актуальну задачу.

Система диференціальних рівнянь вільних поперечних коливань стрижня з пружно приєднаною масою має вигляд [1, 2]:

\[
\begin{split}
\alpha^2 \frac{\partial^4 y}{\partial x^4} + \frac{\partial^2 y}{\partial t^2} &= \frac{1}{\rho F}[c_0(w-y_1)] \cdot \delta(x-x_1) \\
m_0 \frac{\partial^2 w}{\partial t^2} + c_0(w-y_1) &= 0
\end{split}
\]

де \(a^2 = \frac{EI}{\rho F} \); \(E, \rho \) – модуль пружності і щільність матеріалу стрижня; \(I, F \) – момент інерції і площа поперечного перерізу стрижня; \(y = y(x,t) \) – переміщення (прогин) довільного перерізу стрижня; \(y_1 = y(x_1,t), w = w(t) \) – переміщення перерізу стрижня з координатою \(x = x_1 \) і приєднаною масою \(m_0 \); \(c_0 \) – жорсткість пружного приєднання маси; \(\delta(x-x_1) \) – дельта-функція.

З використанням метода Фур’є отримано частотне рівняння

\[
\Delta = sh(kl) \sin(kl) - \frac{\gamma_G}{2k^3} \Psi(x_1) = 0 ,
\]

і співвідношення для власних форм коливань стрижня з приєднаною масою, що відповідають шарнірним опорам на кінцях стрижня

\[
Y(x) = \begin{cases}
Y_0(x), & 0 \leq x \leq x_1 \\
Y_0(x) + \frac{1}{k} \gamma_G Y_0(x_1) \cdot V[k(x-x_1)], & x_1 \leq x \leq l
\end{cases}
\]

де \(\gamma_G = \frac{1}{EI \omega_0^2} \); \(\Psi(x_1) = sh(kl) \sin(kx_1) \sin[k(l-x_1)] - \sin(kl) sh(kx_1) sh[k(l-x_1)] ;
\]
\[k^4 = \frac{\omega^2}{a^2}; \quad \omega \text{ – частота коливань системи; } \omega_0 = \sqrt{\frac{c_0}{m_0}} \text{ – парціальна частота коливань приєднаної маси на пружині, } Y_0(x) = AS(kx) + BT(kx) + CU(kx) + DV(kx); \quad A, B, C, D \text{ – постійні інтегрування, що визначаються з граничних умов; } S(kx), T(kx), U(kx), V(kx) \text{ – функції Крилова.}

Проведені чисельні розрахунки для механічної системи із заданими і варійованими механічними та конструктивними параметрами. Варіювалися відношення мас і жорсткостей стрижня і приєднаної маси, а також положення точки кріплення маси до стрижня.

Аналіз власних частот показує, що приєднання до стрижня маси призводить до появи у спектрі частот системи «стрижень – маса» нової власної частоти, близької до парціальної частоти \(\omega_0 \). При цьому, в залежності від параметрів системи, нова частота може бути менше, більше і навіть рівною парціальній частоті маси на пружині. При певних параметрах системи спостерігається також ефект накладення двох власних частот стрижня з приєднаною масою. В особливих випадках, коли маса прикріплені у вузловій точці форми коливань стрижня без маси, власна частота, що відповідає цій формі, залишається незмінною і для системи «стрижень – маса».

Аналіз власних форм коливань системи «стрижень – маса» показує, що їх конфігурація визначається положенням відповідної власної частоти у спектрі частот стрижня без приєднаної маси. Можна виділити три випадки:

- якщо певна власна частота системи «стрижень – маса» дорівнює власній частоті стрижня без маси, то відповідна форма коливань системи співпадає з формулою коливань стрижня без маси;
- якщо власна частота системи близька до власної частоти стрижня без маси, то відповідна форма подібна формі коливань стрижня без маси (містить також числа вузлів), але має виражений ампітуду;
- якщо ж власна частота системи знаходиться в інтервалі між власними частотами стрижня без маси, то відповідна до неї форма подібна формі коливань стрижня без маси (містить також числа вузлів), але має виражений ампітуду.

Рішення поставленого завдання дає можливість врахувати особливості спектра частот і власних форм коливань стрижня з приєднаною масою, що є суттєвим при застосуванні чисельних методів визначення власних характеристик системи, наприклад, в задачах з іншими граничними умовами або для стрижнів змінного поперечного перерізу, а також для прогнозування поведінки системи при заданому зовнішньому збуренні.

МОДЕЛЮВАННЯ ДИНАМІЧНОЇ ВЗАЄМОДІЇ ПРОХОДЖЕННЯ ВАГОНОМ РЕЙКОВОГО ТРАНСПОРТУ СТИКОВОЇ НЕРІВНОСТІ

Шпачук В.П., Чупrinін О.О., Супрун Т.О.

Ключові слова: рухомий склад, чотиривісний вагон, рейкова колія, баластовий шар, стикова нерівність, віддаюча та приймаюча рейки

AMS Subject Classification: 74B99.

У даний час в умовах швидкого розвитку транспортних технологій, все гостріше постає питання оптимізації параметрів експлуатації та пошук раціональних конструкторських рішень. Зниження параметрів динамічного взаємовпливу вагона і колії, особливо в зоні стиків, забезпечує перехід до довговічного, високонадійного, комфортного й швидкісного рейкового транспорту.

Запропонована багатофакторна динамічна дискретно-континуальна модель чотиривісного вагона [1, 2] та рельсового шляху. Розглянуто проходження вагоном стикової нерівності на всіх фазах. Так, на першій фазі всі колісні пари вагона розташовуються на віддаючі рейці, на другій фазі – на ній залишається три, на третій – дві і на четвертій лише одна. Розрахункова механічна схема динамічної взаємодії приймаючої рейки на першій фазі руху вагона показана на рис. 1, де c₁, b₁ – жорсткість та коефіцієнт демпфірування підвіски вагона; c₂, b₂ – жорсткість та коефіцієнт демпфірування баластового шару; c₀,k – жорсткість рейки на кінці (що моделює спирання на віддаючу рейку через працюючу накладку); m₁, m₂ – зведені маси колеса і вагона з урахуванням завантаження; y₁; y₂ – переміщення зведеної маси колеса і вагона відповідно.

При розрахунку прогинів дискретно-континуальної системи задаються механічні, геометричні характеристики, статичні прогини [2] і післяударна швидкість для приймаючої рейки. Диференціальні рівняння коливань механічної схеми на рис. 1 будуть [1]:

\[
\frac{\partial^4 w(t,x)}{\partial x^4} + \frac{\rho F}{EJ} \frac{\partial^2 w(t,x)}{\partial t^2} = \\
= c_1(y_2 - 0.5w(t,0))\delta(0) - \frac{c_{p,k}w(t,0)\delta(0)}{EJ} - \sum_{i=1}^{23} c_2 w(t,l_i)\delta(l_i) - \sum_{k=1}^{K} \frac{\partial^2 w(t,0)\delta(l_k)}{\partial l^2} + \sum_{k=1}^{K} P_0\delta(l_k) - \sum_{i=1}^{23} b_2 \frac{\partial w(t,l_i)}{\partial t} \delta(l_i) + b_1 \left(\frac{\partial y_2}{\partial t} - \frac{\partial w(t,0)}{\partial t}\right) \delta(0); \\
\frac{m_2}{\delta t^2} \frac{\partial^2 y_2}{\partial t^2} + c_1(y_2 - 0.5w(t,0)) - b_1 \frac{\partial y_2}{\partial t} - 0.5 \frac{\partial w(t,0)}{\partial t} = 0,
\]

de \delta(x) – імпульсна функція; w – прогин рейки; l_i – координата відповідної шпали; l_k – координата відповідного колеса на приймаючої рейці; K – кількість коліс на приймаючої
рейки, що відповідає фазі руху; F, ρ – площа перерізу і щільність матеріалу рейки; EJ – жорсткість перерізу рейки на згин.

Рис. 1. Розрахункова механічна схема динамічної взаємодії приймаючої рейки

Використання моделі з дисипацією енергії є безумовно виправданим в даній постановці, однак, в більшості розрахунків нехтують властивостями демпфірування баластового шару, мотивуючи це тим, що прогин рейки розглядається лише на фазі його зростання [1]. Розв'язання системи (1) виконується з застосуванням методу Фур'є поділу змінних, а також методу теорії операційного обчисления Лапласа-Карсона. В даному випадку розв'язання задачі про коливання приймаючої рейки зводиться до суперпозиції власних форм:

$$w(t, x) = \sum_{s=1}^{S} z^s(x) e^{-h_s D_s} e^{i \omega_s t},$$

де D_s – коефіцієнти, що знаходяться із умов ортогональності форм коливань з урахуванням післяударної швидкості рейки сумісно з колесом; $z^s(x)$, ω_s - власні форма та частоти коливань системи, $h_s = b_s / 2m_p$ – коефіцієнти дисипації відповідної форми; m_p – зведена маса рейки, b_s – зведений коефіцієнт опору.

Отримані результати на практиці використовуються при розробці технічних рішень по вдосконаленню конструкції стику рейкової колії, а також при визначенні режимів експлуатації трамвайних вагонів, розрахунків та вдосконалення параметрів вагона і верхньої будови колії шляхом їх раціонального вибору і оптимізації; аналізу параметрів динамічної взаємодії вагона з рейковою колією в місці стикового з'єднання, яке враховує експлуатаційні, механічні і геометричні фактори та встановлення нових закономірностей взаємодії трамвайного вагона з рейковою колією.

ЧИСЕЛЬНЕ МОДЕЛЮВАННЯ НАПРУЖЕНО-ДЕФОРМОВАНОГО СТАНУ ЦИЛІНДРА ПРИ ТЕРМОМЕХАНІЧНОМУ НАВАНТАЖЕННІ

Яковенко Н. Д.

Ключові слова: неізотермічна модель течії, залишковий напружено-деформований стан, мікроструктурні перетворення, непружний матеріал

AMS Subject Classification: 74F05

Обробка металічних деталей і елементів конструкцій короткими тепловими імпульсами великої інтенсивності широко застосовується у сучасному виробництві з метою підвищення міцності, запобігання зношенню і покращення експлуатаційних характеристик виробів [1]. Дозване опромінення короткими тепловими імпульсами використовують зокрема для зміцнення та очищення поверхні, мікроштампування та мікроформування.

Розглядається динамічна осесиметрична задача про комбіноване термомеханічне навантаження циліндра. Мікроструктурні перетворення (МСП), як наслідок розпаду аустеніту в мартенсит при охолодженні, враховуються відповідно до термокінетичних діаграм. При цьому розглядаються зміна об’єму і врахування залежності непружних характеристик матеріалу від фазового складу. Термомеханічна поведінка матеріалу описується уніфікованою моделлю течії Боднера-Партома, узагальненою на випадок мультифазового складу матеріалу [2]. Властивості матеріалу відповідають сталі 35ХМА.

Постановка задачі для ізотропного матеріалу в системі координат Orzφ складається із:

– співвідношень Коші для деформації

\[\varepsilon_{zz} = \frac{\partial u_z}{\partial z}, \quad \varepsilon_{rr} = \frac{\partial u_r}{\partial r} , \quad \varepsilon_{\phi\phi} = \frac{u_r}{r} , \quad \varepsilon_{rz} = \frac{1}{2} \left(\frac{\partial u_z}{\partial r} + \frac{\partial u_r}{\partial z} \right) , \quad (1) \]

– рівнянь руху

\[\frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r} \left(\sigma_{rr} - \sigma_{\phi\phi} \right) + \frac{\partial \sigma_{rz}}{\partial z} = \rho \ddot{u}_r , \quad \frac{\partial \sigma_{rz}}{\partial r} + \frac{1}{r} \sigma_{rz} + \frac{\partial \sigma_{zz}}{\partial z} = \rho \ddot{u}_z , \quad (2) \]

– рівняння теплопровідності

\[\bar{c}_v \dot{\theta} = \frac{1}{r} \frac{\partial}{\partial r} \left(kr \frac{\partial \theta}{\partial r} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial \theta}{\partial z} \right) - T \frac{\partial \sigma_{rr}}{\partial r} \dot{\alpha} + \rho \Delta e \varepsilon \tilde{C}^\varepsilon + D' , \quad (3) \]

\[\bar{c}_v = \sum_\xi \bar{c}_v^\xi C^\xi , \quad \tilde{C}^\varepsilon = \bar{c} a + \bar{c} b + \bar{c} f + \bar{c} p + \bar{c} m = 1 , \quad \varepsilon = a, b, p, f, m , \quad (4) \]

де \(u_r \) і \(u_z \) – компоненти вектора переміщення; \(\varepsilon_{zz} , \varepsilon_{rr} , \varepsilon_{rz} , \varepsilon_{\phi\phi} \) – компоненти тензора деформації; \(\sigma_{zz} , \sigma_{rr} , \sigma_{rz} , \sigma_{\phi\phi} \) – компоненти тензора напружень, \(\rho \) – густина матеріалу; \(\theta \) – температура; \(\theta_r \) – відлікова температура; \(\theta = \frac{\partial \theta}{\partial t} ; \quad \bar{c}_v \) і \(\bar{k} \) – об’ємна теплоємність і
коефіцієнт теплопровідності суміші фаз; \(\alpha \) – узагальнений коефіцієнт об’ємного розширення; \(\hat{\sigma}_{kk} = \hat{\sigma}_{rr} + \hat{\sigma}_{zz} + \hat{\sigma}_{\varphi \varphi} \); \(\Delta l_\xi \) – прихована теплота мікроструктурних перетворень; \(D' \) – швидкість внутрішньої дисипації; \(V^\xi (\theta) \) – вільний об’єм фази \(\xi \) для температури \(\theta \); \(C^\xi \) – концентрація фази \(\xi \), \(\xi = a, f, p, b, m \), де \(a \) – аустеніт, \(f \) – ферит, \(p \) – перліт, \(b \) – бейніт, \(m \) – мартенсит.

На торці циліндра \(z = 0 \) граничні умови імпульсьного термічного і механічного навантаження мають вигляд:

\[
q = \begin{cases}
q_0 \sin \frac{\pi}{t_q}, & t \leq t_q, \\
0, & t > t_q;
\end{cases}
\]

\[
\sigma_{zz} = \begin{cases}
-p_0 \sin \frac{\pi}{t_\sigma}, & t \leq t_\sigma, \\
0, & t > t_\sigma;
\end{cases}
\]

де \(q_0 \) і \(p_0 \) – задані параметри навантаження, \(t_q, t_\sigma \) – часові параметри навантаження. Решта поверхні вільна від навантаження і теплоізольована.

Задача термомеханіки розв’язується чисельно з використанням методу покрокового інтегрування по часу, ітераційного методу в поєднанні з методом скінчених елементів [3].

Розрахунки проводяться для циліндра \(0 < r < R, 0 < z < L \) для наступних геометричних параметрів \(R = 5 \cdot 10^{-6} \text{м}, L = 2 \cdot 10^{-3} \text{м} \). Тривалість теплового імпульсу \(t_q = 10^{-8} \text{с} \), а механічного імпульсу \(t_\sigma = 2 \cdot 10^{-8} \text{с} \). Для параметра теплового потоку приймається значення \(q_0 = 2 \cdot 10^8 \text{кВт/м}^2 \), а параметра механічного навантаження \(p_0 = 1 \text{ГПа} \). Початкова температура циліндра \(\theta_0 \) дорівнює \(20^\circ \text{C} \). Температура в торцевій частині циліндра змінюється в межах \(20^\circ \text{C} \div 1300^\circ \text{C} \). На рис. 1 зображено залишкові просторові розподіли інтенсивності непружної деформації. У смузі \(r \leq 4,7 \cdot 10^{-7} \text{м}, z \leq 1 \cdot 10^{-7} \text{м} \) максимальне значення інтенсивності непружної деформації дорівнює \(e^\text{in}_{i \text{ max}} = 0,06 \). Для порівняння на рис. 2 ілюструються аналогічні розподіли лише при імпульсьному термічному навантаженні. Видно, що в тій же смузі інтенсивність непружної деформації значно менша \(e^\text{in}_{i \text{ max}} = 0,01 \).

Це пояснюється суттєвим зміненням приторцевої області механічним навантаженням в умовах її розігріву термічним імпульсом.
На графіках використовуються такі позначення: \(q + f_s \) – лише теплове навантаження з урахуванням залежності непруженних характеристик і трансформаційних змін об’єму від МСП \((q_0 \neq 0, p_0 = 0)\); \(p + q \) – комбіноване термомеханічне навантаження \((q_0 \neq 0, p_0 \neq 0)\) без врахування МСП; \(q + p + f \) – комбіноване термомеханічне навантаження з урахуванням залежності змін об’єму від МСП \((q_0 \neq 0, p_0 \neq 0)\); \(q + f_s + p \) – комбіноване термомеханічне навантаження з урахуванням залежності непруженних характеристик і трансформаційних змін об’єму від МСП \((q_0 \neq 0, p_0 \neq 0)\).

На рис. 3 – 4 наведені залишкові осьові розподіли радіальних напружень \(\sigma_{rr} \), інтенсивностей повоєнної \(e_i \), та непружені деформації \(e_i^{jn} \).

На глибині \(z_m = 1 \cdot 10^{-7} \) м з появою мартенситного перетворення (крива \(q + f_s + p \)) рівень деформації суттєво зменшується, а залишкові розтягувальні напружения трансформуються в стискальні.

Отже, розвинута модель враховує об’ємні і фізичні ефекти МСП і дає достовірну оцінку їх впливу на зміцнення матеріалу на поверхні елемента конструкції та його довговічності.

4. Method of control and complex systems research

MODELLING
&
STABILITY
TIME STRETCHING IN DIFFERENTIAL GAMES
WITH IMPULSE CONTROLS

Chikrii G.Ts.

Key words: time stretching function, impulse control, differential game, geometric subtraction of sets.

Consider the conflict-controlled process evolving in accordance with the linear differential equation
\[\dot{z} = Az - u + v, \quad z \in \mathbb{R}^n, \quad z(0) = z_0. \]
The game is analyzed from the pursuer point of view. His goal is in a finite time to bring a trajectory of the system from the initial state to given terminal set \(M_0 \) of cylindrical form (2):
\[M_0 = M_0 + M. \]

\(M_0 \) is a linear subspace of \(\mathbb{R}^n \), \(M \) – a convex compact from the orthogonal complement to \(M_0 \) in \(\mathbb{R}^n \), i.e. \(M \in \text{coK}(L) \), \(L = M_0^\perp \). The goal of the evader is opposite.

In the course of the game the players apply controls in the form of impulse functions with values in the compacts \(U \) and \(V \), respectively. They are expressed with the help of Dirac function:
\[u(t) = \sum_{i=0}^{\infty} u_i \delta(t - \tau_i), \quad v(t) = \sum_{i=0}^{\infty} v_i \delta(t - \tau_i), \]
where vectors \(u_i, \quad v_i \) are chosen by the players at the moments of time \(\tau_i, \quad \tau_i = ih, \quad h > 0 \), \(i = 0, 1, 2, \ldots \), \(u_i \in U, \quad v_i \in V \).

According to [1], under chosen controls of the players there exists a solution to the system for arbitrary initial state \(z_0 \). It is unique and absolutely continuous on the union of intervals \((ih, (i + 1)h) \), \(i \in 0 \cup N \), where \(N \) is the set of natural numbers. In particular, at the fixed moment of time \(T \), \(T = (n + 1)h, \quad n \in 0 \cup N \), under control jumps \(u_i, \quad v_i \) at the moments \(\tau_i = ih, \quad i = 0, 1, \ldots, n \), \(u_i \in U, \quad v_i \in V \), it has the form:
\[z(T) = e^{A(n+1)h}z_0 - \sum_{i=0}^{n} e^{A(n+1-i)h}u_i + \sum_{i=0}^{n} e^{A(n+1-i)h}v_i. \]

We say that this game of pursuit can be terminated at the finite moment of time \(T \), \(T = (n + 1)h, \quad n \in N \), if the pursuer, choosing the control jumps \(u_i, \quad i = 0, 1, \ldots, n \), at the moments \(\tau_i = ih, \quad i = 0, 1, \ldots, n \), can bring a trajectory of the game to the terminal set \(M^* \) at the moment \(T \) for any admissible control of the evader.

Let \(\pi \) be the operator of orthogonal projection from \(\mathbb{R}^n \) onto \(L \), \(\pi : \mathbb{R}^n \to L \). Then, bringing a trajectory to the terminal set at the instant \(t \) is equivalent to fulfillment of the inclusion \(\pi z(t) \in M^* \).

Definition 1. Let \(X \) and \(Y \) be non-empty sets from \(\mathbb{R}^n \). Then the geometric difference is defined by the formula
\[X \Delta Y = \{ z : z \in X \Delta (X - y) \}. \]

At the heart of the analog of the first direct method [2] for the linear differential games with impulse controls lies the following condition [3]:
\[\pi e^{Ah}U \cap \pi e^{Ah}V \neq \emptyset, \quad \forall i \in 0 \cup N. \]

Here we suggest a method for solving this problem in the case when this condition does not hold. Its main idea consists in constructing current control of the pursuer on the basis of control of
the evader in the past, and appears as development of the principle of time extension for the linear
differential games [4-6].

Definition 2 Function $I(i), i \in 0 \cup N$, is called the integer-valued function of time extension if it
takes integer values and satisfies following conditions: $I(0) = 0; I(i) > i, i \in N$; $I(i_1) > I(i_2), i_1 > i_2$.

Let us introduce a set-valued mapping:

$$W(i) = \pi e^{Ah} U * \sum_{j \in I(i)} \pi e^{Ah} V, i \in 0 \cup N.$$

From Definition 2 it follows that $I(i+1) - 1 \geq I(i), i \in 0 \cup N$.

Condition There exists an integer-valued function of time extension $I(i)$, such that

$$W(i) \neq \emptyset \forall i \in 0 \cup N.$$

Theorem Let in the game under study Condition hold and suppose that a finite number i_1, $i_1 \in 0 \cup N$, exists for which following inclusion is satisfied:

$$\left(\pi e^{Ah} U * \sum_{j \in I(i)} \pi e^{Ah} V \right) \cap \left(M + \sum_{i=0}^{i_1} \pi e^{Ah} U * \sum_{j \in I(i)} \pi e^{Ah} V \right) \neq \emptyset.$$

Then, from the initial position z_0 the game can be terminated at the instant of time $(I(i_1) + 1)h$ under any admissible control of the adversary.

To this end, the first i jump vectors $u_0^0, i = 0, \ldots, i_0 - 1$, are selected at the very beginning of the game. At the moments of time $(i_0 + i)h, i = 0, 1, 2, \ldots, i_1$, for constructing current control the pursuer employs information on control jumps of his adversary in the past, beginning from the moment $(I(i_1) - I(i_1 - (i - 1)) + 1)h$ until the moment $(I(i_1) - I(i_1 - i))h$.

To illustrate the result the problem of meeting of two mathematical pendulums is analyzed in detail. In so doing, an explicit form of the time stretching function is constructed [7].

The game under consideration goes on with the author’s researches which were published in [1]. There non-antagonistic repeated game was considered. The second player’s set of choices is changed during the game. The variants of change are known. The gain functions of players depend on the player’s choices and not depend on time. In this paper the gain functions of players depend on time and player’s choices. Until the beginning of the game the players know the variants of possible changes of the set of choices of the second player. But nobody knows which variant is realized. It is clarified during the game. It is possible to interpret in the next way. During the game going some circumstances are able to arise which change the set of choices of the second player. The possible changes are predicted in some sense.

In every moment of time the players know the current set of choices of the second player. They remember which the set was in the previous moments of time.

The optimum discrete regime of the information receipt is found. It permits to conserve the equilibrium situation which exists under the continuous way of the information receipt about the partner’s choices.

Let consider the non-antagonistic repeated game with continuous time which proceeds on the interval \([0, 1]\).

The set of choices \(X_i^t, i = 1, 2\) of the players are described by measurable functions \(X_i(t)\): \([0, 1] \to X_i(t)\), \(X_i(t)\) - closed, restricted set \(\forall t \in [0, 1]\),

\[x(t) = (x_1(t), x_2(t)) \in X(t) = X_1(t) \times X_2(t).\]

In the paper such changes of \(X(t)\) are considered under which all meeting integrals are exist. The player’s function of gain are defined by the equalities

\[F_1 = \int_0^1 M_1(x(t), t) dt, \quad F_2 = \int_0^1 M_2(x(t), t) dt.\]

There the functions \(M_i, i = 1, 2\) are continuous on \(t \in [0, 1]\) and on the sets \(X(t)\) \(\forall t\).

Let designate \(X_i(\cdot, t) = \{x_i(\tau), 0 \leq \tau \leq t\}\).

In the paper the particular case of change of the player’s sets of choices is considered. Namely, at the beginning of the game the players know that \(X_1(t) = X_1^t, \forall t \in [0, 1]\) and \(X_2(0) = X_2^1\). But in the process of the game \(X_2^t(t), t \in (0, 1]\) is able to change.

Let designate \(X_2(\cdot, t) = \{X_2(\vartheta) | t \leq \vartheta \leq 1, \vartheta \in [0, 1]\}\). There is the finite number \(N\) of the sets \(X_2(0) = \{X_2(\vartheta) | 0 \leq \vartheta \leq 1\}\). Let introduce the index for the every variant \(X_2^j(\cdot, 0), j = 1, ..., N\).
Let define \(S = \left\{ X^j_2 \left(\cdot , 0 \right) \right\}_1^N \). At the beginning of the game players know \(S \). They do not know the variant \(X^j_2 \left(\cdot , 0 \right) \) which will be realized in reality. Information about the current state of the set of choice of the second player \(X^j_2 \left(t \right) \) is received by all players in continuous way. They keep in minds it. This information is able to change the player’s concepts about the future change of the second player’s set of choices. At the moment of time \(t \) the players know, that the real variant belongs to subset \(\tilde{S} \left(t \right) \) of the set \(S \). The future change of the set of choices of the second player is described by the element of the set \(S \left(t \right) = \left\{ X^j_2 \left(\theta \right) | t \leq \theta \leq 1, j \in \left\{ 1, \ldots, N \right\}, X^j_2 \left(, 0 \right) \in \tilde{S} \left(t \right) \right\} \).

The quantity of \(j \) is able to be less than \(N \).

The strategies with memory are considered \(\left(\varphi \left(x_2 \left(\cdot , t_k \right) , t \right) \right) , \varphi \left(x_1 \left(\cdot , t_k \right) , t \right) \), \(t_k \leq t < t_{k+1} \). Let define if \(t = 0 \) then \(\varphi = x_i \).

The strategies mean that in any moment \(t, t_k \leq t < t_{k+1} \), every player knows the partner’s behavior under all \(t \in \left[0, t_k \right] \).

Let designate \(\varphi_1^0 \) \(\varphi_2^0 \), where

\[
\varphi_1^0 \left(x_2 \left(\cdot , t_k \right) , t \right) = \begin{cases} x_1^0 , x_2^0 \left(\cdot , t_k^1 \right) = x_2^0 \left(\cdot , t_k^1 \right) \leq t < t_{k+1}^1 , \\ x_1^0 \left(t \right) \in \text{Arg} \min_{x_1 \left(t \right) \in X^j_1 \left(\cdot , t_k \right) \in X^j_2 \left(t \right) } \max_{x_2 \left(t \right) \in X^j_2 \left(\cdot , t_k \right) \in X^j_2 \left(t \right) } M_1 \left(x_1 \left(t \right) , x_2 \left(t \right) , t \right) , x_2 \left(\cdot , t_k \right) \neq x_2^0 \end{cases}
\]

\[
\varphi_2^0 \left(x_1 \left(\cdot , t_k \right) , t \right) = \begin{cases} x_2^0 , x_1 \left(\cdot , t_k \right) = x_1 \left(\cdot , t_k \right) \leq t < t_{k+1}^2 , \\ x_2^0 \left(t \right) \in \text{Arg} \min_{x_2 \left(t \right) \in X^j_2 \left(\cdot , t_k \right) \in X^j_2 \left(t \right) } \max_{x_1 \left(t \right) \in X^j_1 \left(\cdot , t_k \right) \in X^j_1 } M_1 \left(x_1 \left(t \right) , x_2 \left(t \right) , t \right) , x_1 \left(\cdot , t_k \right) \neq x_1^0 \end{cases}
\]

Here \(t_0 = 0 \) for all players. The moments \(t_k^i, k = 1, 2, \ldots, i = 1, 2 \), are found in this way.

The moments \(t_k^i \) of the reception of information by the first player are found in the following way.

\(t_0^c \) is found due to formula \(t_0^c \) = \(\min_{x_2 \left(, 0 \right) \in S \left(0 \right) } \tau^c_0 \left(, 0 \right) \), where \(\tau^c_0 \) is found according to the equality

\[
\tau^c_0 = \max_{0 \leq \theta \leq \tau^c_0 } \int_{X^j_2 \left(\cdot , 0 \right)} M_2 \left(x_1^0 , x_2 \left(, 0 \right) , \theta \right) \theta d \theta + \int_{0}^{ \tau^c } L_2 \left(\theta \right) \theta d \theta = \frac{1}{0} M_2 \left(x_1^0 , \theta \right) \theta d \theta
\]

One of the variants \(X^j_2 \left(, 0 \right) \in S \left(0 \right) \) of the possible change of the second player’s set of choices from \(t = 0 \) till the end of the game is selected.
\[M_2^*(\mathcal{G}) = \max_{x_2(\mathcal{G}) \in X_2(\mathcal{G})} M_2(x_1^0, x_2(\mathcal{G}), \mathcal{G}) \quad \text{and} \quad \min_{x_1(\mathcal{G}) \in X_1(\mathcal{G})} \max_{x_2(\mathcal{G}) \in X_2(\mathcal{G})} M_2(x_1(\mathcal{G}), x_2(\mathcal{G}), \mathcal{G}) = L_2(\mathcal{G}) \]

are calculated for the variant \(X_2(\cdot, 0) \in S(0) \). \(\tau^1_c \) is found which fulfills the equality (1).

Further the next variant \(X_2(\cdot, 0) \) of change of the second player set of choices is taken from \(S(0) \). For this variant \(\tau^1_c \) is found by the same way. It is possible to receive \(\tau^1_c \) for every variant from \(S(0) \) and find the least \(\tau^1_c \), \(t^{1}_c(0) \) is equal to the least \(\tau^1_c \).

The receiving information about the second player set of choices \(X_2(t), t \in [0, t^1_c] \) is able to clarify that the real variant of changes belongs to the subset \(\widetilde{S}(t) \) of the set \(S = S(0), \widetilde{S}(t) \subset S(0) \).

Let find \(\bar{t}^1_c(0) = \min_{X_2(\cdot, 0) = \tilde{S}(t)} \tau^1_c \). It is able to be larger than \(t^1_c(0) \). If \(\bar{t} \) exists such that \(\bar{t} \in [0, \bar{t}^1_c(0)] \) and \(\bar{S}(t) \subset \tilde{S}(t) \), then find \(\bar{t}^1_c(0) = \min_{X_2(\cdot, 0) = S(t)} \tau^1_c, \bar{t}^1_c \geq t^1_c(0) \). Then repeat the process for \(t \in [0, \bar{t}^1_c(0)] \) and so on. The process has end because there are the finite number of variants. Finally \(\bar{t}^1_c(0) \) is found which impossible to change by the current information about set of choices \(X_2(t) \). This moment is considered as \(t^1_c \), that is \(t^1_c = t^*_c(0) \).

Let repeat procedure in order to find \(t^1_c \). Namely let find \(t^1_c(t^1_c) \) according to the formula

\[t^1_c(t^1_c) = \min_{X_2(\cdot, t^1_c) \in \tilde{S}(t^1_c)} \tau^1_c(t^1_c) \]

The moment \(\tau^1_c(t^1_c) \) is found according to the equality

\[\int_{t^1_c(t^1_c)} \max_{x_2(\mathcal{G}) \in X_2(\mathcal{G})} M_2(x_1^0, x_2(\mathcal{G}), \mathcal{G}) \, d\mathcal{G} + \frac{1}{t^1_c(t^1_c)} \int_{t^1_c(t^1_c)} M_2(x_1^0, \mathcal{G}) \, d\mathcal{G} = \frac{1}{t^1_c(t^1_c)} \int_{t^1_c(t^1_c)} M_2(x_1^0, \mathcal{G}) \, d\mathcal{G}. \]

If information about the current set \(X_2(t), t \in [t^1, t^1_c(t^1_c)] \), requires to re-count values then let count them again. Finally we find the meaning \(\bar{t}^1_c(t^1_c) \) which does not change by the current information about \(X_2(t) \). That is \(t^1_c = t^*_c(t^1_c) \). And so on.

Under the game going we receive the sequence \(\{t^1_k\}_{k=0}^{\infty} \).

The moments of the information receipt by the second player are found in analogous way.

The finding moments of the reception information about the partner’s behavior ensure the equilibrium \(\phi_1^0, \phi_2^0 \). The moments \(\{t^1_i\}_{k=0}^{\infty}, i = 1, 2 \), are arranged in optimum way.

CONTINUOUS MODE MONITORING OF CYBER-PHYSICAL SYSTEMS

Skobelev V.G.

Key words: hybrid automata, continuous mode, online, monitoring.
AMS Subject Classification: 68M15 93C30 93C83

At present, Cyber-Physical Systems (CPS) are widely used for different human and industry domains. In the overwhelming majority of cases, these domains are critical ones. Therefore, in the vast majority of cases, CPS are safety-critical systems. For this reason, mode monitoring, faults diagnoses, and fault components isolation are actual problems for CPS. The state of the art in resolving these problems is presented in [1-3].

Any CPS (see [4], for example) consists of some computer networks and/or built-in controllers that are used for control of considered physical processes via the feedbacks, i.e. the considered physical processes conduct the computations, while the computations, in its turn, conduct the choice and the mode of these physical processes.

It is well-known that hybrid automata (HA) are usually used for the formal specification and the analysis of CPS. Therefore, some composition of HA can be treated as the basic mathematical model for CPS. For this reason, HA can be successfully used for the model-based approach in resolving the problems of mode monitoring, faults diagnoses, and fault components isolation for CPS.

However, in general case, for these and the other problems arise some difficulties connected with computations and algorithmic solvability (see [5,6], for example). Because of this factor, at resolving problems for HA, the researchers usually limit themselves to sufficiently narrow classes of HA. Due to this approach, we investigate the problem of continuous mode monitoring under the supposition that investigated model is an element of the class \mathcal{H}_0 of 1-dimensional HA that has been defined and investigated in [7]. This class of HA can be defined proceeding from the model $\mathcal{H} = (Q, X, I, D, f, E, G, R)$ that has been offered in [8], as follows. For each discrete state $q \in Q$ the following six conditions hold:

1. The set of admissible values for the continuous state is some finite interval $X_q \subseteq X$.
2. The set of initial values of the continuous state consists of pair-wise disjoint closed intervals $[\alpha_{q,h}, A_{q,h}]$ ($h = 1, \ldots, r_q$), where $\alpha_{q,h} \leq A_{q,h}$.
3. The guard condition associated with the set of initial values $[\alpha_{q,h}, A_{q,h}]$ ($h = 1, \ldots, r_q$) of the continuous state is the closed interval $[\beta_{q,h}, B_{q,h}]$, where $\beta_{q,h} \leq B_{q,h}$, and the sets $[\beta_{q,h}, B_{q,h}]$ ($h = 1, \ldots, r_q$) are pair-wise disjoint.
4. For each set $[\alpha_{q,h}, A_{q,h}]$ ($h = 1, \ldots, r_q$) of initial values the dynamics is presented via differential equation $\dot{x} = f_q(x)$, where $Dom(f_q) \supseteq X_q$.
5. For each set $[\alpha_{q,h}, A_{q,h}]$ ($h = 1, \ldots, r_q$) of initial values the duration of the dynamics is some number $t_{q,h} \in [\theta_{q,h}, \Theta_{q,h}]$ (where either $\theta_{q,h} = \Theta_{q,h} = 0$, or $0 < \theta_{q,h} < \Theta_{q,h}$), such that $x(t_{q,h}) \in [\beta_{q,h}, B_{q,h}]$.
6. For each guard condition $[\beta_{q,h}, B_{q,h}]$ ($h = 1, \ldots, r_q$) there exists the single arc $(q, q') \in E$ and the single set of initial values of the continuous state $[\alpha_{q',m}, A_{q',m}]$ ($m = 1, \ldots, r_{q'}$), such that the inclusion $R((q,q'))(\beta_{q,h}, B_{q,h}) \subseteq [\alpha_{q',m}, A_{q',m}]$ holds, where $R((q,q'))(\cdot) = R((q, q'), \cdot)$.

It should be noted that these HA are non-trivial generalization of the 1-dimensional HA that can be defined within the model offered in [8].
Some algorithm that transforms each HA $\mathcal{H} \in \mathcal{H}_0$ into the equivalent model with consistent sets of the initial values of the continuous state and the associated guard conditions has been proposed in [7].

More precisely, this algorithm constructs the sets $S_{q,h}^{\text{in}} \subseteq [\alpha_{q,h}, A_{q,h}]$ ($q \in Q$, $h = 1, \ldots, r_q$) and $S_{q,h}^{\text{fin}} \subseteq [\beta_{q,h}, B_{q,h}]$ that satisfy to the following two conditions:

$$\theta_{q,h} = \Theta_{q,h} = 0 \Rightarrow S_{q,h}^{\text{in}} = S_{q,h}^{\text{fin}},$$

and

$$0 < \theta_{q,h} < \Theta_{q,h} \Rightarrow (\forall x(t))(x(0) \in S_{q,h}^{\text{in}} \Rightarrow$$

$$\Rightarrow (\exists t_0 \in [\theta_{q,h}, \Theta_{q,h}]) (x(t_0) \in S_{q,h}^{\text{fin}}) \& (\forall t \in [0, \Theta_{q,h}]) (x(t) \in X_q) \&$$

$$\& (\forall b \in S_{q,h}^{\text{fin}})(\exists x(t))(x(0) \in S_{q,h}^{\text{in}} \& (\exists t_0 \in [\theta_{q,h}, \Theta_{q,h}]) (x(t_0) = b)).$$

In what follows it is supposed that the equalities $S_{q,h}^{\text{in}} = [\alpha_{q,h}, A_{q,h}]$ and $S_{q,h}^{\text{fin}} = [\beta_{q,h}, B_{q,h}]$ hold for all $q \in Q$ and $h = 1, \ldots, r_q$.

For the system of continuous mode monitoring for HA different architectures can be offered. Obviously, the main criteria of the efficiency for this system are the scalability and the minimization of time for decision-making. Therefore, the best solution is the completely distributed system of continuous mode monitoring for HA.

The architecture of the completely distributed system intended for continuous mode monitoring of HA can be characterized as follows.

For each discrete state of HA with each dynamical process, its own controller intended for monitoring of this dynamical process is associated (it should be emphasized that we consider the controller as some discrete electronic device constructed on the base of the microprocessor and RAM). Besides, the controllers which are carrying out monitoring of different dynamical processes are different, and do not interact with each other in any way.

Therefore, the total number of the controllers intended for continuous mode monitoring of any HA $\mathcal{H} \in \mathcal{H}_0$ is not greater than the integer $\sum q \in Q \cdot r_q$. It should be emphasized that each case when $\theta_{q,h} = \Theta_{q,h} = 0$ presents some instant switching, but not a continuous dynamical process.

Let’s characterize the controller $C_{q,h}$ ($q \in Q, h \in \{1, \ldots, r_q\}$), which for the fixed state q of HA $\mathcal{H} \in \mathcal{H}_0$ carries out continuous mode monitoring for the dynamics presented by the differential equation

$$\dot{x} = f_{q,h}(x),$$

where $f_{q,h}$ is, at least, some Lipschitz continuous function on the closed interval $[0, \Theta_{q,h}]$. This assumption holds for sufficiently wide class of CPS.

Using the Euler method, we can transform equation (1) into finite-difference equation

$$x_{i+1} = x_i + f_{q,h}(x_i) \cdot \Delta t \quad (i = 0, 1, \ldots, L_{q,h} - 1),$$

where $L_{q,h}$ is some suitably selected sufficiently large positive integer, and $\Delta t = L_{q,h}^{-1} \cdot \theta_{q,h}$. It is also supposed that there exists positive integer $l_{q,h}$ ($l_{q,h} < L_{q,h}$), such that the identity $\theta_{q,h} = l_{q,h} \cdot \Delta t$ holds. This assumption does not restrict the generality of reasoning, but simplifies the presentation.

Therefore, with each solution $x(t)$ of the differential equation (1) the sequence

$$x_0, x_1, \ldots, x_{L_{q,h}},$$

(3)
calculated in accordance with the formula (2), where $x_0 = x(0)$, can be associated.

The controller $\mathcal{C}_{q,h}$ ($q \in Q; h \in \{1, \ldots, r_q\}$) consists of the following two blocks, namely B_1 and B_2.

The block B_1 consists of two input channels, namely $i_{1,1}$ and $i_{1,2}$, and one output channel, namely o_1. The input channel $i_{1,1}$ obtains from some sensor the information that the initial value for the analyzed physical process is x_0, while the input channel $i_{1,2}$ obtains from another sensor the information that the analyzed physical process has started.

As soon as the block B_1 gets the information from both its input channels, it carries out calculation of the sequence (3), symbol by symbol. It is supposed that each calculated symbol x_i ($i = 1, \ldots, L_{q,h}$) at once appears on the output channel o_1.

The block B_2 also consists of two input channels, namely $i_{2,1}$ and $i_{2,2}$, and one output channel, namely o_2. The input channel $i_{2,1}$ of the block B_2 is connected with the output channel o_1 of the block B_1, while the input channel $i_{2,2}$ of the block B_2 obtains from some sensor, symbol by symbol, the information that the analyzed physical process generates the sequence

$$y_1, \ldots, y_{L_{q,h}}$$

of its output values.

As soon as the block B_2 gets the symbols x_i and y_i from both its input channels, it carries out the following calculations. Firstly, it checks, whether the condition $y_i \in X_q$ holds. If this condition is violated, then on the output channel o_2 of the block B_2 the signal of immediate blocking of the analyzed physical process is generated. Otherwise, the condition $|x_i - y_i| \leq \varepsilon$ is checked, where ε is some properly chosen positive number. If this condition is violated, then on the output channel o_2 of the block B_2 the signal of immediate blocking of the analyzed physical process is generated. It is evident that time spent by the block B_2 for these calculations is so insignificant, that it can be neglected. Therefore, without loss of generality, it can be supposed that these calculations of the block B_2 are carried out instantly.

Let T_1 be the time necessary for the block B_1 to calculate any value x_i, and T_2 be the time necessary for receiving the symbol y_i by block B_2. The following theorem is true.

Theorem. The controller $\mathcal{C}_{q,h}$ ($q \in Q; h \in \{1, \ldots, r_q\}$) carries out correct monitoring of the analyzed physical process if and only if the equality $T_1 = T_2$ is true.

Yatsenko Vitaliy A., Professor,
Space Research Institute of NASU-NASU, Kyiv, Ukraine,
e-mail: vyatsenko@gmail.com

DYNAMICAL MODELS FOR SPACE WEATHER PREDICTION: A COMPARATIVE STUDY

Yatsenko V. A.

Ключові слова: space weather, time series prediction, data driven modelling, robust models.
AMS Subject Classification: 9301, 93Dxx

This report focuses on comparative analysis of dynamical models for space weather prediction [1]. SRI researchers utilize a variety of models to better understand the current state of the space weather environment, as well as to predict future events. Many of these models have been developed by Space Research Institute (Ukraine), while other models have been developed by participants in the EU project "Progress" and are shared by the space weather community. Our research concerns improvement and new development of models based on data driven modelling, such as BILINEAR and NARMAX (M. Balikchin, S. Walker). Existing models for Dst and Kp will be analysed and verified with the aim of finding weaknesses and to suggest improvements. Solar wind and geomagnetic indices shall also be analysed in order to develop models for the identification of features, such as (but not limited to) shocks, sudden commencements, and substorms. Such categorisation will aid the model development and verification, and can also serve as alternative approach to models providing numerical input-output mapping. In addition to the development of Dst and Kp models new models will be developed to forecast AE. This report starts with the physical basis and a brief description of the system identification approach. Following that, several examples illustrate practical issues in temporal and spatiotemporal prediction, NARMAX and bilinear modeling. This report concerns improvement and new development of models based on data driven modelling, such as BILINEAR and NARMAX The following methods and models have been proposed: (a) dynamical-information approach to NARMAX system identification; (b) combination of NARMAX model and Lyapunov dimension; (c) guaranteed prediction; (d) robust models; (e) risk assessment in safety analysis. The Guaranteed NARMAX Model (GNM) also provides predictions. Its main advantage is that it delivers an increased prediction reliability in comparison to earlier SRI models. Reconstruction of the dynamical model is based upon the application of multi-objective learning algorithms to identification of model’s structure and parameters. A novel method of the probabilistic risk assessment of the influence of the free space environment on space systems is considered. As an example the superlight-weight thermal protection system (TPS) is considered. An approach based on combination of nonlinear dynamical models and Lyapunov dimension are used to analyze measurements of the geomagnetic indexes and solar wind parameters.

References

1. V. Yatsenko. Space weather prediction using robust dynamical models: identification, optimization, and risk analysis / V. Yatsenko // 13th European Space Weather Week., November 14-17 2016, Oostende, Belgium,
Андрущенко Ярослава Валентинівна, студентка 3 курсу спеціальності «Кібербезпека»
Інститут інформаційних технологій в економіці, Київський Національний Економічний Університет імені Вадима Гетьмана, Київ, Україна,
e-mail: yaroslava.an99@gmail.com

РОЗРОБКА ТА ЗАСТОСУВАННЯ МЕТОДІВ ПРИЙНЯТТЯ РІШЕНЬ, ОПТИМІЗАЦІЇ ТА КЕРУВАННЯ В СИСТЕМНИХ МЕДИЧНИХ ДОСЛІДЖЕННЯХ

Андрущенко Я.В.

Ключові слова: математична модель, хвороби серця, методи прийняття рішень, медична система, електрична активність серця, інформаційна система.

AMS Subject Classification: 92Bxx Mathematical biology in general.

Аналіз математичних моделей з питань медичної наукової діяльності показує на необхідність розробки математичного апарату методів прийняття системних рішень, оптимізації та керування. Вирішення проблем медичної інноваційної діяльності пов’язане з розробкою математичних моделей розвитку і поширення захворювань, опису їх перебігу.

Запропонована у роботі інформаційна система спрямована на використання математичних методів прийняття рішень, оптимізації та керування для підтримки системних медичних досліджень – з метою розробки інноваційних діагностично-лікувальних методик. Така система в подальшому могла би бути інтегрована з клінічними інформаційними системами.

Медична система підтримки прийняття рішень повинна відповідати на запитання:
- Що лікувати? (діагностика);
- Як лікувати? (лікування);
- Як запобігти? (профілактика);
- Скільки це буде коштувати? (медичне страхування).

Встановлено вимоги щодо СППР, а саме:
- Повинні пояснювати діагностичні та лікувальні рішення лікарям-споживачам;
- Відображати свої власні медичні знання;
- Відображати загальний зміст (сенс) знань.

Математична задача індукції дерева рішень реалізується на основі рекурсивної процедури роботи Quinlan, 2001. Маємо множину \(D \), що містить \(N \) наборів навчальних даних. При цьому кожен і-й набір складається з вхідних даних – атрибутів \(A_1,\ldots,A_r \) та вихідних даних – атрибуту класу \(C \). Припускаємо, що атрибути \(A_1,\ldots,A_r \) приймають лише категоріальні значення, а атрибут \(C \) – одне з \(K \) дискретних значень.

Мета – прогнозування класифікаційним правилом значення атрибуту \(C \) на основі значень \(A_1,\ldots,A_r \).

Переваги класифікаційних правил:
- Відповідають природному відображенню знань в мисленні людини;
- Більш виражальні, налагоджені та легші для реалізації алгоритми порівняно з деревами рішень;
- Простіші порівняно зі скінченими автоматами.

Алгоритми прийняття рішень грунтуються на поняттях бінарної класифікації та принципі, що відносні шкоди від помилкових позитивів та негативів можуть бути виражені в термінах порогової імовірності.

Вхідними даними є інформація про пацієнтів: їх кількість \(n \), вектор діагнозів \(d=(d_1,d_2,\ldots,d_n)^T \), матриця результатів обстежень \(I=(I_1,I_2,\ldots,I_n)\in R^{mxn} \).

Тут \(d_i \) набуває значення 1, якщо захворювання є, та 0, якщо немає, а \(I \) – діагностичні дані для кожного пацієнта, що можуть бути перетворені у ймовірнісне значення, наприклад
на основі логістичної регресії. Зауважимо, що метод може бути застосований не лише до чисельних вхідних даних про пацієнта, але й мультимедійних, наприклад ЕКГ, УЗД, КТ, МРТ та ін., які попередньо мають бути виражені у ймовірнісних значеннях.

У даній роботі розглядається чисельне моделювання електрокардіограми (ЕКГ). Наша мета полягає в тому, щоб розробити математичну модель, засновану на використанні алгоритму диференціальних рівнянь, здатну забезпечити наочні результати ЕКГ з наступним визначенням діагнозу. Дослідження електричної активності серця проводилися на основі моделей Ходжкіна - Хакслі, Вінера - Розенблута, Фітц Х’ю - Нагумо, Зімана та Алієва – Панфілова. Вонох досить точно відтворюють більшість основних властивостей серцевої тканини, включаючи відповіді на сублімовані і реполяризації, динамічні зміни іонної концентрації т. д.

Узагальнена модель дозволяє аналізувати різні процеси серцевої активності та удосконалює результати роботи серцевих захворювань. Це дозволяє робити більш точної дослідження та прогнозизувати, скажімо, у сфері кардіодіагностики. На основі реалістичного тривимірного зображення моделі серця, побудованого за даними аналізу електрокардіографії і флюорографії, аналізують різні процеси серцевої активності. Це допомагає удосконалювати роботу серцевих захворювань. Опис предметної області системних медичних досліджень здійснюється з використанням мови UML та інструментального засобу Visual Paradigm інтегрованого в CE Netdeans IDE. Програмне середовище призначене для вводу, збереження та обробки інформації про системні медичні дослідження захворювань серцево-судинної системи має такі основні функції: Збір і обробка первинної статистичної медичної інформації; Розробка компартментних математичних моделей керування (моделі фармакодинаміки), моделей фармакокінетики та епідеміологічних моделей.

Важливим завданням є прогнозування розвитку захворювань та розробки оптимальних систем лікування хвороб сердечно-судинної системи. Результати системного аналізу процесу підтримки прийняття рішень в системних медичних дослідженнях, аналіз структури системи та проектні дослідження, виконані з застосуванням сучасних UML-засобів, дозволяють здійснити проектування та реалізацію програмного комплексу СППР. Здійснено візуалізацію електричної активності серця протягом кардіоциклу на базі існуючої моделі поширення збудження в серцевому м’язі, проведено аналіз параметрів цих моделей. Отримані результати моделювання та візуалізації електричної активності серця дозволять підвищити ефективність діагностики серцево-судинної системи пацієнта. Можливо впровадження в роботу кардіо-центрів при подальших дослідженнях і побудові on-line тестів. Для цього використовуються комп’ютерні технології та інтерактивні діагностичні системи.

Важливим завданням є прогнозування розвитку захворювань та розробки оптимальних систем лікування хвороб сердечно-судинної системи. Результати системного аналізу процесу підтримки прийняття рішень в системних медичних дослідженнях, аналіз структури системи та проектні дослідження, виконані з застосуванням сучасних UML-засобів, дозволяють здійснити проектування та реалізацію програмного комплексу СППР. Здійснено візуалізацію електричної активності серця протягом кардіоциклу на базі існуючої моделі поширення збудження в серцевому м’язі, проведено аналіз параметрів цих моделей. Отримані результати моделювання та візуалізації електричної активності серця дозволять підвищити ефективність діагностики серцево-судинної системи пацієнта. Можливо впровадження в роботу кардіо-центрів при подальших дослідженнях і побудові on-line тестів. Для цього використовуються комп’ютерні технології та інтерактивні діагностичні системи.

Важливим завданням є прогнозування розвитку захворювань та розробки оптимальних систем лікування хвороб сердечно-судинної системи. Результати системного аналізу процесу підтримки прийняття рішень в системних медичних дослідженнях, аналіз структури системи та проектні дослідження, виконані з застосуванням сучасних UML-засобів, дозволяють здійснити проектування та реалізацію програмного комплексу СППР. Здійснено візуалізацію електричної активності серця протягом кардіоциклу на базі існуючої моделі поширення збудження в серцевому м’язі, проведено аналіз параметрів цих моделей. Отримані результати моделювання та візуалізації електричної активності серця дозволять підвищити ефективність діагностики серцево-судинної системи пацієнта. Можливо впровадження в роботу кардіо-центрів при подальших дослідженнях і побудові on-line тестів. Для цього використовуються комп’ютерні технології та інтерактивні діагностичні системи.

1. Андрющак І.Є. Моделі та методи оптимізації в програмному середовищі підтримки фармакокінетичних системних досліджень. / І.Є. Андрющак. – Львів: ЛНТУ, 2014.
2. Наконечний О.Г. Інформаційні технології прийняття рішень, оптимізації та керування в системних медичних дослідженнях. / О.Г Наконечний, В.П. Марценюк, І.Є. Андрющак. – Львів: ЛНТУ, 2014.
3. Наконечний О.Г. Алгоритм побудови індукції дерева рішень та побудови класифікаційних правил. Розроблено та програмно реалізовано мультиваріативні методи якісного аналізу динамічних систем на основі функціонально-диференціальних рівнянь з побудовою структур знань – дерев рішень та класифікаційних правил.
4. Джонс Д.С. Диференціальні рівняння та математична біологія, II – Видання / Д. С. Джонс, М. Дж. Планк, Б. Д. Сліман.
МОДЕЛЮвання ВПЛИВУ ПРОЦЕСІВ ВІДТВОРЕННЯ РОБОЧОЇ СИЛИ НА ЕКОНОМІЧНУ БЕЗПЕКУ ДЕРЖАВИ

Бабинюк О. І.

Ключові слова: економічна безпека, робоча сила, стабільність, оптимальне керування.
AMS Subject Classification: 49J15

Основним багатством будь - якої держави є людський капітал. Оскільки на даному етапі розвитку економіки частина додаткового продукту створюється в третинному її секторі, а сучасний устрій виробництва можна назвати інформаційним, людина, як потенційний носій інформації, формує інтелектуальний потенціал країни забезпечуючи конкурентні переваги держави на міжнародному ринку.

Одним з основних важелів впливу на економіку є ринок робочої сили, його вдосконалення призведе до покращення економічного стану країни в цілому. Збереження економічної самостійності та досягнутого рівня, підвищення конкурентоспроможності й розширення можливостей подальшого розвитку становить основне функціональне значення економічної безпеки. Економічна безпека держави є важливим складником національної безпеки, яка, в свою чергу, формує захист національних інтересів та є безпосередньою умовою дотримання й реалізації національних інтересів щодо забезпечення фінансування, формування доходів. Для забезпечення стабільного функціонування національного ринку, підвищення рівня економічного розвитку потрібно шукати нові підходи до розв’язування проблем стабільності процесів відтворення робочої сили та виявляти тенденції, які поступово перейдуть у закономірності.

Аналізуючи сучасний стан економіки України в цілому та ринок робочої сили зокрема, можна стверджувати, що фінансово-економічна криза проявлілася в усіх сферах соціально-трудових відносин в Україні. Фізичне скорочення і якісне погіршення робочої сили є суттєвою загрозою економічній безпеці держави, що в найближчому майбутньому може призвести до того, що Україна стане неконкурентоспроможною на світовому ринку, тому забезпечення стабільності та оптимального керування процесами відтворення робочої сили для нашої країни є одним із пріоритетних напрямків державної політики економічної безпеки України.

Аналіз наукових публікацій засвідчує, що для України питання забезпечення стабільності процесів відтворення робочої сили є дуже важливим. Під стабільністю в економічній науці розуміють функціонування системи в стані рівноваги зі збереженням незмінності її структури. Властивість системи повернутися до рівноважного стану після припинення дії зовнішніх факторів, що спричинили збурення системи та відхилення від стану рівноваги, характеризує стійкість системи. Під стабільним відтворенням робочої сили розуміють узгодженість взаємодії всіх фаз відтворення робочої сили, що забезпечується як за допомогою ринкового саморегулювання, так і внаслідок регулюючого впливу державних органів на всіх рівнях. Таке відтворення досягається внаслідок простого відтворення в кількісному та якісному аспектах. Проте, на сучасному етапі розвитку суспільства простого відтворення недостатньо, тому поняття стабільного відтворення робочої сили повинно включати не тільки збереження робочої сили, а й її розвиток, тобто розширене відтворення, яке може виражатися як в якісному вдосконаленні, так і в кількісному збільшенні робочої сили.
Для комплексного оцінювання стабільності процесів відтворення робочої сили необхідним є перехід від статичних і детермінованих моделей до динамічних ймовірнісних методів дослідження, які дають змогу, описуючи динамічну систему, враховувати випадковий характер параметрів, що характеризують цю систему, а також випадкові коливання, які відбуваються в системі з часом і зумовлюють випадкові флуктуації параметрів системи.

При розробці ефективних рекомендацій з прийняття управлінських рішень та проведення комплексного поглибленого аналізу факторів впливу на стабільність процесів відтворення робочої сили перспективним є застосування імітаційного моделювання із використанням апарату диференціально-різницевих рівнянь із випадковими (марковськими) коефіцієнтами, що дає змогу розв’язувати поставлені задачі з урахуванням невизначеності параметрів, які описують стан системи.

Стабільність процесів відтворення робочої сили істотно залежить від демографічної ситуації в країні (народжуваності, смертності, тривалості життя тощо), зокрема, від чисельності економічно активного населення, яке є потенціальним носієм економічної, оборонної й інтелектуальної могутності держави. Оцінювання чисельності економічно активного населення проведено на підґрунті моделі Ферхюльста, яка дозволяє описати динаміку чисельності економічно активного населення, що притаманна сучасному етапу розвитку ринку робочої сили України:

\[\frac{dP(t)}{dt} = rP(t)(1 - \frac{P(t)}{K}), \]

де \(P(t) \) - чисельність економічно активного населення України; \(r \) - питома швидкість росту економічно активного населення; \(K \) - визначає гранічну чисельність економічно активного населення, тобто таку за якої відбувається просте відновлення чисельності.

Другим сегментом стабільності процесів відтворення робочої сили є ринок робочої сили, потенціальну складову якого створює економічно активне населення. Ринок робочої сили регулюється попитом і пропозицією. Тому для аналізу стабільності процесів відтворення робочої сили в умовах невизначеності побудовано модель функціонування механізму ринку робочої сили України, що описується лінійним різницевим рівнянням першого порядку:

\[x_{n+1} = a(\xi_n)x_n, \]

де \(x_n \) - чисельність економічно активного населення; коефіцієнт \(a(\xi_n) \) залежить від випадкового марковського скінченозначного ланцюга \(\xi_n \) (\(n = 0,1,2,... \)). Не порушуючи загальності, розглянемо ситуацію, коли система, яка описує функціонування механізму ринку робочої сили, може знаходитися в двох станах: \(\theta_1 \) - стан зайнятості (попит на робочу силу переважає пропозицію), \(\theta_2 \) - стан безробіття (пропозиція робочої сили переважає попит). При цьому марковський ланцюг \(\xi_n \) характеризується двома станами \(\theta_1 \) і \(\theta_2 \) з ймовірностями \(p_1(n), p_2(n) \), що задовольняють систему

\[p_1(n + 1) = (1 - \gamma)p_1(n) + \nu p_2(n), \]
\[p_2(n + 1) = \lambda p_1(n) + (1 - \nu)p_2(n). \]

В якості математичного інструментарію запропоновано метод моментних рівнянь. З урахуванням (2) для рівняння (1) моментні рівняння першого порядку мають вигляд:

\[m_1(n + 1) = (1 - \lambda)a_1m_1(n) + \nu a_2m_2(n), \]
\[m_2(n + 1) = \lambda a_1m_1(n) + (1 - \nu)a_2m_2(n), \]

де \(\lambda \) - ймовірність працюючого бути звільненим у кожному зі станів; \(\nu \) - ймовірність безробітного знайти роботу в кожному зі станів; \(m_1 \) - очікувана кількість осіб, які мають роботу, \(m_2 \) - очікувана кількість потенційних працівників, які є безробітними, \(a_1 = a(\theta_1) \).
\(a_2 = a(\theta_2) \) - випадкові величини, що пов’язані із ймовірнісними характеристиками системи в станах \(\theta_1 \) та \(\theta_2 \).

Дослідження стійкості ймовірнісних моделей ґрунтується на визначенні стійкості «у середньому» та «у середньому квадратичному» [2].

Для удосконалення методики оцінювання стійкості параметрів побудованої моделі пропонується використання комплексного показника праці (КПП), який є розширеним критерієм, що враховує не тільки фактори безпосереднього впливу на стабільність процесів відтворення робочої сили, а й макроекономічні, виробничі та бізнесові чинники [3,4]. Використання КПП дає змогу удосконалити засоби аналізу поточного стану ринку робочої сили, і, як наслідок - приймати своєчасні рішення про розвиток бізнесу.

З метою побудови КПП здійснено поділ усіх факторів впливу на стабільність процесів відтворення робочої сили на п’ять груп. Перша група включає комплекс чинників, які здійснюють прямий вплив на стабільність процесів відтворення робочої сили: відношення чисельності безробітних до чисельності економічно активного населення, зареєстроване безробіття, кількість вакансій, кількість резюме, динаміка відгуку на одну вакансію, індекс заробітної плати. Вказані показники узагальнює індекс ринку праці (ИРП). Другу групу чинників узагальнює індекс макроекономічного середовища (ІМЕС), який дає змогу визначити системні економічні фактори, що впливають на процеси відтворення робочої сили. ІМЕС відображає об’єктивну оцінку макроекономічної ситуації в Україні, яка має інституціональний вплив, і охоплює такі показники: номінальний ВВП, індекс номінального ефективного курсу гривні до іноземних валют, інвестиції в основний капітал, грошові витрати в середньому за результатами обстеження домогосподарств. Третя група чинників, яку узагальнено у індексі бізнес-середовища (ІБС), відображає налаштування ділового середовища (керівників бізнесу в Україні). ІБС є суб’єктивним показником оцінки макроекономічної ситуації в країні, що сприяє або протидіє веденню бізнесу, і складається із індексу ділового середовища та індексу ділової впевненості. Четвертим узагальнюючим показником є виробничий індекс (ВІ), який відображає об’єктивну оцінку як виробництва, так і реалізації товарів та послуг в Україні, і складається із індексу випуску товарів та послуг за основними видами економічної діяльності та індексу обороту продукції за видами економічної діяльності. П’ятирічний показник індекс тіньової економіки (ІТЕ), який враховує, що в умовах корумпованості всіх систем державної влади в значних масштабах може існувати і розвиватися тіньова економіка, яка в свою чергу породжує корупцію, оскільки тінізація ринку праці та зайнятості населення є чинником, який впливає на рівень безробіття та економічного зростання [5].

2. Валєєв К. В. Теорія ймовірностей та теорія випадкових процесів / К. В. Валєєв, І. А. Джалладова. – К.: КНЕУ, 2009. – 378 с

МОДЕЛЮВАННЯ СИСТЕМІ РІВНІВ ІНФОРМАЦІЙНОЇ КУЛЬТУРИ В КІБЕРПРОСТОРІ

Батечко Н.Г.

Ключові слова: Інформаційна безпека, багаторівневий системний підхід, інформаційна культура, кіберпростір

Розвиток сучасного інформаційного суспільства передбачає перетворення інформації в один із головних виробничих ресурсів. Зберігання, розвиток та раціональне використання цього стратегічного ресурсу має важливе значення і для національної безпеки держави в цілому. Науковці все більше констатують зростаючу роль інформаційної сфери, яка являє собою сукупність інформації, інформаційної інфраструктури, суб’єктів, які здійснюють збір, формують, розповсюджують та використовують інформацію, а також системи, які регулюють суспільні відношення, зокрема інформаційну культуру, як суспільства, так і окремої особистості.

Проте з іншого боку, варто зазначити, що «турбулентні інформаційні потоки хаотизують економіку, політику, техно - антропосферу нашого світу, не залишаючи місце довгостроковим прогнозам». [1] Так, зокрема, мережеві інформаційні технології і простори нейросвіту різко змінюють здібності особисті свідоцтва, транс персонального інтернет-серфінгу та геймберства та і.д. Таким людям дуже легко маніпулювати, це ідеал громадянин для макавелівського типу елі, саме його і про всякий час виховують. Освічені чи думаючий громадянин незручний і навіть небезпечний. Подібна стратегія управління населенням досить часто призводить до різних соціальних потрясінь, тероризму і т.д.

Особливого значення в зазначених умовах набуває вивчення феномену інформаційної культури на різних її рівнях, яка в умовах інформаційних технологій, що постійно удосконалюються, зазнає суттєвих трансформацій.

Варто вказати, на численні розвідки науковців з досліджуваної проблеми, як у галузі інформатики, кібернетики, так і педагогіки, психології та ін.. Важливо підкреслити, що інформаційні загрози постійно еволюціонують, тоді як наукові дослідження феномену «інформаційна культура» зазвичай залишаються у статичній площині, що, на наш погляд, заважає цілісному баченню процесу формування інформаційної культури. Тому, наразі необхідний системний підхід до аналізу поняття «інформаційна культура», що зумовить вивчення, як технологічних і психологічних аспектів досліджуваного феномену та їх взаємозв’язку.

Якщо розглядати інформаційну культуру з точки зору системного підходу, а саме підсистему суспільства разом з економікою, політикою, то можна констатувати, що у формуванні нової інформаційної культури домінують стає її тісніший взаємозв’язок з зовнішнім середовищем, з яким вона сполучена багатьма мережевими зв’язками. Уміння маніпулювати ними, не втрачаючи зв’язку з внутрішньою культурою людини, уміння використовувати необхідні для цього компоненти без втрати головних ціннісних установок особистості, характеризує ступінь розвинутості сучасної інформаційної культури.

Тому, доцільно інформаційну культуру розглянути як системне утворення по відповідних рівнях, взаємопов’язаних між собою. Концепція рівнів, які зазначають А.В. Щербакова та Г.С. Федорова, це одна з моделей, що використовується для розподілу складних систем на простіші складові. За такого підходу виділяють верхній рівень, який
описує систему в цілому, під ним розміщується нижній рівень, який описує категорії, використовуючи поняття вищого рівня і т.д. Таким чином, кожен нижній рівень забезпечує функціональність для наступного вищого рівня, який, у свою чергу, забезпечує методи для рівня, що над ним [2]. Однак, найскладнішим у використанні рівнів, на думку вчених, є визначення змісту та меж відповідальності кожного рівня.

У нашому випадку для подолання складності у процесі вивчення феномену «інформаційної культури» доречно це системне утворення розглядати з точки зору традиційних систем (цілісність, комплекс взаємодіючих елементів, структурність, ієрархічність, взаємозалежність системи та оточуючого середовища), так і динамічних систем зі зворотними зв’язками та наявністю нелінійних ефектів, а також прогнозувати поведінку системи в біфуркаційних станах.

Наголосимо на наявності окремих особливих властивостей системи інформаційної культури, які впливають на її загальні властивості. Перш за все, це стійкість (затримість системи належним чином функціонувати та чинити опір дестабілізуючим факторам) та водночас наявність нерівноважних станів (поступова зміна параметрів стійкості системи); наявність дисипативних структур (вирощування більше впроваджених структур усередині системи) та ін. Такий підхід дозволяє впорядкувати ієрархію складових систем – рівнів, а також збудувати своєрідну ієрархію взаємозв’язків всередині самої системи.

Зауважимо, що ієрархічну структуру системи часто пов’язують з процесом зміни її структури та, перш за все, з метою підвищення ефективності її функціонування.

Таким чином, з урахуванням вищезазначеного під системою інформаційної культури, ми пропонуємо розуміти динамічну, багатофункціональну систему зі зворотними зв’язками, всі компоненти якої розподілені по рівнях, взаємодіють між собою, отримуючи синергетичний ефект та спрямовані на досягнення головного результату – інформаційної культури на різних рівнях.

Враховуючи багатогранність феномену «інформаційна культура», постає питання її досягнення на локальному рівні особистості (нано рівні), рівні окремої установи (мікро рівні), національному – макро рівні, міжнародному – мега рівні (рис. 1).

Рис.1 Багаторівневий підхід до формування інформаційної культури
Рівень інформаційної культури на рівні особистості відчутно впливає на життя людини і розширює свободу дій. Більше того, він стає головним ресурсом для підвищення соціального та професійного стану (поряд з отриманою освітою, економічним статусом і соціальним становищем). Висловлюються припущення, що дуже скоро, саме від рівня інформаційної культури буде залежати вся майбутня доля індивіда, так як вміння знаходити, отримувати, переробляти і адекватно використовувати інформацію необхідно ї, не тільки в професійній сфері, а й у повсякденному житті.

Для багатьох фірм і підприємств в Україні загальним стає рівень інформаційної культури, яка вже є невід'ємною складовою корпоративної культури установи. Адже, працівники можуть бути не досить або зовсім не підготовлені з управлінською інформацією, не мають змоги проаналізувати становище з інформацією на підприємстві, не обізнані зі шляхами її проходження й не мають технічних знань, необхідних для захисту від несанкціонованих проникнень до інформації.

Для ефективного процесу формування інформаційної культури в Україні на національному рівні необхідне впровадження ряду проектів, як державних (запровадження нових навчальних предметів), так і недержавних (наприклад, ресурс media.osvita.com.ua).

Однією із вимог ефективного формування інформаційної культури на макро рівні є постійне удосконалення державного механізму та правове регулювання у цій сфері, зокрема, підготовка правових актів і норм до застосування їх в умовах інформатизації суспільства.

Стосовно мега рівня щодо формування інформаційної культури, то міжнародна спільнота виокремлює наступні пріоритетні напрями, зокрема: доступність інформації, збереження інформації, інформаційну грамотність, інформаційну етику, інформаційну для розвитку.

Втім запропонована вище методологія має місце лише для рівноважної системи формування інформаційної культури з певним запасом стійкості.

В період біфуркаційних збурень система формування інформаційної культури перебуває в нерівноважний стан та набуває ознак дисипативної структури, які утворюються завдяки потокам енергії, імпульсу, маси через границі системи. Такий процес є проявом флуктуацій, тобто відхилень параметрів системи від середніх значень. Роль взаємодії флуктуацій зростає і стає вирішальною поблизу критичних (біфуркаційних) точок. Але, поведінка системи формування інформаційної культури в зазначених параметрах вимагає окремого наукового дослідження.

Із зазначеного, можна зробити висновок, що функціонування інформаційної культури в сучасному кіберпросторі вимагає нових концептуальних підходів щодо моделювання цього процесу. Запропонована методологія рівнів дозволяє оптимізувати цей процес, що дозволить системі адекватно реагувати на біфуркаційні стани суспільства та прогнозувати його подальший розвиток.

1. Буданов В.Г. Методология синергетики в постнеокласической науке и в образовании. Изд. 4-е доп. – ЛЕНАРД, 2017. – 272 с.
2. Щербакова А.В. Федорова Г.С. Багаторівневий підхід до побудови гібридної інтелектуальної системи. – Information Processing Systems, 3 (93), 96 – 99.
МОДЕЛЮВАННЯ ДИНАМІЧНИХ ПРОЦЕСІВ ФУНКЦІОНИВАННЯ ТА РОЗВИТКУ РИНКУ ПРАЦІ УКРАЇНИ
Громик Н.В.

Актуальність теми. Ринкова трансформація української економіки, її соціально-економічний розвиток, конкурентоспроможність, удосконалення людського капіталу значною мірою залежать від упровадження ефективних заходів, що спираються на результати поглибленого теоретичного й емпіричного дослідження особливостей функціонування ринку праці, а також моделювання динаміки його основних індикаторів. За умов нестабільного економічного розвитку національної економіки особливої актуальності набувають аналіз динамічних взаємозв’язків і прогнозування змін тенденцій у соціально-трудовій сфері. Метою наукового дослідження є розроблення методологічних засад і відповідного цілісного комплексу взаємоузгоджених економетричних динамічних моделей аналізу процесів функціонування та розвитку ринку праці України в умовах підвищених ризиків, асиметричності інформації та дії дестабілізуючих факторів. Об’єктом дослідження є динамічні процеси функціонування та розвитку ринку праці України. Предметом дослідження є методологічні засади та відповідний інструментарій економетричного моделювання, аналізу і прогнозування динамічних процесів функціонування та розвитку ринку праці України. Підґрунтям розробки адекватної методології економетричного моделювання динамічних процесів на ринку праці служать теоретичні макроекономічні моделі, які дають змогу якісно описати процеси функціонування ринку праці, характеризують стан його рівноваги та підходи до формування попиту на працю та пропозиції робочої сили.

Аналізом методологічних підходів і концепцій розбудови теоретичних макроекономічних моделей ринку праці неокласичну та кейнсіанську теорії; моделі, які враховують стимулювальну функцію заробітної плати; дослідження причин негнучкості заробітних плат; моделі, які базуються на наявності інсайдерів і аутсайдерів на ринку праці; можливість довготривалих трудових відносин між роботодавцями і профспілоками та їх вплив на динаміку заробітних плат, споживання, продуктивність, зайнятість і безробіття; дослідження особливостей процесу пошуку роботи та вибору професії; вивчення явища
гістерезису безробіття; врахування відмінностей між структурою робочої сили та робочими місцями; моделювання поступовості узгодження інтересів, уподобань, навичок і потреб між суб’єктами ринку праці; вивчення динамічного взаємозв’язку між ринком праці та реальним сектором економіки; дослідження впливу різних типів шоків на перебіг процесів на ринку праці та стохастичного характеру коливань його показників.

Методи економетричного аналізу, створені на основі поєднання інструментарію статистики, економічної теорії й математики, дають змогу використати теоретико-кількісні та емпірико-кількісні підходи до вивчення проблем ринку праці та вимагають проведення детального статистичного аналізу характерних властивостей, структури й особливостей динаміки його макропоказників.

Здійснений економіко-статистичний аналіз динаміки розвитку трудових ресурсів в Україні охоплює дослідження демографічних змін упродовж останніх десятиліть, коефіцієнтів народжуваності та смертності, змін вікової структури населення та їх наслідків для українського ринку праці; динаміки середньої очікуваної тривалості життя та впливу рівня освіти, що характеризують якість людського капіталу; динаміки економічної активності населення на ринку праці, коефіцієнта участі в робочій сили, зайнятості та рівня безробіття загалом, а також за місцем проживання, статтю та для різних вікових груп; порівняння показників динаміки трудових ресурсів України з відповідними показниками функціонування ринків праці європейських та інших країн світу, визначення відмінностей між ринками праці регіонів України; дослідження структури неактивного населення, його динаміки та проблем недовикористання; особливостей внутрішньої та зовнішньої міграції трудових ресурсів.

Дослідження статистичних аспектів і структурних особливостей національного ринку праці передбачає вивчення структури зайнятості за рівнем кваліфікації та за видами економічної діяльності; динаміки зайнятості за статусами зайнятості; неформальної та нестандартної зайнятості з урахуванням, зокрема часток найманих працівників, роботодавців та самозайнятих; динаміки рівня участі зайнятого населення у неформальному секторі економіки за рівнем освіти, віковими групами, рівнем кваліфікації, статтю та місцем проживання; можливостей і легкості працевлаштування з зарплатнею, що відповідає кваліфікації особи; рівня задоволеності своєю роботою й фінансовим становищем українських працівників; вивчення безробіття за причинами незайнятості; динаміки змін у пропозиції праці та середньої навантаженості незайнятого трудовою діяльністю населення на
Аналіз впливу змін на ринку праці на динаміку реального ВВП на особу в Україні проведено на основі його декомпозиції та статистичного дослідження ефектів впливу трьох складових: ВВП на одного зайнятого, що є замінником продуктивності праці; відношення кількості зайнятих до кількості населення працездатного віку, яким вимірюється рівень зайнятості; відношення кількості населення працездатного віку до загальної кількості населення, що є замінником індексу старіння населення. Статистичний аналіз заєвідшує, що найвагомішим чинником збільшення реального ВВП на одну особу є зростання продуктивності праці, водночас негативний вплив на рівень життя в Україні має зменшення частки працездатного населення, а також падіння економічної активності населення та рівня зайнятості. Проведений аналіз виявляє вагомість впливу показників ринку праці як чинників розвитку вітчизняної економіки.

4. Джалладова І.А., Бабинюк О.І. Аналітична побудова і комп’ютерна реалізація комплексного показника праці для оцінювання стабільності ринку праці.-параграф 1.7 монографії.-92- 105 с.
Зінчук Микола Олександрович, кандидат фіз.-мат. наук, Інститут математики НАН України, Київ, Україна, Святовець Ірина Федорівна, кандидат фіз.-мат. наук, ЗНУ, Запоріжжя, Україна, e-mail: sv.irina0702@gmail.com

СТАБІЛІЗАЦІЯ ЛІНІЙНИХ СТАЦІОНАРНИХ СИСТЕМ ЗА ДОПОМОГОЮ СТАТИЧНОГО ЗВОРОТНОГО ЗВ’ЯЗКУ ПО ВИХОДУ

Зінчук М.О., Святовець І.Ф.

Ключові слова: лінійні системи, стабілізація, зворотній зв’язок, статичний регулятор.
AMS Subject Classification: 70Q05 Control of mechanical systems.

Розглядається лінійна стаціонарна система

\[\dot{x} = Ax + Bu, \quad x(t_0) = x_0, \]
(1)

\[y = Cx, \]
(2)

de \(x \in \mathbb{R}^n \) - вектор стану, \(A \in \mathbb{R}^{n \times n} \) - матриця коефіцієнтів, \(B \in \mathbb{R}^{n \times m} \) - матриця при керуванні, \(y \in \mathbb{R}^l \) - вектор виходу, \(C \in \mathbb{R}^{l \times n} \) - матриця виходу, \(\text{rang} C = r \leq l \).

Побудуємо статичний лінійний регулятор зворотного зв’язку по виходу

\[u = Ky, \quad K \in \mathbb{R}^{m \times n}. \]
(3)

Для цього сформулюємо необхідні і достатні умови, за яких регулятор (3) стабілізує систему (1), (2), у вигляді наступного твердження.

Теорема 1. Регулятор (3), що стабілізує систему (1), (2), існує тоді і тільки тоді, коли знайдеться статична матриця \(K \in \mathbb{R}^{m \times n} \), для якої виконується наступне:

\[\text{Re}(A + BK) < 0, \quad \text{rang} C = \text{rang} \begin{bmatrix} K \\ C \end{bmatrix}. \]
(4)

Такий регулятор має вигляд

\[K = \tilde{K}C^T H^T \left(HCC^T H^T \right)^{-1} H, \]
(5)

de \(H \in \mathbb{R}^{l \times r} \) - довільна матриця повного рангу, що задовольняє рівність

\[\text{rang} \begin{bmatrix} H \\ C \end{bmatrix} = \text{rang} C. \]
(6)

Доведення. Необхідність. Якщо для всіх матриць \(\tilde{K} \) виконується \(\text{Re}(A + B\tilde{K}) \geq 0 \), то не існує такої матриці \(K \) для якої виконується \(\text{Re}(A + BK) < 0 \), оскільки \(\tilde{K} = KC \), як регулятор за станом: \(u = \tilde{K}x \). Якщо ж не виконується друга умова з (4) для всіх матриць \(\tilde{K} \), що задовольняють першу умову, то не буде виконуватися рівність \(\tilde{K} = KC \), оскільки вона показує лінійну залежність рядків матриці \(\tilde{K} \) від рядків матриці \(C \), тобто еквівалентна другій умові.

Достатність. Нехай виконується (4), тоді матрицю \(K \) можна знайти з сумісного рівняння \(\tilde{K} = KC \) в явному вигляді. Дійсно, виберемо матрицю \(H \), для якої виконується (6), звідки

\[\text{rang} C = \text{rang} \begin{bmatrix} \tilde{K} \\ H \end{bmatrix}. \]

Помножимо обидві частини рівняння (2) зліва на матрицю \(H \), отримаємо

\[\dot{y} = Hy = HCx, \quad \dot{y} \in \mathbb{R}^r. \]
(7)

de матриці \(H \) і \(HC \) повного рангу.

Регулятор (3) набуде вигляду
у = Ky = ḳy = ḳHy, ḳ ∈ ℜₘₓₙ.

Матриця ḳ існує у силу (6). Її знаходимо з сумісного рівняння ḳ = KHС, помноживши обидві його частини справа спочатку на $CТHТ$, а потім на $(HСТHТ)⁻¹$. Звідси маємо

\[K = ḳH = ḳCТHТ(HСТHТ)⁻¹H, \]

тобто приходимо до (5).

В теоремі 1 не накладаються обмеження на матриці коефіцієнтів системи (1), (2), тому вона описує всі випадки стабілізації за допомогою розглянуто регулятора, щоправда, не дає конструктивного спосіб обчислення матриці ḳ. Умови (4) можна записати у вигляді наступної системи матричних рівнянь

\[(A + BṩК)ТP + P(A + BṩК) = −Q, \]

де \(P, Q \) - деякі симетричні додатно визначені матриці, або, поклавши \(S = P⁻¹ \), зобразити такою системою [1]:

\[SAᵀ + AS − 2BBᵀ < 0, \]

\[-BᵀS⁻¹ = KC, \]

Перше рівняння системи (9) нелінійне, а друге рівняння системи (10) містить обернену матрицю \(S⁻¹ \), тому розв'язання будь-якої з наведених систем наштовхується на певні труднощі. Якщо \(m ≥ l \), то систему (10) можна звести до простішого вигляду, а саме

\[SAᵀ + AS − 2BBᵀ < 0, \]

\[-ṩBᵀ = CS, \]

de \(ḳ \) ∈ ℜ₁ₓₘ - довільна повного рангу матриця. Матрицю \(K \) обчислюємо з рівняння

\[(KᵀK)⁻¹Kᵀ = ḳ \]

або

\[ḳK = I. \]

Виходячи з наведених вище зауважень, доцільно запропонувати конструктивні необхідні умови існування статичного стабілізованого лінійного регулятора по виходу. Наведемо дві альтернативні необхідні умови. Для отримання першої з них обчислюємо матрицю

\[U = (A + BKC) ⊙ I + I ⊙ (A + BKC)ᵀ \]

і визначаємо її ранг. Якщо матриця \(A + BKC \) асимптотично стійка, то \(rangU = n² \), що випливає з наступного. Власні значення матриці \(U \) дорівнюють [2] \(μ_k = \λ_i + \λ_j, \ k = 1, n² \), \(i, j = 1, n \), де \(\λ_i, \lambda_j \) - власні значення матриці \(A + BKC \) (дійсні частини їх від’ємні), тому \(μ_k ≠ 0 \) і \(rangU = n² \).

Друга необхідна умова описується матричним рівнянням

\[KC + BᵀP = 0. \]

Рівняння (14) можна спочатку розв'язати відносно довільних матриць: \(K \) і симетричної \(P \), а потім за допомогою вільних параметрів спробувати досягти додатної визначеності останньої. Ця умова дає кращий результат ніж перша, але складніша у реалізації.

ВІДНОВЛЕННЯ СТАНУ МАЙЖЕ КОНСЕРВАТИВНИХ ДИНАМІЧНИХ СИСТЕМ

Коломійчук О. П., Новицький В. В.

Спостережник, спостережуваність, вектор стану, спостережник повного порядку, спостережник Калмана, спостережник Луїнбергера.

AMS Subject Classification: 93E12

Розв'язуючи задачі керування майже консервативними динамічними системами вважається, що вектор стану системи відомий. Для реальних спостережуваних об'єктів, як правило, відомим є вихідний сигнал вигляді деякої лінійної комбінації змінних стану (а не сам вектор стану). Тому для забезпечення керування необхідно відновити стан системи. Що досягається за рахунок спостережників. Модель у формі Коші без урахування вхідних і вихідних зовнішніх збурень має вигляд:

\[
\dot{x} = (A_0 + \varepsilon A_1)x + \varepsilon Bu, \quad x(t_0) = x_0, \\
y = \varepsilon Cx,
\]

де \(t_0\) — початковий момент часу, \(x(t) \in \mathbb{R}_{2n} \) — вектор стану, \(A_0 = -A_0^T \in \mathbb{R}_{2n\times2n} \) — кососиметрична невироджена матриця, \(A_1 \in \mathbb{R}_{2n\times2n} \) — матриця-збурення, \(u(x) \in \mathbb{R}_m \) — вектор керування, \(B \in \mathbb{R}_{2n \times m} \) — матриця при керуванні, \(\varepsilon > 0 \) — малій параметр, \(y \in \mathbb{R}_l \) — вихідний сигнал об'єкта, \(C \in \mathbb{R}_{l \times 2n} \) — матриця спостережень. Символ "\(T\)" тут і надалі позначає операцію транспонування.

В системі (1) при матриці \(C\) малій параметр означає, що корисний сигнал є слабшим, ніж зовнішні збурення, які в загальному випадку можуть бути присутні у вихідному сигналі.

В роботі для моделі (1) будується майже консервативний спостережник повного порядку, який описується наступним співвідношенням [1]:

\[
\dot{x} = (A_0 + \varepsilon A_1)x + Bu + K[y - \varepsilon C\dot{x}],
\]

де \(\dot{x} \in \mathbb{R}_n\) — відновлений вектор стану.

При цьому знаходимо таку матрицю \(K \in \mathbb{R}_{2n \times l}\), яка забезпечує асимптотичну стійкість системі рівнянь [1]

\[
\dot{e} = [(A_0 + \varepsilon A_1) - \varepsilon KC]e.
\]

де \(e = x - \dot{x}\) — похибка відновлення спостережника.

Матриця \(K\) обирається такою, щоб матrice рівняння Ляпунова

\[
(A_0 + \varepsilon A_1 - \varepsilon KC)^TP + P(A_0 + \varepsilon A_1 - \varepsilon KC) = -2Q.
\]

де \(P = P^T \in \mathbb{R}_{2n\times2n}, \quad 0 \leq Q = Q^T \in \mathbb{R}_{2n\times2n}\), для (3), мало матрицю-розв’язок \(P > 0\). Алгоритм вибору матриці описано в [2].
Будо зазначено, що вектор стану системи проблематично виміряти точно. Але існують спостережувані системи, в яких деякі компоненти вектора стану підлягають вимірюванню, а деякі ні. Для таких систем будуються спостережники зниженої якості (фільтр Луїнберґера).

Маємо спостережувану майже консервативну динамічну систему вигляду

\[
\dot{z} = (F_0 + \varepsilon F_1)z + D u, \quad z(t_0) = z_0,
\]
\[
Y = \varepsilon G z,
\]

де \(t_0 \) — початковий момент часу, \(z(t) \in \mathbb{R}_{2n} \) — вектор стану, \(F_0 = -F_0^T \in \mathbb{R}_{2n \times 2n} \) — кососиметрична невироджена матриця, \(F_1 \in \mathbb{R}_{2n \times 2n} \) — матриця збурення, \(u \in \mathbb{R}_m \) — вектор керування, \(D \in \mathbb{R}_{2m \times m} \) — матриця при керуванні, \(Y \in \mathbb{R}_l \) — вихідний сигнал об'єкта \((l < 2n)\), \(\varepsilon > 0 \) — маленький параметр, \(G \in \mathbb{R}_{l \times 2n} \) — матриця спостережень.

До системи (5) застосуємо ортогональне перетворення вектора стану

\[
x = T_1^T z \in \mathbb{R}_{2n}, \quad (T_1T_1^T = I),
\]
та перетворення вектора виходу

\[
y = T_2 Y \in \mathbb{R}_l,
\]

так, що з (5) отримаємо майже консервативну динамічну систему вигляду (1)

\[
\dot{x} = (A_0 + \varepsilon A_1) x + B u, \quad x(t_0) = x_0, \quad y = \varepsilon C x,
\]

де \(A_0 = T_1^T F_0 T_1 \), \(A_1 = T_1^T F_1 T_1 \), \(B = T_1^T D \), \(C = T_2 G T_1 = [I_l; 0] \in \mathbb{R}_{l \times 2n} \).

Для зручності розіб'ємо \(x \), \(A_0 + \varepsilon A_1 \), \(B \) на блоки

\[
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad \begin{bmatrix} A_{11}^{11} & A_{12}^{12} \\ A_{21}^{11} & A_{22}^{12} \end{bmatrix} + \varepsilon \begin{bmatrix} A_{11}^{21} & A_{12}^{22} \\ A_{21}^{21} & A_{22}^{22} \end{bmatrix}, \quad \begin{bmatrix} B_1 \\ B_2 \end{bmatrix},
\]

де \(x_1 \in \mathbb{R}_l \), \(A_{11}^{11} \), \(A_{11}^{11} \in \mathbb{R}_{l \times l} \), \(B_1 \in \mathbb{R}_{l \times m} \).

З (8), (9) та (10) випливає, що треба відновити тільки \(2n - l \) координат \(x_2 \) вектора стану \(x \).

Далі спостережник зниженої якості для системи (8) матиме вигляд:

\[
\dot{\hat{x}} = \begin{bmatrix} (A_{11}^{00} + \varepsilon A_{11}^{01}) - \varepsilon K(A_{11}^{00} + \varepsilon A_{11}^{12}) & q + \varepsilon (A_{12}^{00} + \varepsilon A_{12}^{11}) K - (A_{21}^{01} + \varepsilon A_{21}^{12}) - \varepsilon K(A_{11}^{00} + \varepsilon A_{11}^{11}) - \varepsilon^2 K(A_{12}^{02} + \varepsilon A_{12}^{12}) K \end{bmatrix} \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix} + \begin{bmatrix} y \\ q + \varepsilon K y \end{bmatrix} u.
\]

де \(\hat{x}_2 \in \mathbb{R}_{2n-l} \) — оцінка координат \(x_2 \) вектора \(x \).

Для знаходження матриці підсилення \(K \) застосовується модифікований алгоритм [2].

При наявності збурень типу білого шуму в системі та спостережень будуться оптимальний спостережник (фільтр Калмана).
Рассматривается спостережуемая модель майже консервативной динамической системы вида (1) с заботами
\begin{equation}
\dot{x} = (A_0 + \varepsilon A_1)x + B(u + v), \quad x(t_0) = x_0, \\
y = \varepsilon Cx + f,
\end{equation}
де $v \in \mathbb{R}_m$ — входной случайный вектор заботы с матрицей ковариации $0 \leq Q = Q^T \in \mathbb{R}_{m \times m}$, $f \in \mathbb{R}_l$ — выходной случайный вектор заботы с матрицей ковариации $0 < R = R^T \in \mathbb{R}_{l \times l}$.

Оптимальный майже консервативный спостережник (фильтр Калмана), выходной сигнал \hat{x} якого є найкращою в (сенсі мінімум середньоквадратичного відхилення) оцінкою вектора стану об'єкта x, описується системою рівнянь:
\begin{equation}
\dot{\hat{x}} = (A_0 + \varepsilon A_1)\hat{x} + K[y - \varepsilon C\hat{x}] + Bu, \quad \hat{x}(0) = 0.
\end{equation}
\begin{equation}
K = PC^T R^{-1},
\end{equation}
de $0 < P \in \mathbb{R}_{2n \times 2n}$ — матрица-розв'язок алгебраїчного рівняня Ріккаті:
\begin{equation}
(A_0 + \varepsilon A_1)P + P(A_0 + \varepsilon A_1)^T - \varepsilon PC^T R^{-1}CP + \varepsilon BQB^T = 0.
\end{equation}

Після побудови потрібного наближення матриці P будуємо матрицю K підсилення (14) для фільтра Калмана (13). Таким чином, система (12) із оптимальним спостережником (13) матиме вигляд[1]:
\begin{equation}
\dot{\hat{x}} = (A_0 + \varepsilon A_1)x + B(u + v), \quad x(t_0) = x_0, \\
y = \varepsilon Cx + f, \\
\dot{\hat{x}} = (A_0 + \varepsilon(A_1 - KC))\hat{x} + Ky + Bu, \quad \hat{x}(0) = 0, \\
K = PC^T R^{-1}.
\end{equation}

Фільтр Калмана дає можливість розв'язати задачі, що описуються моделями (1), (5), але він не враховує специфіку цих моделей в тому розумінні, яке зазначено, тому доцільним буде його застосування лише для моделі (12).

ПОБУДОВА КЕРУВАННЯ СИСТЕМОЮ “РЕЗЕРВУАР – РІДИНА З ВІЛЬНОЮ ПОВЕРХНЮЮ” НА ОСНОВІ РОЗВ’ЯЗКУ ОБЕРНЕНОЇ ЗАДАЧІ МІНІМІЗАЦІЇ КВАДРАТИЧНОГО ФУНЦІОНАЛУ ЯКОСТІ

Константінов О.В.

Ключові слова: резервуар з рідиною, керування із зворотним зв’язком, квадратичний функціонал.

AMS Subject Classification: 70Q05.

Інженерні конструкції, що містять у своєму складі резервуари, частково заповнені рідиною, широко використовуються у різних галузях техніки. Останнім часом поширюється інтерес до задач динаміки та керування обмеженими об’ємами рідини у зв’язку з проблемами транспортування та збереження в складних умовах дії вібраційних, імпульсних, сейсмічних, вітрівих та інших навантажень. З практики відомо, що баки з рідиною у літаках, танкерах та цистернах суттєво впливають на стійкість та якість керування транспортними засобами [1].

Розглянемо циліндричний резервуар, частково заповнений рідиною. Резервуар вважаємо абсолютно твердим тілом, яке може рухатись поступально під дією активних зовнішніх сил. Рідину вважаємо ідеальною, нестисливою, однорідною, а її початковий рух безвихровим. Відповідно до методики роботи О.С. Лимарченко [1], математична модель механічної системи “резервуар – рідина з вільною поверхнею” будується на основі варіаційного принципу Гамільтона-Остроградського і представляє собою систему нелінійних звичайних диференціальних рівнянь другого порядку відносно незалежних параметрів a_i – коефіцієнтів розкладу в ряд збурення вільної поверхні ψ за формами коливань вільної поверхні ψ_i та $\xi = (\varepsilon_x, \varepsilon_y, \varepsilon_z)$ – компонент вектора переміщення центру незбуреної вільної поверхні рідини відносно деякої нерухомої системи відліку:

\[\sum_{n=1}^{N} p_{rn}(a_j)\ddot{a}_n + \sum_{n=N+1}^{N+3} p_{rn}(a_j)\dot{\varepsilon}_{n-N} = q_r, \quad r = 1, \ldots, N, \quad (1) \]

\[\sum_{i=1}^{N} C_i^1(a_j)\ddot{a}_i + (M_T + M_F)\ddot{\varepsilon} = \vec{F} - (M_T + M_F)g\vec{k} - \sum_{i=1}^{N} C_i^2(a_j, \dot{a}_k), \quad (2) \]

де $\vec{k} = (0, 0, z)$; M_T та M_F – маса резервуару та рідини відповідно; $\ddot{\varepsilon} = (\varepsilon_x, \varepsilon_y, \varepsilon_z) = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ – вектор переміщення резервуару у поступальному русі; \vec{F} – головний вектор зовнішніх сил, які діють на резервуар, відносно початку координат.

Якщо зовнішня сила $\vec{F} = (F_x, F_y, F_z)$, яка діє на систему “резервуар – рідина з вільною поверхнею”, має за мету здійснення необхідного закону руху або мінімізацію заданого
функціоналу, то таку силу прийнято називати керуванням. В даній роботі поставлено завдання побудови керування F_y, яке б забезпечувало програмний рух резервуару з рідиною у напрямку Oy за заданим законом $\dot{\varepsilon}_y = f(t)$, $\varepsilon_y = \int f(t)dt$. Програмна частина керування задається на основі моделі "затверділої" рідини, коли збурення вільної поверхні відсутні, тобто $\xi(t) = \dot{\xi}(t) = 0$, i має вигляд $F_{PR} = (M_T + M_F)\ddot{\varepsilon}_y$. Однак, оскільки у системі присутні збурення – збурення початкових умов параметрів руху $\varepsilon_y, \dot{\varepsilon}_y, \xi, \dot{\xi}$ та коливання вільної поверхні рідини, введемо у систему лінійне керування із зворотним зв'язком F_{BK} та постійними коефіцієнтами підсилення $l_i, i = 1, ..., 4$ у вигляді $F_{BK} = \sum_{i=1}^{4} l_i x_i$, яке буде корегувати існуючі похибки – відхилення наявних значень параметрів руху від заданих програмних значень.

$$x_1 = \xi(t), \ x_2 = \dot{\xi}(t), \ x_3 = \varepsilon_y - \int f(t)dt, \ x_4 = \dot{\varepsilon}_y - f(t).$$

Таким чином, повне керування, яке діє на систему, має вигляд

$$F_y = F_{PR} + F_{BK} = (M_T + M_F)\ddot{\varepsilon}_y - \sum_{i=1}^{4} l_i x_i,$$

де коефіцієнти підсилення зворотного зв'язку мають позитивні значення $l_i \geq 0$, а сам зворотний зв'язок є негативним для забезпечення стійкості системи керування.

Керування зі зворотним зв'язком побудуємо на основі лінеаризованої системи рівнянь руху (1) – (2), в якій буде врахована коливання вільної поверхні рідини $\xi(t)$ по першій антисиметричній формі a_1 з можливістю горизонтального переміщення резервуару по горизонтальній координаті ε_y. Ця система у формі Коші буде мати вигляд

$$\dot{x} = Fx + Gu, \ F = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \lambda_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \lambda_2 & 0 & 0 & 0 \end{bmatrix}, \ G = \begin{bmatrix} 0 \\ \beta_1 \\ 0 \\ \beta_2 \end{bmatrix},$$

де $u = F_{BK}$, коефіцієнти $\lambda_1, \lambda_2, \beta_1, \beta_2$ залежать від параметрів рівнянь (1) – (2), а фазові змінні $x_i, i = 1, ..., 4$ мають сенс збурень, тобто відхилення дійсних значень параметрів руху системи від програмних.

Для системи (3) отримаємо керування $u = \sum_{i=1}^{4} l_i x_i$ на основі задачі мінімізації квадратичного функціоналу якості

$$J_1 = \int_{0}^{\infty} (x^T Q x + \nu u^2)dt,$$

де $\nu > 0$, Q – діагональна матриця, а квадратична форма $x^T Q x = \sum_{i=1}^{4} q_i x_i^2 \geq 0$ при будь-якому x, тобто є невід'ємно-визначеною. Як відомо [2], оптимальне керування є лінійною функцією фазових координат

$$u = -\frac{1}{\nu} G^T P x,$$

де симетрична постійна матриця P є розв’язком нелінійного алгебраїчного рівняння Ріккаті

$$-P F - F^T P + \frac{1}{\nu} P GG^T P = Q,$$

а оптимальному керуванню відповідає рішення, що задовольняє критерію Сільвєстера, тобто головні мінори матриці P повинні бути більше або дорівнювати нулю. Таким чином,
для довільно заданих параметрів q_i в матриці Q оптимальне керування може не існувати, оскільки розв’язок P нелінійного алгебраїчного рівняння Ріккаті може не задовольнити критерію Сильвестра.

Розглянемо обернену задачу синтезу квадратичного критерію якості (1) для побудови оптимального керування в системі з збуреннями (3). Для цього побудуєм таку матрицю Q в критерії (1), що оптимальне керування завжди буде існувати і задовольнити необхідним додатковим критеріями. На основі неособливої перетворення $y = Tx, x = T^{-1}y$ [2] систему у збурення (3) приведемо до канонічної форми відносно фазових координат

$$\dot{y} = Ay + Bu, \quad A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & \lambda_1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

тоді на основі перетворення $C = (T^{-1})^T QT^{-1}$ новий функціонал якості буде мати вигляд

$$J_2 = \int_0^\infty (y^TCy + \nu u^2) dt,$$

а на основі рівняння Ріккаті з розв’язком у вигляді симетричної матриці S

$$-SA - A^TS + \frac{1}{\nu} SBB^TS = C, \quad S = \begin{bmatrix} s_5 & s_8 & s_9 & s_1 \\ s_8 & s_6 & s_{10} & s_2 \\ s_9 & s_{10} & s_7 & s_3 \\ s_1 & s_2 & s_3 & s_4 \end{bmatrix},$$

будується оптимальне керування

$$u = -\sum_{i=1}^4 k_i y_i = -\frac{1}{\nu} \sum_{i=1}^4 s_i y_i.$$
ДОСЛІДЖЕННЯ ДИНАМІКИ ЦІН НА КРИПТОВАЛЮТИ МЕТОДАМИ ФРАКТАЛЬНОГО АНАЛІЗУ

Ляшенко О.І.

Ключові слова: криптовалюта, фрактальний аналіз, показник Херста, волатильність, аналіз детрендованих флуктуацій, мультифрактальний аналіз детрендованих флуктуацій.

AMS Subject Classification: 62M10, 91B84, 91G70

Сьогодні фінансові системи окремих країн удосконалюються і прогресують у контексті розвитку глобалізації, поширення ІТ-технологій та загальної комп’ютеризації. Це сприяє появи нових фінансових інститутів, інструментів та форм взаємодії між людьми. Так, з’явився аналог традиційних валют – криптовалюта. Зростання криптовалют кидає виклик створенню таких інститутів, як центральні банки, біржі і уряд, а також потенційно може змінити спосіб бізnesу, який ведеться по всьому світі. Вони не випускаються центральним банком або урядом, що в результаті приводить до відриву від реальної економіки [1]. Будучи інноваційним продуктом, криптовалюта не тільки просуває прогрес у фінансовій сфері, а й являє собою спосіб заробити гроші. Нестабільність криптовалют, що провокує скачки її курсу по відношенню до традиційних валют дозволяє добре заробляти учасникам торгів. На ринку, де торгують криптовалютами, домінують короткострокові інвестори та спекулянти [1]. Інструментом дослідження став фрактальний аналіз, який все частіше використовують аналітики фінансових ринків. Популярність цього методу зумовлює його ефективність у періоди нестабільного ринку. Оскільки добре відомі класичні методи аналізу фінансових ринків незмінилися незастосовні у періоди інтенсивних коливань ринку і ринкових колапсів, то альтернативою класичній теорії аналізу фінансових ринків стала фрактальна теорія ринку.

Нелінійна динаміка представляє ринок як складну систему, що характеризується кількома ознаками. Розподіл зміни ціни має виразний хвіст порівняно з Гаусовим розподілом. Функція автокореляції зміни ціни спадає експоненційно з певним характерним часом. Однак, виявляється, що амплітуда зміни ціни, виміряна за абсолютно значеннями чи квадратами цін, показує степеневі кореляції з довгочасовою персистентністю аж до кількох місяців, або навіть років. Такі довгочасові залежності краще моделюються з використанням «додаткового процесу», що в економічній літературі часто називається волатильністю.

Волатильність є локальне середнє модуля зміни на відповідному часовому інтервалі T, що є шкалом параметром оцінки. Іншими словами це статистичний показник, що характеризує тенденцію зміни ціни [2].

Волатильність є локальноне середне модуля зміни ціни на відповідному часовому інтервалі T, що є рухомим параметром оцінки. Іншими словами це статистичний показник, що характеризує тенденцію зміни ціни [2].

Розуміння статистичних властивостей волатильності має також важливе практичне застосування. Волатильність є інтересом торговців, оскільки визначає ризик і є ключовим входом практично для всіх моделей цін опціонів. Без знатних методів оцінювання волатильності трейдерам було б надзвичайно важко визначати ситуації, в яких опціони потрапляють в недооцінку чи переоцінку [3].

Кореляційну структуру високого порядку часовому ряду описує довга пам’ять, або довгострокова залежність. У випадку, якщо ряд має довгу пам’ять, то залежність існує навіть між віддаленими в часі спостереженнями. Оскільки довжина порядку пам’яті створює модель для середнього рівня нелінійну залежність у перших моментах розподілу і, як правило,
генерує в динаміці ряду потенційно придатну для прогнозування компоненту, її присутність в рядах прибутковості фінансових активів породжує сумніви в ефективності фінансового ринку [3].

Для того, аби точніше оцінювати ризики, властиві певному активу, необхідно використовувати більш точні і адекватні алгоритми обчислення фрактальної розмірності. З цією метою в сучасній практиці фрактального аналізу фінансових ринків найчастіше використовують алгоритм R/S-аналізу. Він показує, що фінансовий ринок має тривалу пам’ят на довгострокових інвестиційних горизонтах, у такий спосіб минула поведінка ціни буде впливати на її майбутнє значення.

Розрахуємо показник Херста: \((R/S)_n = c \cdot n^H \), де \(c \) – константа, \(H \) – показник Херста, нижній індекс \(n \) для \((R/S)_n \) відноситься до значення R/S для \(x_1, \ldots, x_n \).

<table>
<thead>
<tr>
<th>Значення показника Херста, (H)</th>
<th>Характеристика ринку</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H = 0)</td>
<td>Ринок «мертвий», ніяких рухів або вони цикличні з великою частотою коливань</td>
</tr>
<tr>
<td>(0 \leq H < 0,5)</td>
<td>Ряд антиперсистентний. Ринок нестійкий. Чим ближче (H) до нуля, тим більш нестійка динаміка цін</td>
</tr>
<tr>
<td>(H = 0,5)</td>
<td>Ряд випадковий, події некорельовані, вони вже використані і знецінені ринком</td>
</tr>
<tr>
<td>(0,5 < H \leq 1)</td>
<td>Персистентний (трендостійкий) ринок, майбутні значення залежать від минулих. Чим ближче (H) до 1, тим сильніше тренд.</td>
</tr>
</tbody>
</table>

Аналіз детрендованих флуктуацій базується на гіпотезі про те, що корельований часовий ряд можна відобразити на самоподібний процес шляхом інтегрування. Переваги даного методу порівняно з іншими полягають в тому, що він виявляє довгочасові кореляції нестационарних, на перший погляд, часових рядів, а також дозволяє ігнорувати очевидні випадкові кореляції, що є наслідком нестационарності. Існують АДФ різних порядків, що відрізняються трендами, які вилучаються з даних.

АДФ найнижчого порядку передбачає детрендування інтегрованого часового ряду довжини \(N \), \(Y(k) = \sum_{i=1}^{k}(X_i - \bar{X}) \), де \(X_i \) – i-те значення часового ряду, \(\bar{X} \) – його середне значення, \(k = 1, \ldots, N \). Ця дія повторюється для вікон різної ширини, внаслідок чого отримується набір пар точок \((F_n, n)\). Побудова залежності \(\log F(n) \) від \(\log n \) та інтерполіція отриманих значень прямою дає змогу обчислити показник скейлінга \(\alpha \), що є коефіцієнтом кута нахилу інтерполаційної прямої і характеризує зміну кореляції логарифмічних прибутків часового ряду при збільшенні часового інтервалу.

Вказана процедура повторюється для вікон різної ширини, внаслідок чого отримується набір пар точок \((F_n, n)\). Побудова залежності \(\log F(n) \) від \(\log n \) та інтерполіція отриманих значень прямою дає змогу обчислити показник скейлінга \(\alpha \), що є коефіцієнтом кута нахилу інтерполаційної прямої і характеризує зміну кореляції логарифмічних прибутків часового ряду при збільшенні часового інтервалу.

Порівняно із R/S-аналізом метод АДФ дає більші можливості щодо інтерпретації скейлінгового показника \(\alpha \): для випадкового порядку \(\alpha = 0,5 \), при наявності лише короткочасових кореляцій \(\alpha \) може відрізнятись від 0,5, проте має тенденцію прямувати до даного значення при збільшенні розміру вікна. Значення \(0,5 < \alpha < 1 \) показує персистентні довгочасові кореляції, що відповідають степеневому закону, \(0 < \alpha < 0,5 \) означає антиперсистентний ряд. Особливий випадок, коли \(\alpha = 1 \), означає наявність шуму. Для випадків, коли \(\alpha \geq 1 \), кореляції існують, проте вже не відображають степеневу залежність, а випадок \(\alpha = 1,5 \) свідчить про броунівський шум, інтегрований більш шум [3].

332
Багато економічних об’єктів не демонструють простої монофрактальної скейлінгової поведінки, що може бути визначена одним коефіцієнтом. В деяких випадках існує кросовер (crossover) на часових шкалах, що відділяє моделі з різною поведінкою. У деяких випадках поведінка скейлінга ще більш складна, й існують різні значення коефіцієнтів скейлінга для різних частин послідовності. Для таких випадків необхідно обчислювати множину коефіцієнтів скейлінга для повного опису поведінки об’єкта. Тоді застосовується мультифрактальний аналіз детрендуваних флуктуацій [4].

Bitcoin є найбільш популярною криптовалютою, але це не означає, що інші криптовалюти є неважливими, такі як Ethereum, Ripple та інші. Згідно даних, отриманих з CoinMarketCap.com, видно, що у 2017 курс Bitcoin різко зріс, що привернуло увагу багатьох інвесторів. Спочатку Bitcoin використовувався як цінний папір, а не як валюта на спекулятивних та волатильних ринках, і у комбінації з їх останніми коливаннями у цінах, створювалась висока волатильність [5]. У цьому дослідженні було проведено аналіз динаміки цін на Bitcoin за період з 01.01.2015 по 01.05.2018 рр. на основі даних CoinMarketCap [6]. Було обрано ряд щоденних значень ціни на Bitcoin в дол. США за одиницю. Виявилось, що часовий ряд є нестаціонарним динамічним рядом і містить періоди стрімких підйомів і спадів. Протягом цих періодів волатильність ринку зростає. Оскільки ряд нестаціонарний, це викликає певні ускладнення для подальшого аналізу. Тому переходимо до прибутковостей, які вже є стаціонарними, а їх нормалізація стандартизм відхиленням дозволяє легко порівнювати їх розподіл з розподілом Гауса. Розрахований коефіцієнт Херста складає близько 0,61 ± стандартна похибка при \(\alpha = 0,05 \), тобто більше 0,5, а коефіцієнт R² близький до 1, що говорить про високу точність отриманих результатів. Тож ми можемо зробити висновок, що наш ряд є персистентним (трендостійким), а отже майбутні значення залежать від минулого. Далі було застосовано метод мультифрактального АДФ.

У результаті проведених досліджень часових рядів цін на Bitcoin та Ethereum було встановлено, що часті ряди цін на Bitcoin та Ethereum є фракталаами. Показник Херста для обох рядів є більшим за 0,5, а це означає, що досліджувані часові ряди є персистентними і здатні зберігати тенденцію своєї динаміки протягом деякого часу у майбутньому. Більш детальний аналіз із застосуванням мультифрактального аналізу дозволив виявити мультифрактальні властивості ряду. Це свідчить про те, що часовий ряд складається із сукупності фракталів, які змінюють один одного із різними коефіцієнтами масштабування. Застосування методу динамічного МФ-АДФ дозволило зробити висновок щодо ширини спектру сингулярності. Він знижується при зростанні цін та зростає при падінні. Таким чином, даний показник може слугувати індикатором можливої майбутньої кризи.

333
ОЦЕНКА ВЗВЕШЕННОГО ПОДАВЛЕНИЯ ВОЗМУЩЕНИЙ В ДЕСКРИПТОРНЫХ СИСТЕМАХ УПРАВЛЕНИЯ

Мазко А.Г., Котов Т.А.

Ключевые слова: дескрипторная система управления; робастная устойчивость; линейное матричное неравенство (ЛМН); H_∞–оптимизация.

AMS Subject Classification: 93C05, 93D20, 93D15, 93D21.

1. Постановка задачи. Рассматривается класс линейных дескрипторных систем управления с постоянными коэффициентами

$$E\dot{x} = Ax + B_1w + B_2u, \quad z = C_1x + D_{11}w + D_{12}u, \quad y = C_2x + D_{21}w + D_{22}u,$$

где $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $w \in \mathbb{R}^s$, $y \in \mathbb{R}^l$ — векторы соответственно состояния, управления, ограниченных внешних возмущений, управляемого и наблюдаемого выходов. Задача состоит в построении статического и/или динамического J-оптимального регулятора, обеспечивающего асимптотическую устойчивость нулевого состояния замкнутой системы и наименьшее значение интегрального критерия качества [1]

$$J = \sup_{(w,x_0) \in W} \frac{||z||_Q}{\sqrt{||w||_P^2 + x_0^T X_0 x_0}}, \quad ||z||_Q^2 = \int_0^\infty z^T Q z \, dt, \quad ||w||_P^2 = \int_0^\infty w^T P w \, dt,$$

где $||z||_Q (||w||_P)$ — обобщённая L_2-норма вектор-функции $z(t)$ ($w(t)$) с весовой матрицей $Q = Q^T > 0$ ($P = P^T > 0$), $X_0 = X_0^T \geq 0$ — весовая матрица влияния начальных возмущений x_0, W — множество пар (w,x_0), для которых $0 < ||w||_P^2 + x_0^T X_0 x_0 < \infty$ и данная система имеет решение. В случаях $x_0^T X_0 x_0 = 0$ и $w \equiv 0$ полагаем $J = J_0$ и $J = J_1$ соответственно. Значение функционала (2) характеризует взвешенный уровень подавления внешних и начальных возмущений в системе управления.

2. Вспомогательные утверждения. Пусть J и J_0 — критерии качества типа (2) системы

$$E\dot{x} = Ax + Bw, \quad z = Cx + Dw, \quad x(0) = x_0,$$

регулярный пучок матриц $F(\lambda) = A - \lambda E$ с конечным спектром $\sigma(F) = \{\lambda_1, \ldots, \lambda_r\}$ называется допустимым, если $r = \text{rank} E$ и $\text{Re}\lambda_i < 0, i = 1, r$. Данное свойство матричного пучка $F(\lambda)$ обеспечивает отсутствие импульсивных мод и асимптотическую устойчивость нулевого состояния системы (3) при $w \equiv 0$.

Лемма 1 [2]. Если существуют матрицы X и $S = S^T \geq 0$, удовлетворяющие ЛМН

$$\begin{bmatrix} S & S - E^T X \\ S - X^T E & 0 \end{bmatrix} \geq 0,$$

$$\begin{bmatrix} A^T X + X^T A + C^T QC & X^T B + C^T QD \\ B^T X + D^T QC & D^T QD - \gamma^2 P \end{bmatrix} < 0,$$
то пучок матриц $F(\lambda)$ допустимый и $J_0 < \gamma$. Обратное утверждение выполняется при условии

$$\text{rank} \begin{bmatrix} E \\ D^\top QC \end{bmatrix} = \text{rank} E. \quad (6)$$

Лемма 2 [2]. Если совместна система соотношений (4), (5) и

$$S \leq \gamma^2 X_0, \quad \text{rank} (S - \gamma^2 X_0) = \rho, \quad (7)$$

где $X_0 = E^\top HE$ и $H = H^\top > 0$, то пучок матриц $F(\lambda)$ допустимый и $J < \gamma$. Обратное утверждение выполняется при условии (6).

При условиях лемм 1 и 2 нулевое состояние системы (3) со структурированной неопределенностью вектора возмущений $w = \gamma^{-1}\Theta z$ ($\Theta^\top P\Theta \leq Q$) робастно устойчиво. При этом $v(x) = x^\top Sx$ является общей функцией Ляпунова данной системы.

Лемма 3 [3]. Для заданных невырожденных $n \times n$-матриц X, Y и числа $\gamma > 0$ существуют матрицы X_1, $X_2 = X_2^\top > 0$, X_3, Y_1, $Y_2 = Y_2^\top > 0$ и Y_3 такие, что блочные матрицы

$$\hat{X} = \begin{bmatrix} X & X_3 \\ X_1 & X_2 \end{bmatrix}, \quad \hat{Y} = \begin{bmatrix} Y & Y_3 \\ Y_1 & Y_2 \end{bmatrix}, \quad \hat{E} = \begin{bmatrix} E & 0 \\ 0 & I_p \end{bmatrix}$$

удовлетворяют соотношениям $\hat{E}^\top \hat{X} \hat{E} \geq 0$, $\hat{E}^\top \hat{Y} \hat{E} \geq 0$ и $\hat{X} \hat{Y} = \gamma^2 I_{n+p}$, в том и только в том случае, когда

$$W = W^\top \geq 0, \quad \text{rank} W = \text{rank} E + \delta, \quad \delta \leq p, \quad (8)$$

где $W = \begin{bmatrix} E^\top X & \gamma E^\top \\ \gamma E & EY \end{bmatrix}$, $\delta = \text{rank}\Delta$ и $\Delta = \gamma^2 I_n - XY$.

3. Основные результаты. Пусть весовая матрица X_0 в (2) определена в виде $X_0 = E^\top HE$, где $H = H^\top > 0$. Система управления (1), замкнутая статическим регулятором

$$u = Ky, \quad \det(I_n - KD_{22}) \neq 0, \quad (9)$$

имеет вид

$$E \dot{x} = A_* x + B_* w, \quad z = C_* x + D_* w, \quad x(0) = x_0, \quad (10)$$

где $A_* = A + B_2 K_* C_2, B_* = B_1 + B_2 K_* D_{21}, C_* = C_1 + D_{12} K_* C_2, D_* = D_{11} + D_{12} K_* D_{21}$ и $K_* = (I_m - K D_{22})^{-1} K$. Введём матрицы W_R и W_L, столбцы которых образуют базисы ядер соответствующих матриц $R = [C_2, D_{21}]$ и $L = [B_2^\top, D_{12}^\top]$.

Теорема 1. Пусть для некоторых матриц X, Y и $S = S^\top \geq 0$ выполняется система соотношений (4), (7) и

$$W_R^T \begin{bmatrix} A^\top X + X^\top A + C_1^\top QC_1 \\ B_1^\top X + D_{11}^\top QC_1 \end{bmatrix} X^\top B_1 + C_1^\top D_{11} \\ D_{11}^\top QD_{11} - \gamma^2 P \end{bmatrix} W_R < 0, \quad (11)$$

$$W_L^T \begin{bmatrix} AY + Y^\top A^\top + B_1 P^{-1} B_1^\top \\ C_1 Y + D_{11} P^{-1} B_1^\top \end{bmatrix} Y^\top C_1 + B_1 P^{-1} D_{11}^\top \\ D_{11}^\top P D_{11}^\top - \gamma^2 Q^{-1} \end{bmatrix} W_L < 0, \quad (12)$$

$$XY = \gamma^2 I_n, \quad (13)$$

где $\gamma > 0$. Тогда существует статический регулятор (9), при котором система (10) имеет критерий качества $J < \gamma$ и пучок матриц $F_*(\lambda) = A_* - \lambda E$ допустимый.
При выполнении условий теоремы 1 матрицу искомого регулятора можно определить в виде $K = K_*(I_l + D_{22}K_*)^{-1}$ с помощью решения относительно K_* ЛМН

$$
\hat{L}^T K_\ast \hat{R} + \hat{R}^T K_\ast \hat{L} + \Omega < 0,
$$

где $\hat{L} = [B_2^T X, 0_{m \times s}, D_{22}^T]$, $\hat{R} = [C_2, D_{21}, 0_{l \times k}]$, $\Omega = \begin{bmatrix}
A^T X + X^T A & X^T B_1 & C_1^T \\
B_1^T X & -\gamma^2 P & D_{11}^T \\
C_1 & D_{11} & -Q^{-1}
\end{bmatrix}$. Задача построения динамического регулятора порядка p вида

$$
\dot{\hat{\xi}} = Z\hat{\xi} + V y, \quad u = U \hat{\xi} + Ky, \quad \hat{\xi}(0) = 0,
$$

для системы (1) формально сводится к определению матрицы \hat{K}_\ast статического регулятора $\hat{u} = \hat{K}_\ast \hat{y}$ для аналогичной системы в расширенном фазовом пространстве:

$$
\hat{E}\hat{x} = \hat{A}_\ast \hat{x} + \hat{B}_1 w + \hat{B}_2 \hat{u}, \quad z = \hat{C}_1 \hat{x} + \hat{D}_{11} w + \hat{D}_{12} \hat{u}, \quad \hat{y} = \hat{C}_2 \hat{x} + \hat{D}_{21} w,
$$

где

$$
\begin{bmatrix}
E \\
0
\end{bmatrix} \begin{bmatrix}
A & 0_{n \times p} & 0_{n \times m} \\
0_{p \times n} & I_p & 0_{p \times m}
\end{bmatrix} \begin{bmatrix}
\hat{A} \\
\hat{B}_1 \\
\hat{B}_2
\end{bmatrix} = \begin{bmatrix}
\hat{C}_1 \\
\hat{C}_2 \\
\hat{K}_\ast \hat{K}_2
\end{bmatrix},
$$

где $\hat{K}_\ast = \begin{bmatrix}
K_\ast & U_\ast \\
V_\ast & Z_\ast
\end{bmatrix}$, $K = \begin{bmatrix}
K \\
V \\
Z
\end{bmatrix} = (I_{n+p} + \hat{K}_\ast \hat{D}_2)^{-1}\hat{K}_\ast$, $\hat{D}_2 = \begin{bmatrix}
D_{22} & 0_{l \times p} \\
0_{p \times m} & 0_{p \times m}
\end{bmatrix}$.

При этом замкнутая система имеет вид

$$
\hat{E}\hat{x} = \hat{A}_\ast \hat{x} + \hat{B}_\ast w, \quad z = \hat{C}_\ast \hat{x} + \hat{D}_\ast w, \quad \hat{x}(0) = \hat{x}_0.
$$

Если определить критерий качества \hat{J} типа (2) для системы (16), то его значение совпадает с J, поскольку $\xi_0 = 0$. При этом $X_0 = E^T HE$ — первый диагональный блок весовой матрицы $X_0 = E^T \hat{H} E$, где $\hat{H} = \hat{H}^T > 0$.

Теорема 2. Пусть для некоторых матриц X, Y и $S = S^T \geq 0$ выполняется система соотношений (4), (7), (8), (11) и (12). Тогда существует динамический регулятор (14), при котором замкнутая система (16) имеет критерий качества $J < \gamma$ и пучок матриц $\hat{F}_\ast(\lambda) = \hat{A}_\ast - \lambda \hat{E}$ допустимый.

На основе теорем 1 и 2 разработаны алгоритмы построения регуляторов (9) и (14) для системы (1), обеспечивающие заданные оценки критериев качества $J_0 < \gamma$ и $J < \gamma$, а также свойства робастной устойчивости и непрерывности соответствующих замкнутых систем [3]. Данные алгоритмы могут быть численно реализованы с использованием компьютерных систем Matlab или PTC Mathcad Prime.

Мамонова Ганна Валеріївна, кандидат фізико-математичних наук, доцент, кафедра комп’ютерної математики та інформаційної безпеки ДВНЗ «Київський національний економічний університет ім. Вадима Гетьмана», e-mail: mamonova@kneu.edu.ua.

Дерев’янко Вікторія Миколаївна, аспірантка кафедри аудиту та економічного аналізу УДФСУ, координатор з прогнозування компанії «Данон», e-mail: vikaderevyanko@gmail.com.

ПОБУДОВА СТРАТЕГІЧНОЇ МОДЕЛІ РОЗВИТКУ ІНТЕЛЕКТУАЛЬНОГО КАПІТАЛУ ЯК НЕОБХІДНА УМОВА ЗАБЕЗПЕЧЕННЯ КОНКУРЕНТОСПРОМОЖНОСТІ КРАЇНИ

Мамонова Г.В., Дерев’янко В.М.

Ключові слова: інтелектуальний капітал, конкурентоспроможність країни, метод попарних порівнянь.

AMS Subject Classification: 03C30.

Вступ. Рівень конкурентоспроможності тієї чи іншої держави забезпечується рівнем ефективного використання національних виробничих ресурсів, підвищенням продуктивності їх використання та забезпеченням на цій основі високого, постійно зростаючого рівня життя населення. Необхідною умовою належного функціонування сучасного постіндустріального суспільства і головним фактором конкурентоспроможності сучасної економіки виступає інтелектуальний капітал.

Дослідження інтелектуального капіталу та його впливу на соціально-економічний розвиток приймається значна увага як серед зарубіжних, так і вітчизняних вчених. Проблемами дослідження сутності ІК присвячені роботи М. Барроса, Г. Беккера, Е. Брукінг, Дж. Мінцера, М. Мелоуна, Дж. Моррісона, Р. Нельсона, Р. Капелюшникова, Д. Тобіна, К. Тейлора, Д. Шнайдера та ін. При цьому необхідно відзначити дещо обмежену кількість праць українських вчених, присвячених цьому питанню. Тому, перед нами постало завдання побудувати стратегічну модель пріоритетності розвитку складових інтелектуального капіталу для забезпечення конкурентоспроможності України.

Оцінювання інтелектуального капіталу на макрорівні є мало досліджуваним. Для подальшого аналізу за важливістю складових інтелектуального капіталу на конкурентоспроможність національної економіки було виділено такі загальні сфери держави:

1. Наука (кількість працівників, задіяних у виконанні наукових досліджень та розробок, учасники докторантур, питома вага обсягу наукових і науково-технічних робіт у валовому внутрішньому продукті та ін.).
2. Освіта (доля населення з вищою освітію, доля витрат держави на освіту).
3. Інновації (кількість організацій, що здійснюють наукові дослідження та розробки, витрати на дослідження та розробки та ін.).
4. Технології (кількість підприємств, які створили передові технології, кількість створених технологій та ін.).
5. Репутація/Бренд (доля експорту, доля державного боргу та ін.).
6. Інвестиції (частка іноземних інвестицій в капітал, частка інвестицій в нематеріальні активи та ін.).

Другим кроком стало попарне зіставлення факторів. Для порівняння було використано шкалу, яка розроблена вченим Сааті. За загальною домовленістю порівняння завжди проводиться для фактора, що знаходиться в лівій колонці, по відношенню до фактора з верхнього рядка [1-2]. Таким чином, ми отримаємо матрицю попарних порівнянь для шести колонок і шести рядків (матриця 6x6). Результати проведенного аналізу наведені нижче у таблиці 1.
Таблиця 1

<table>
<thead>
<tr>
<th>Матриця попарних порівнянь за методом Сааті</th>
</tr>
</thead>
<tbody>
<tr>
<td>Наука</td>
</tr>
<tr>
<td>Наука</td>
</tr>
<tr>
<td>Освіта</td>
</tr>
<tr>
<td>Інновації</td>
</tr>
<tr>
<td>Технології</td>
</tr>
<tr>
<td>Репутація/Бренд</td>
</tr>
<tr>
<td>Інвестиції</td>
</tr>
</tbody>
</table>

На підставі матриці, представленої в табл. 1, використовуючи формулу середньої геометричної W_i, розраховуємо відносну цінність кожної комбінації:

$$W_i = \frac{\sqrt[2]{a_{i1} \cdots a_{im}}}{\sum_{j=1}^{m} \sqrt[2]{a_{ij} \cdots a_{im}}}$$

де a_{ij} — елементи матриці; m — кількість об'єктів; $i = 1, m$ — індекс.

$W = \begin{bmatrix}
0,054396 \\
0,057068 \\
0,033242 \\
0,245898 \\
0,199038 \\
0,410358
\end{bmatrix}$

Загаломо, що, обчислення вище, вектор відносних цінностей дає можливість не лише визначити вагові коефіцієнти для основних складових інтелектуального капіталу держави, а й забезпечує впорядкування пріоритетів. Наступною фазою процесу розрахунку вагових коефіцієнтів є визначення міри узгодженості суджень експертів. Для цього необхідно, згідно з алгоритмом описанням у [2], помножити вихідну матрицю попарних порівнянь на відповідні значення середніх геометричних:

$$A_w = \begin{bmatrix}
1 & 1 & 2 & 1/4 & 1/5 & 1/8 \\
1/2 & 1/2 & 1 & 1/8 & 1/6 & 1/8 \\
4 & 5 & 8 & 1 & 2 & 1/3 \\
5 & 4 & 6 & 1/2 & 1 & 1/2 \\
8 & 6 & 8 & 3 & 2 & 1
\end{bmatrix} \times \begin{bmatrix}
0,054396 \\
0,057068 \\
0,033242 \\
0,245898 \\
0,199038 \\
0,410358
\end{bmatrix} = \begin{bmatrix}
0,330524 \\
0,345280 \\
0,204179 \\
1,549618 \\
1,226869 \\
2,589638
\end{bmatrix}$$

Отриманий результат A_w по компонентно розділити на відповідні значення відносних цінностей об'єктів:

$$\lambda_i = \begin{bmatrix}
6,076248 \\
6,050342 \\
6,142232 \\
6,301882 \\
6,163986 \\
6,310673
\end{bmatrix}$$

Та розрахувати максимальне власне число матриці λ_{max} як середнє арифметичне.
\[\lambda_{\text{max}} = \sum_{i=1}^{m} \frac{\lambda_i}{m} = 6,1 \quad (2) \]

Завершальним кроком у ході визначення узгодженості відповідей експертів пропонується розрахунок індекс узгодженості Сааті за формулою 3:

\[J = \frac{\lambda_{\text{max}} - m}{m - 1} = \frac{6,1 - 6}{5} = 0,02 \quad (3) \]

Слід звернути увагу на те, що відповіді експерта вважаються узгодженими, якщо розрахований індекс узгодженості становить до 10% від еталонного. Еталонне значення для заданої кількості об'єктів визначається за допомогою табліці еталонних значень показника узгодженості в залежності від кількості об'єктів, що порівнюються [3]. У нашому випадку еталонне значення дорівнює 1,24, звідси випливає, що індекс узгодженості становить 1,61 % від еталонного показника. Таке значення рівня узгодженості дає підставу стверджувати, що ми можемо вказати вагові коефіцієнти для складових інтелектуального капіталу України. Провести їх впорядкування (табл. 4) та запропонувати використати проведене дослідження при розробці Стратегії покращення конкурентоспроможності національної економіки країни.

На основі отриманих вагових коефіцієнтів, можна побудувати модель розвитку інтелектуального капіталу країни (4), згідно якої держава повинна стимулювати та підтримувати перш за все клієнтський капітал, який зазнав погіршення внаслідок військових дій на Сході й окупації Криму. У нашому аналізі клієнтський капітал представлений інвестиціями та репутацією країни. Необхідність сфокусуватися на данних показниках також підтверджує індекс інвестиційної привабливості України за версією Європейської Бізнес Асоціації. Результати індексу свідчать про негативні настрої національного бізнесу у кінці 2017 року (показник становив 3,03 балі з 5-ти можливих), 58% підприємців не задоволені інвестиційним кліматом в Україні. Найменші значення індексу були зафіксовані в 2014-му та на початку 2015 року (у січні-лютого 2015 року він склав 2,51 бала з 5 можливих), що багато в чому було пов'язано з політичною нестабільністю, економічним падінням і початком активних бойових дій на сході України [4]. Особливої уваги потребує структурний капітал, а саме технології, а вже далі людський капітал – наука та освіта. Й фінальною складовою, на думку експертів, виступають інновації.

Модель розвитку інтелектуального капіталу країни

\[=5,55\%*\text{Наука}+5,71\%*\text{Освіта}+3,32\%*\text{Інновації}+24,59\%*\text{Технології}+19,90\%*\text{Репутація}+41,04\%*\text{Інвестиції} \] (4)

Висновок. Таким чином, застосування методу аналізу вагових коефіцієнтів при побудові стратегії розвитку національної економіки, допоможе забезпечити можливість ефективного та раціонального використання інтелектуального капіталу та конкурентоспроможність країни в порівнянні з іншими. Побудована модель розвитку й використання інтелектуального капіталу відповідає поточній ситуації та спрямована на забезпечення конкурентних переваг держави, її довгостроковому розвитку.

ОПТИМІЗАЦІЯ МОДАЛЬНИХ РЕГУЛЯТОРІВ З ОБМЕЖЕНЯМИ НА ТРАЄКТОРІЇ

Матвієнко В.Т., Філімонов М.Б.

Ключові слова: модальні, обмеження, оптимізація, стаціонарні, траєкторії.
AMS Subject Classification: 49M30

Розглянемо задачу модального керування для лінійної системи

\[
\frac{dx(t)}{dt} = Ax(t) + Bu(t)
\]

де \(x \) – \(n \) мірний, \(u \) – \(m \) мірний вектори. Необхідно визначити для системи керування (1) зворотний зв'язок у вигляді

\[
u(t) = Cx(t)
\]

відповідно до умови модального керування

\[
\det(\lambda E - A - BC) = (\lambda - \mu_1)(\lambda - \mu_2)...(\lambda - \mu_n) =
\]

\[
= \lambda^n + a_1\lambda^{n-1} + a_2\lambda^{n-2} + ... + a_n = 0,
\]

де \(a_1, a_2, ..., a_n \) – коефіцієнти характеристичного рівняння замкнutoї системи (1), які задані і забезпечують власні значення замкнutoї системи керування \(\mu_1, \mu_2, ..., \mu_n \).

Нехай \(\lambda_1, \lambda_2, ..., \lambda_n \) - корені характеристичного рівняння

\[
\varphi_A(\lambda) = \lambda^n + p_1\lambda^{n-1} + p_2\lambda^{n-2} + ... + p_n = 0
\]

не замкнutoї стаціонарної системи (1).

При виборі керування системою у вигляді \(u(t) = Cx(t) \) вибір матриці \(C \), яка забезпечує замкнutoї системи керування (1) бажані власні значення, є неоднозначним. Методи визначення матриці підсилення модального регулятора наводяться в роботах [1, 2, 3, 4]. Один із можливих методів знаходження матриці модального регулятора зводиться до представлення шуканої матриці у виді \(C = vq^T \) [2, 4, 5]. Це представлення матриці підсилення звужує множину можливих модальних регуляторів, але дає можливість порівняно просто визначити коефіцієнти модального регулятора.

Представимо матрицю оберненого зв'язку у вигляді \(C = vq^T \), де вектор \(v \) розмірності \(m \), а вектор \(q \) розмірності \(n \). Тоді система керування має вигляд

\[
\frac{dx(t)}{dt} = (A + \bar{b}q^T)x(t),
\]

де вектор \(\bar{b} = Bv \). Тобто багатовимірну задачу модального керування звели до побудови скалярної функції модального керування.

Матриця багатовимірного модального керування в даному випадку має вид

\[
C = vq^T = v(p-a)^T P^{-1} S_1^{-1},
\]

де \(S_1 = (Bv, ABv, ..., A^{n-1}Bv) \), вектори \(a = (a_1, a_2, ..., a_n)^T \), \(p = (p_1, p_2, ..., p_n)^T \), матриця розмірності \(n \times n \).
Довільний вектор \(v \) вибирається з умови \(\det S_1 \neq 0 \). За допомогою вибору вектора \(q \) в оберненому зв'язку забезпечимо замкненій системі (2) наперед задані власні значення з від'ємними дійсними частинами, тобто щоб замкнена система керування була асимптотично стійкою. При цьому вектор параметрів \(v \) у зворотному зв'язку є дозвільним. Вибором параметра \(v \) можна забезпечити обмеження на траєкторії замкненої системи керування. Для цього розглянемо обмеження на траєкторії системи вигляду

\[
x(t) \in \Gamma \left\{ x(t) : I^T x(t) \leq 1 \right\}, \quad t \in [t_0, T],
\]

з областю початкових збурень системи [6, 7]

\[
x(t_0) \in \left\{ x(t_0) : x^T(t_0)G_0x(t_0) \leq r^2 \right\}.
\]

Матриця \(G_0 \) симетрична повного рангу, вектор \(l \) задається згідно обмежень (3).

Задача вибору вектора \(v \) полягає в максимізації області початкових збурень (4) системи (2) так, щоб розв'язки замкненої системи належали області (3), а за рахунок вибору вектора \(q \) забезпечується асимптотична стійкість замкнутій системи (2).

Фундаментальна матриця розв'язків системи (2) \(X(t,t_0) \) задовольняє матричні диференційальні рівняння

\[
\begin{cases}
 \frac{dX(t,t_0)}{dt} = (A + Bv^T)X(t,t_0), \\
 X(t_0,t_0) = E.
\end{cases}
\]

Максимізація області початкових збурень для системи (2) при виконанні обмежень (3) на траєкторії системи, які задовольняють умови (4) наступна

\[
\max_{\mathbf{v}, t \in [t_0, T]} \min_{t \in [t_0, T]} l^T X(t,t_0)G_0^{-1}X^T(t,t_0)l = \max_{\mathbf{v}, t \in [t_0, T]} \min_{t \in [t_0, T]} l^T \mathbf{v}.
\]

Список використаних джерел

Неклюдов Валерій Юрійович, студент 4-го курсу, Інститут інформаційних систем в економіці, КНЕУ імені Вадима Гетьмана, Київ, Україна;
e-mail: Valera_1998@ukr.net;
Чечко Андрій Сергійович, студент 4-го курсу, Інститут інформаційних систем в економіці, КНЕУ імені Вадима Гетьмана, Київ, Україна;
e-mail: Andrey_Checko@ukr.net
Пилипчук Олексій Андрійович, студент 4-го курсу, Інститут інформаційних систем в економіці, КНЕУ імені Вадима Гетьмана, Київ, Україна;
e-mail: alex_pilipchuk744@ukr.net

ЗАХИЩЕНІСТЬ ОС BBOS ТА ОС WINDOWS

Неклюдов В.Ю., Чечко А.С., Пилипчук О.А.

Ключові слова: Операційна система, BBOS, Windows, модель захисту.

Проведемо класифікацію операційних систем, в якій виділимо певні критерії, що відображають різні характеристики систем. Відповідно до особливостей ОС можемо розділити їх на такі основні групи: за призначенням, за кількістю користувачів, за кількістю виконуваних задач, за типом обчислювальної техніки (за апаратною платформою) та за ступенем захищеності.

Під захищеною ОС зазвичай розуміється ОС, яка реалізує захист від таких основних загроз: сканування файлової системи; викрадення ключової інформації; підбирання паролів; збирання сміття; перевищення повноважень; програмних закладок; жадібних програм. Важливою рисою захищеної ОС є обов'язкова наявність засобів розмежування доступу користувачів до своїх ресурсів, а також засобів перевірки достовірності користувача, що починає роботу з ОС. Крім того, захищені ОС повинна містити засоби протидії випадковому або навмисному виведенню ОС з ладу.

Виділяють два основні підходи до створення захищених ОС - фрагментарний і комплексний.

Окрім виділяють захищені операційні системи для сучасних мобільних пристроїв (смартфонів, планшетних ПК тощо), оскільки смартфони і планшетні ПК зберігають і оброблюють дані, які, як правило, представляють для їх користувачів не меншою цінністю, ніж інформація, що зберігається і обробляється на ПК.

Розробником захищеної операційної системи BBOS виступає вітчизняна компанія "АТНІС", яка була заснована в 2006 році одним з членів міжнародної спільноти розробників систем OpenBSD, відомої операційної системи з відкритим вихідним кодом.

Захищена операційна система BBOS створена на основі операційної системи загального призначення OpenBSD - UNIX-подібної операційної системи з відкритим вихідним кодом.

У даний час ОС BBOS - єдина в Україні операційна система, допущена до обробки інформації з грифом "Для службового користування" (ДСК), яка може бути використана при побудові комплексних систем захисту інформації класів 2-3. Коректно говорити, що захищені ОС BBOS є реалізацією комплексної системи захисту інформації (КЗІ) на базі операційної системи OpenBSD.

Згідно «НД ТЗІ 2.5-005-99», стандартний функціональний профіль захищеності являє собою перелік мінімально необхідних рівнів послуг, які повинен реалізовувати КЗІ обчислювальної системи ІС, щоб задовольняти певні вимоги щодо захищеності інформації, яка обробляється в даній системі. Операційна система BBOS забезпечує наступні послуги безпеки (згідно «НД ТЗІ 2.5-004-99»): конфіденційність, цілісність, доступність та спостережність.
Операційна система BBOS є засобом створення КЗІ інформаційно-комунікаційних систем та захищеною вітчизняною ОС. Має експертний висновок Державної служби спеціального зв'язку та захисту інформації України.

На сьогодні, система BBOS практично використовується в: Державній службі статистики України, СБУ, МВС України, МНС України, Державній службі молоді та спорту України, МОЗ України, Державній службі спеціального зв'язку та захисту інформації України, в навчальному процесі, в рамках проекту інформатизації Єдиного Центру обробки пасажирських перевезень міста Києва.

Сьогодні Україна декларує підвищену увагу до питань кібербезпеки і кіберзахисту, що закріплено у вітчизняному законодавстві.

Одним з ефективних рішень в сфері забезпечення безпеки інформації в ІТС є проект створення та впровадження в сучасні комп’ютерні системи захищеної операційної системи BBOS, вона має вже десятирічну історію створення, впровадження та вдосконалення.

BBOS здатна працювати на багатьох архітектурах таких, як: alpha, amd64, armish, hp300, hppa, i386, landisk, mac68k, macppc, mvme68k, mvme88k,sgi, socppc, sparc, sparc64, vax, zaurus.

Це дає їй можливість знайти застосування в самому різноманітному якості, починаючи від вузькоспеціалізованих серверних завдань, закінчуючи елементарним набором текстової інформації.

BBOS складається з ядра ОС, завантажувача ядра, файлової системи, командного інтерпретатора та засобів захисту які виконують функції захисту ІО від загроз різного типу та об’єднані у функціональні компоненти, відповідно до свого призначення.

Операційна система BBOS забезпечує наступні послуги безпеки (згідно «НД ТЗІ 2.5-004-99»):

- Конфіденційність(КД-2, КА-2, КО-1, КВ-2)
- Цілісність(ЦД-1, ЦА-1, ЦО-1, ЦВ-1)
- Доступність(ДР-2, ДС-2, ДЗ-2, ДВ-2)
- Спостережність(НР-2, НИ-2, НК-1, НО-1, НЦ-1, НТ-2, НВ-1)

Також ОС BBOS може бути використана при побудові комплексних систем захисту інформації класів 2-3 (класифікація згідно з НД ТЗІ 2.5-005-99).

Основні компоненти КЗЗ Windows:

- Монітор безпеки-компонент системи, що виконується в режимі ядра і відповідає за перевірку прав доступу до об’єктів
- Підсистема локальної автентифікації-процес режиму користувача, що відповідає за політику безпеки в локальній системі
- База даних політики Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетчер облікових записів Lsass-база даних, що зберігає параметри політики безпеки локальної системи
- Диспетч
• Контекст захисту потоку може відрізнятися від контексту захисту його процесу. Цей механізм називається уособленням (impersonation).

• У випадку уособлення механізми перевірки захисту використовують контекст захисту потоку замість контексту захисту процесу, а без уособлення – контекст захисту процесу, до якого належить потік.

• Всі потоки одного процесу використовують спільну таблицю визначників, тому, коли потік відкриває будь-який об’єкт (навіть при уособленні), всі потоки цього процесу отримують доступ до цього об’єкту.

Модель захисту Windows для Win32:

• Функції захисту Windows дозволяють застосуванням Win32 визначати власні закриті об’єкти і викликати SRM-сервіси для застосування до цих об’єктів засобів захисту Windows.

• Сутність моделі захисту SRM відображає математичний вираз з трьома вхідними параметрами:
 • ідентифікаційними даними захисту потоку,
 • типом доступу, що запитується,
 • інформацією про захист об’єкту.

• Його результат – значення «так» або «ні», які визначають, чи надасть модель захисту доступ, що запитується.

• Багато з функцій режиму ядра, які використовує диспетчер об’єктів та інші компоненти виконавчої системи для захисту своїх об’єктів, експонуються у вигляді Win32-функцій режиму користувача.

• Наприклад, еквівалентом SeAccessCheck для режиму користувача є AccessCheck.

• Таким чином, застосування Win32 можуть застосовувати модель захисту Windows й інтегруватися з інтерфейсами автентифікації й адміністрування цієї операційної системи.

Список використаних джерел

1. Закон України «Про основні засади забезпечення кібербезпеки України» від 08.07.2018

 НД ТЗІ 1.1-003-99 «Термінологія в галузі захисту інформації в комп’ютерних системах від несанкціонованого доступу» від 28 квітня 1999 р.

5. Комплекс засобів захисту інформації на базі операційної системи OpenBSD. Шифр “BBOS”. - Інструкція користувача. UA.ATMH.00001-01 34 01-1.

6. Комплекс засобів захисту інформації на базі операційної системи OpenBSD. Шифр “BBOS”. - Організаційні заходи по забезпеченню інформаційної безпеки. UA.ATMH.00001-01 93 01-1.

7. Комплекс засобів захисту інформації на базі операційної системи OpenBSD. Шифр “BBOS”. - Пояснювальна записка. UA.ATMH.00001-01 81 01-1.
Нікітин Анатолій Володимирович, кандидат фіз.-мат. наук, доцент
КНУ імені Тараса Шевченка, Київ, Україна,
e-mail: nikitin2505@gmail.com;
Самойленко Ігор Валерійович, доктор фіз.-мат. наук, доцент,
Київський національний університет імені Тараса Шевченка, Київ, Україна,
e-mail: isamoil@i.ua

АСИМПТОТИЧНА ДИСИПАТИВНІСТЬ УКРУПНЕННИХ СТОХАСТИЧНИХ ЕВОЛЮЦІЙНИХ СИСТЕМ З МАРКОВСЬКИМИ ПЕРЕКЛЮЧЕННЯМИ ТА ІМПУЛЬСНИМИ ЗБУРЕННЯМИ У НЕКЛАСИЧНИХ СХЕМАХ АПРОКСИМАЦІЇ

Нікітин А.В., Самойленко І.В.

Ключові слова: асимптотична дисипативність, стохастична еволюційна система,
AMS Subject Classification: 37H10

Стогохастична еволюційна система в ергодичному марковському середовищі задається стохастичним диференціальним рівнянням [7]
\[
du(t) = C(u(t), x(t))dt + \epsilon d\eta(t), \quad u(t) \in \mathbb{R}
\]
де марковський процес \(x(t) \), \(t \geq 0 \) визначається на стандартному фазовому просторі \((E,\mathcal{E}) \) з розщепленням
\[
E = \bigcup_{k=1}^{N} E_k, \quad E_k \cap E_k' = \emptyset, \quad k \neq k'
\]
у схемі серій з малим параметром серії \(\epsilon \rightarrow 0, \quad \epsilon > 0 \).

Марковське ядро має вигляд
\[
Q^\epsilon(x, B, t) = P^\epsilon(x, B)[1 - \exp\{-q(x)t\}], \quad x \in E, \quad B \in \mathcal{E}, \quad t \geq 0.
\]

Нехай також виконуються умови:

ME1: Ядро, що описує перехідні імовірності вкладеного ланцюга Маркова \(x_n \), \(n \geq 0 \), має наступне представлення
\[
P^\epsilon(x, B) = P(x, B) + \epsilon P_1(x, B).
\]

Стохастичне ядро \(P(x, B) \) на розщепленому фазовому просторі визначається так
\[
P(x, E_k) = 1_k(x) = \begin{cases} 1, & x \in E_k, \\ 0, & x \notin E_k. \end{cases}
\]

Стохастичне ядро \(P(x, B) \) визначає супроводжуючий ланцюг Маркова \(x_n \), \(n \geq 0 \) на класах \(E_k, 1 \leq k \leq N \). Крім того, збируючи ядро \(P_1(x, B) \) задовольняє умові
\[
P_1(x, E) = 0,
\]
що є прямим наслідком рівності \(P^\epsilon(x, E) = P(x, E) = 1 \).

ME2: Асоційований марковський процес \(x^0(t), t \geq 0 \), заданий генератором
\[
Q \varphi(x) = q(x) \int_E P(x, dy)[\varphi(y) - \varphi(x)]
\]
є рівномірно ергодичним на кожному з класів \(E_k, 1 \leq k \leq N \), зі стаціонарними розподілами \(\pi_k(dx), 1 \leq k \leq N \), які задовольняють співвідношенням:
\[\pi_k(dx)q(x) = q_k(x) \rho_k(dx), \quad q_k := \int_{E_k} \pi_k(dx)q(x), \]
de \(\rho(dx) \) - стаціонарний розподіл вкладеного ланцюга Маркова.

ME3: Усереднені імовірності виходу
\[\hat{p}_k := q(x) \int_{E_k} \rho_k(dx)P(x,E \setminus E_k) > 0, \quad 1 \leq k \leq N. \]

Таким чином, збруююче ядро \(P(x,B) \) визначає переходні імовірності між класами \(E_k, 1 \leq k \leq N. \) Отже, рівність \(P^\varepsilon(x,B) = P(x,B) + \varepsilon P_1(x,B) \) означає, що вкладений ланцюг Маркова \(X^\varepsilon, n \geq 0 \) проводить великий проміжок часу в кожному з класів \(E_k \) та перестрибує між класами з малими ймовірностями \(\varepsilon P_1(x,E \setminus E_{k}). \)

За умов **ME1-ME3** має місце слабка збіжність [2]
\[v(x^\varepsilon(t)) \Rightarrow \hat{x}(t), \quad \varepsilon \rightarrow 0, \quad v(x) = k \in \hat{E} = \{1,...,N\}, \quad x \in E_k, 1 \leq k \leq N. \]

ME4: Укрупнений марковський процес \(\hat{x}(t), t \geq 0 \) є ергодичним, зі стаціонарним розподілом \(\hat{\pi} = (\pi_k, k \in \hat{E}). \)

Таким чином, оператор \(Q^\varepsilon \) можна подати у вигляді
\[Q^\varepsilon = Q + \varepsilon Q, \quad Q_1(x) = q(x) \int_{E_k} P(\cdot,dy)[\phi(y) - \phi(x)], \]

Нехай \(\Pi \) – проектор на нуль-підпростір зведено-оборотного оператора \(Q. \) Його дія на тест-функцію визначається так:
\[\Pi \phi(x) = \sum_{k=1}^{N} \hat{\phi}_k 1_k(x), \quad \hat{\phi}_k := \int_{E_k} \pi_k(dx)\phi(dx). \]

Зведений оператор \(\hat{Q}_1 \) визначимо за допомогою співвідношення
\[\hat{Q}_1 \Pi = \Pi Q \Pi. \]

Імпульсьний процес збурень (ІПЗ) \(\eta^\varepsilon(t), t \geq 0, \) у схемі апроксимації Леві задається співвідношенням
\[\eta^\varepsilon(t) = \int_0^t \eta^\varepsilon(ds, x^\varepsilon(s / \varepsilon^3)); \]
де сукупність процесів с незалежними приростами \(\eta^\varepsilon(t,x), t \geq 0, x \in X, \) визначається генераторами
\[\Gamma^\varepsilon(x)\phi(w) = \varepsilon^{-2} \int_{R} (\phi(w+v) - \phi(w))\Gamma^\varepsilon(dv,x), x \in X \]
та задовольняють умовам апроксимації Леві або Пуассона (детальніше див. [2,3]):
Нехай виконується умова балансу
\[\Pi \Gamma_1 = 0, \]
dе \(\Gamma_1 \phi(w) = \Pi \Gamma_1(x)\phi(w). \)

Означення 1 [1]. Система (1) при виконанні початкової умови
\[u(t_0) = u_0(\omega) \] називається дисипативною, якщо випадкові величини \(|u(t,\omega)| \) обмежені за.
ймовірністю рівномірно відносно $t \geq t_0$ та рівномірно відносно $u_0(\omega)$ з виконанням умови $P[|u_0(\omega)| < k] = 1$ при деякому $k < \infty$.

Означення 2. Система (1) називається асимптомично дисипативною, якщо $u(t)$ слабко збігається до $u(t)$ і гранична еволюція, яка визначена рівнянням (4), буде дисипативною в сенсі означення 1.

Теорема 1. Нехай існує функція Ляпунова $V(u) \in C^3(\mathbb{R}^d)$ системи

$$\frac{du}{dt} = \alpha(u),$$

де $\alpha(u) = \hat{C}(u) + \hat{\alpha}$.

що задовольняє умовам

$C1$: $|\hat{\Gamma}_u(x) R_0 L V(u)| < M_1 V(u)$, $M_1 > 0$;

$C2$: $|\hat{\Gamma}_u(x) R_0 \hat{\Gamma}_u(x) V(u)| < M_2 V(u)$, $M_2 > 0$;

$C3$: $|\hat{\Gamma}_u(x) R_0 \hat{C}(x) V(u)| < M_3 V(u)$, $M_3 > 0$;

$C4$: $|\hat{C}(x) R_0 L V(u)| < M_4 V(u)$, $M_4 > 0$;

$C5$: $|\hat{C}(x) R_0 \hat{\Gamma}_u(x) V(u)| < M_5 V(u)$, $M_5 > 0$.

$C6$: $|\hat{C}(x) R_0 \hat{C}(x) V(u)| < M_6 V(u)$, $M_6 > 0$.

Окрім того, нехай виконуються нерівності

$$\alpha(u)V''(u) < -c_1 V(u),$$

$$\sup_{u \in \mathbb{R}^d} \|\hat{\sigma}(u)\| < c_2(x),$$

$$\int_{\mathbb{R}} v^2 \hat{\Gamma}_0 (d v, x) < c_3(x),$$

де $c_1 > 0, c_2 > 0$ i $c_3 = \int_{\mathbb{R}} \pi(dx)c_3(x) > 0$.

Тоді система (1) асимптомично дисипативна.

Олійник Андрій Петрович, доктор технічних наук, професор, Івано-Франківський національний технічний університет, Івано-Франківськ, Україна e-mail: andriioliinyk@gmail.com;
Незамай Борис Сергійович, кандидат технічних наук, доцент, Івано-Франківський національний технічний університет, Івано-Франківськ, Україна e-mail: boris_may@ukr.net

КОМПЛЕКСНА МАТЕМАТИЧНА МОДЕЛЬ АВАРІЙНОЇ СИТУАЦІЇ НА ТРУБОПРОВОДАХ ТА ОЦІНКА ЇЇ ВПЛИВІВ НА ДОВКІЛЛЯ

Олійник А. П., Незамай Б. С.

Ключові слова: напружено-деформований стан, рівняння Нав'є-Стокса, рівняння дифузії

AMS Subject Classification: 74G10

Проблема, що вирішується може бути розділена на три основні задачі:

1. Визначення параметрів напружено-деформованого стану досліджуваних об’єктів за відомою інформацією про зміну їх просторової конфігурації – як правило, такою інформацією є дані про переміщення точок поверхні досліджуваного тіла.

Дана методика, яка детально обґрунтована в [1], і її особливістю є те, що висновок про напружено - деформований стан об’єкта робиться на основі певних інтегральних показників – переміщення точок поверхні тіла без деталізації причин виникнення цих переміщень. Основою для моделювання є закон зміни радіус вектора будь-якої точки досліджуваного тіла за законом:

\[r(s, \varphi, r, t) = \tilde{r}_0(s, \varphi, r, t) + p(s, \varphi, r, t) \cdot (\cos \omega(s, \varphi, r, t)\tilde{\mathbf{b}}_1 + \sin \omega(s, \varphi, r, t)\tilde{\mathbf{n}}_1) + \psi(s, \varphi, r, t)\tilde{r}_1 - \frac{2R}{2} \tilde{\mathbf{n}}_1, \]

де \(s, \varphi, r, t \) – пов’язані з криволінійним циліндричним тілом координати відповідно вздовж осі тіла \(\theta < S < L \), по полярному куту \(0 \leq \varphi \leq 2\pi \) та по радіусу об’єкта \(R_{\text{leak}} < r < R_{\text{zovn}} \), \(L \)- довжина досліджуваного об’єкта; \(\tilde{r}_0 \) - радіус вектор точки на твірній об’єкта; \(\rho(s, \varphi, r, t) \); \(\omega(s, \varphi, r, t) \); \(\psi(s, \varphi, r, t) \) – функції, що характеризують переміщення точок досліджуваного тіла відповідно в радіальному, полярному та повздовжньому напрямках, - вектори дотичної, бінормалі та нормалі до твірної об’єкта. Задання функції \(\rho(s, \varphi, r, t) \) та \(\psi(s, \varphi, r, t) \) на основі даних про переміщення точок поверхні дозволяє в контрольний момент часу провести розрахунки компонент тензорів деформації \(\varepsilon_{ij} \)

\[\varepsilon_{ij}(s, \varphi, r, t_k) = \frac{1}{2}(g_{ij}(s, \varphi, r, t_k) - g_{ij}(s, \varphi, r, t_0)). \]

На основі даних про зміну напружено – деформованого стану об’єкта вдається вислідити його потенційно небезпечні ділянки, на яких напруження приймають критичний рівень, або ж зміна напружень є такою, що може призвести до розгерметизації об’єкта, а також, і до потенційно небезпечних екологічних впливів.

2. Оцінка інтенсивності витоку речовини при порушенні герметичності об’єкта.

Задача оцінки параметрів течії у трубопроводах та в свердловинних потоках зводиться до необхідності розв’язання системи рівнянь Нав’є-Стокса [2] в двовимірній постановці з умовами \(p=p_0-kx \) (\(k \)- коефіцієнт перепаду тиску); граничні умови для них записуються у вигляді:

348
причому зони витоку визначаються зонами критичних напружен, визначених за законом квазістаціонарних переміщень, визначених за (1), таких зон може бути декілька – за кількістю змодельованих зон критичних напружень.

3. Визначення концентрації шкідливих речовин в зоні аварійної ситуації.

Для оцінки концентрації шкідливих речовин розв’язується рівняння дифузії, яке для двовимірної області записується у вигляді:

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(a(x, y, t) \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left(a(x, y, t) \frac{\partial C}{\partial y} \right).$$

(4)

Коефіцієнт $a(x, y, t)$ є коефіцієнтом, який залежить від просторових координат x, y та часу t. Рівняння дифузії (4) доповнюється гранічними та початковими умовами [2]:

$$C_{0}(x, y) = C_{0}(x, y, 0),$$

$$C_{1,\alpha} = C_{\gamma}(y, t),$$

$$C_{\gamma,\alpha} = C_{\gamma}(x, t),$$

$$C_{\gamma,\gamma} = C_{\gamma}(x, t).$$

(5)

Зокрема для рівняння (4) при умові $a(x, y, t) = const = a^2$ з початковими умовами (5) за методом Фур’є одержується для прямокутника $(0; L)$ x $(0; L)$ [3]:

$$C(x, y, t) = \frac{4}{L_1 \cdot L_2} \sum_{k, j=1}^{\infty} a_{kj} \cdot e^{-\frac{\pi^2}{a^2} (\frac{k^2}{L_1^2} + \frac{j^2}{L_2^2})} \cdot \sin \frac{k\pi x}{L_1} \cdot \sin \frac{j\pi y}{L_2},$$

(6)

де

$$a_{kj} = \frac{1}{L_1 L_2} \int_{0}^{L_1} \int_{0}^{L_2} C_0(x; y) \cdot \sin \frac{k\pi x}{L_1} \cdot \sin \frac{j\pi y}{L_2} \cdot dx \cdot dy.$$

(7)

При визначенні аналітичної структури $C_i(x, t), C_j(y, t), j=1,2$ використовуються результати розрахунків системи рівнянь Нав’є-Стокса з гранічними умовами (4-3) в допущенні про пропорційність концентрації речовини на границі області швидкості витікання речовин.

Всі розроблень моделі доведені до чисельної реалізації. Використовуються методи скінчених різниць. Особливістю одержаного розв’язку є те, що гранічні умови для (3) змінюються на кожному кроці ітераційної процедури, таким чином, у випадку збіжності ітераційного процесу, вдається визначити швидкість витікання рідин з досліджуваного об’єкта.

МОДЕЛЬ ЗМІНИ ТЕХНОЛОГІЧНОГО УКЛАДУ В КІБЕРПРОСТОРІ

Орто В. В., Шворак К. В.

Ключові слова: переобладнання, кіберпростір, старий спосіб, новий спосіб, етап накопичення, етап віддачі накопичень, етап завершення переобладнання.

Для динамічного та ефективного захисту необхідно систематично оновлювати програмне забезпечення (ПЗ). В умовах ринкової економіки кіберпростору закон конкурентності змушує підприємців змінювати старі спосіби обладнання на нове. До того ж, в нашій країні масове переобладнання проводилось тільки під час індустріалізації та у післявоєнний період. З тих пір старі спосіби вже були реконструйовані та переобладнані. [1]

Будемо вважати, що інвестиції старого способу в створенні нового відбуваються із фіксованим лагом τ. Припускаємо, що переобладнання здійснюється цілком за рахунок внутрішніх засобів, тому його єдиним джерелом є старий спосіб, а оскільки інвестиції і накопичення нерухомості не можна зменшувати, то джерелом є невиробничі споживання.

Деякі вихідні передумови виберемо таким чином, щоб побічні ефекти не затінкували основний предмет моделі – переобладнання. Так, будемо вважати, що коефіцієнти вибуття однакові для старого і нового способів, тобто μ₁ = μ₂ = μ. Крім того, приймемо, що трудові ресурси постійні, тобто L(𝑡) = L = const, а лаги капіталовкладень відсутні всередині кожного способу.

Оскільки старий спосіб вичерпав себе, то до початку переобладнання він вже знаходився в стаціонарному режимі, отже:

\[
k_0 = \left(\frac{A_0 \rho_0}{\mu_0}\right)^{1 - \alpha_0}, \quad i_0 = \rho_0 x_0, \quad c_0 = (1 - \rho_0) x_0
\]

де с – фонд невиробничого споживання, k – обсяг фондів, x – валовий суспільний продукт, ρ – норма накопичення.

Якщо питоме споживання можна скоротити до рівня с < c, то вивільнені потужності можна використовувати для виробництва засобів праці для нового способу, причому внаслідок наявності лага інвестиції робляться раніше в момент t = τ, a введення фондів здійснюється в момент t, тобто \(v(t) = i(t - \tau) \).

За час τ загальний об’єм інвестицій складає L(c₀ – c)τ, на поточний момент L(c₀ – c)τ, t < τ.

Період переобладнання складається з трьох етапів: етап накопичення, віддачі накопичень та завершення переобладнання.

Етап накопичення відбувається за рахунок зменшення використання програмного забезпечення до мінімально допустимого рівня. Оскільки вкладів у новий спосіб ще нема, то діє тільки старий спосіб:
k(t) = k₀, c(t) = c₀, i(t) = c₀ – ć, I(t) = (c₀ – ć)Lt, V(t) = 0,
де ć – рівень споживання, ć < c, t – момент часу, L(t) – ресурси, τ – фіксований лаг.

Етап віддачі накопичень. Накопичення старого способу в новий починають давати накопичення для себе.

\[L(t) = d \frac{e^{b(t-\tau)} - 1}{b} = \frac{(c_0 - \check{c})L[e^{b(t-\tau)} - 1]}{\mu k[(\frac{k_0}{k})^{1-\mu} - 1]} \]

Таким чином, доля нового способу у використанні ресурсів експоненційно росте. Момент закінчення переходу процесу означає закінчення зміни програмного забезпечення.

Момент закінчення переходного процесу T визначається з рівняння \(\theta(T) = 1 \), яке означає закінчення переливу трудових ресурсів в новий спосіб. При \(T < 2\tau \) має місце прискорений переходний процес, який закінчується вже на другому етапі, при цьому рівняння запишеться наступним чином:

\[\frac{(c - \check{c})[e^{b(\tau-\tau)} - 1]}{\mu k[(\frac{k_0}{k})^{1-\mu} - 1]} = 1 \]

Етап закінчення переходного процесу. Новий спосіб розвивається за рахунок власних інвестицій. Переходний процес закінчується як тільки фонди нового способу поглинуть всі ресурси. Рівняння для ресурсів нового способу:

\[L(t) = d \frac{e^{bt} - 1}{b} e^{b(t-2\tau)} = \frac{(c - \check{c})L(e^{bt} - 1)e^{b(t-2\tau)}}{\mu k[(\frac{k_0}{k})^{1-\mu} - 1]} \]

Після повного витіснення старого способу починається звичайний переходний процес у моделі Солоу для нового способу. [2]

В умовах переходного періоду та інфляції капіталовкладення скоротились, посилися процес фізичного старіння обладнання. Необхідність переобладнання виникає тоді, коли старий спосіб виробництва перестає бути актуальним, тому нема необхідності в подальшій його експлуатації.

У моделі спочатку діє тільки старий спосіб виробництва, потім у процесі переобладнення співвідносять старий і новий спосіб до тих пір, поки не стане домінуючим новий спосіб. Потім все повторюється: новітній спосіб замінює новий. У реальному кіберпросторі процеси переобладнення у різних виробничих осередках і підсистемах можуть проходити асинхронно, тому чітка, але незграбна картина, що дається моделлю, стане більш розмитою і згладженою. [3]

3. Браун М. Теория и измерение технического прогресса. – Москва: Статистика, 1971
Стоян Володимир Антонович, доктор фіз.-мат. наук, професор,
КНУ імені Тараса Шевченка, Київ, Україна,
e-mail: v_a_stoyan@ukr.net

ПРО РЕЗУЛЬТАТИ ДОСЛІДЖЕННЯ ДИНАМІКИ ЛІНІЙНИХ ПРОСТОРОВО РОЗПОДІЛЕНІХ СИСТЕМ

Стоян В.А.

Ключові слова: математичне моделювання, лінійні динамічні системи, системи з розподіленими параметрами, системи з невизначеностями, початково-країові задачі, псевдорозв'язки.

AMS Subject Classification: 34B05

Запропоновано та реалізовано [1] новий і оригінальний підхід до розв’язання задач математичного моделювання динаміки лінійних просторово розподілених систем. Вихідними для нього є лінійна диференціальна модель процесу, доповнена початково-країовими спостереженнями за його станом. Як на порядок та структуру диференціального оператора моделі, так і на кількість та якість зовнішньо-динамічних спостережень, якими вона доповнена, ніяких обмежень нема. Останні можуть бути як дискретно, так і неперервно заданями при дискретно та неперервно визначених функціях, якими вони моделюються за середньо-квадратичним критерієм. Розв’язуючись, для знаходження цих функцій є системи диференціальних, інтегральні та функціональних рівнянь, для яких запропоновані методи побудови псевдорозв’язків з оцінкою їх точності та однозначності. За цим же критерієм і цією ж точністю, оцінюється узгодженість точного математичного розв’язку диференціальної моделі системи з наявними початково-країовими спостереженнями за нею. Для поширення методів [1] математичного моделювання динаміки неповно спостережуваних просторово розподілених систем на процеси і явища, не описані диференціальною моделлю, розвинені ідентифікаційні алгоритми побудови ядер їх диференціальних моделей.

Запропонована в роботі методика математичного моделювання розв’язків прямих задач динаміки просторово розподілених систем легко поширюються і на задачі керування ними. При цьому, як і для спостережень, бажаний стан системи задається як дискретно так і неперервно визначені. Лінійними диференціальными перетвореннями функції стану останньої. Успішно розв’язані задачі керування динамічними системами по середньоквадратичному наближенню їх стану до бажаного з використанням одного, двох, або трьох доступних для цього зовнішньо динамічних збурюючих факторів.

Частинним випадком отриманих математичних результатів є моделі розглядуваних систем в усталеному часовому режимі та необмежених просторових областях. Як не дивно, комп’ютерна реалізація всіх сформульованих та розв’язаних в роботі математичних задач проста і виконується з використанням методів лінійної алгебри, доповнених простими методами чисельного інтегрування в одно- та багатовимірних просторово-часових областях. Останні отримані математичні результати робить доступними для комп’ютерно-аналітичного моделювання процесів і явищ в рамках класичних нормативних курсів з прикладної математики [1] та виконання лабораторних робіт, якими вони супроводжуються [2].

Утеулиев Ниетбай Утеулиевич, доктор физ.-мат. наук, профессор, Нуккусский филиал ТУИТ, Нуккус, Республика Узбекистан, e-mail: utewlievn@mail.ru;
Кожаметов Абат Турсымуратович, кандидат физ.-мат. наук, доцент, Нуккусский филиал ТУИТ, Нуккус, Республика Узбекистан, e-mail: q_yusup@mail.ru;
Кутлымуратов Юсуп Кулбаевич, старший преподаватель, Нуккусский филиал ТУИТ, Нуккус, Республика Узбекистан, e-mail: q_yusup@mail.ru;

ОБ ОДНОМ АЛГОРИТМЕ НАХОЖДЕНИЯ ЭФФЕКТИВНЫХ РЕШЕНИЙ ДВУХКРИТЕРИАЛЬНОЙ ЭКОЛОГО-ЭКОНОМИЧЕСКОЙ ЗАДАЧИ РАЗМЕЩЕНИЕ И СПЕЦИАЛИЗАЦИИ СЕЛЬСКОХОЗЯЙСТВЕННОГО ПРОИЗВОДСТВА

Утеулиев Н.У., Кожаметов А.Т., Кутлымуратов Ю.К.

Ключевые слова: Модель, программный комплекс, множество Парето, эффективные решения.

Оптимизация проблемы размещения и специализации сельскохозяйственного производства с учётом рационального использования природных ресурсов является сложной, многогранной и актуальной проблемой.

В данном работе рассмотрим методику применения графических алгоритмов для нахождение эффективных решений при моделировании двухкритериальных задач размещения и специализации сельскохозяйственного производства.

Для осуществления этих задач в качестве практического внедрения были взяты и проанализированы данные фермерских хозяйств массива Нуккусского района Республики Каракалпакстан.

С помощью диалогового программного средства [2] получим результаты числовых решений на основе дискретизации шагами $h = 0,25, h = 0,1$ и $h = 0,01$ при значения $\alpha = \alpha_i = 1 - \alpha_2, \alpha = h * i, i = 1, n, n = 1/h$. При этом берётся одно решение из равнозначных решений соответственно из 4, 10 и 100 решений и в общей сложности получены 4, 10, 22 решений, не соответствующих друг другу. Приведем полученные 22 решения в множестве U множестве решений точек по оси координат целевых функций $f_1(x), f_2(x)$ и результаты численного решения будут иметь графический вид. В следующих шагах мы будем использовать методику составления множества Парето. Составим множество Парето по множеству решений полученных точек. Для этого создадим прямоугольные области в противоположных направлениях относительно функций $f_1 \rightarrow \text{max}$, $f_2 \rightarrow \text{min}$ по каждой точке и соединим предельные точки созданных областей, возникших в результате их соединения (Рис.1).

В результате этого получим две области U_1 и U_2 : слабо эффективные решения $(3,7,11,14,16,17,19,20,21) \in U_1$ и эффективные решения $(1,2,4,5,6,8,9,10,12,13,15,18,22) \in U_2$ (Рис. 2). Слабо эффективные решения далее не учитываются в вычислениях, последующие же сопоставления осуществляются только с эффективными решениями U_2. Данное множество эффективных решений приведено на рис. 3.
При применении методики ограничения функционала, т.е. будем учитывать преимущество решений задач относительно однокритериальной задачи, множество Парето в виде $f_1(x) = 1,2$ и $f_2(x) = 0,35$ ограниченных сверху и снизу. При этом эффективные решения множества Парето по результатам числового вычисления уменьшаются и являются наиболее эффективными, последние решения $h = 0,01$ представлены на рис. 4. Здесь для множества Парето имеют место условия $U_3 \subseteq U_2$, $U = U_1 \cup U_2$.

В рис. 4 приведены 6 вариантов решений для лица, принимающего решения.
На основе этих данных соответственно приводятся табличные, графические и гистограммные анализ плановых и действительных показателей по размещению сельскохозяйственных посевов и вариантам решений двухкритериальной экологической модели.

Список литературы:

Ходневич Ярослав Васильович, кандидат техн. наук,
Інститут телекомунікацій і глобального інформаційного простору НАН України, Київ, Україна,
e-mail: jv hodnevich@ukr.net;
Степанишин Дмитро Володимирович, доктор техн. наук, доцент,
Інститут телекомунікацій і глобального інформаційного простору НАН України, Київ, Україна,
e-mail: d.v.stefanyshyn@gmail.com
Корбутяк Василь Михайлович, кандидат техн. наук, доцент,
Национальний університет водного господарства та природокористування, Рівне, Україна,
e-mail: v.m.korbutiak@nuwm.edu.ua

ПРО МОДЕЛЮВАННЯ ПАРАМЕТРІВ ЕКОЛОГІЧНИХ ПОПУСКІВ ВОДИ НА АНТРОПОГЕННО-ПЕРЕТВОРЕНІ РІЧКАХ

Ходневич Я.В., Степанишин Д.В., Корбутяк В.М.

Ключові слова: геопросторовий аналіз, екологічний стік, екологічні попуски, моделювання, неусталений рух води в річкових руслах, інтелектуальна задача

AMS Subject Classification: 76D05, 35Q30, 76M12, 65F05.

В зв’язку з будівництвом та експлуатацією численних споруд на річках та необхідністю проведення заходів щодо підтримки гідроморфологічної стійкості річкових русел, здорового екологічного стану річкових систем, виживання гідробіоти в умовах кліматичних змін і зростаючого антропогенного навантаження на водозборах сформувався і актуалізувався новий науковий напрям прикладних досліджень, який наразі реалізується на стику різних предметних областей (гідробіології, гідрології, гідроморфології, гідроекології, русової гідралогії тощо) в контексті забезпечення так званого «екологічного стоку». Ці дослідження стали життєво необхідною складовою сучасного управління річковими ресурсами в багатьох країнах світу, оскільки, окрім реалізації цілей водокористування, річкам необхідна вода і для підтримки стабільного функціонування водних екосистем, що є особливо актуальним в регіонах, де дефіцит водних ресурсів змушує водокористувачів та водоспоживачів вилучати неприпустимо велику кількість води з річок для задоволення потреб у господарській діяльності [1-6].

Практичне забезпечення екологічного стоку на антропогенно-перетворених річках, з функціонуючими гідропорудами, знаходить своє вираження в організації на гідропорудах деяких мінімально необхідних, зазвичай холостих, скидів (попусків) води (їх називають екологічними, екологічно-репродукційними, санітарно-екологічними, репродукційними, санітарно-екологічно-репродукційними тощо), які здійснюються з метою підтримки процесів відтворення біологічної складової в найбільш екологічно чутливих екосистемах. В світі, практика екологічних попусків реалізується не тільки в посушливих регіонах, з яскраво вираженою нерівномірністю річкового стоку протягом року, наприклад, таких як Південна Австралія чи Південна Африка, але й на достатньо повноводних і в межінь малих річках Швейцарії, Швеції чи півдня Англії. При цьому метою екологічних попусків може бути забезпечення в часі відповідних витрат і рівні води в руслах річок не тільки для підтримки належного стану водних екосистем, а і забезпечення соціально-економічних функцій річок, стійкого та надійного водокористування по всій їх довжині [1-3].

Кліматичні зміни, що особливо інтенсифікувалися з середини минулого століття, антропогенне навантаження на річки та їх водозбори вплинули на водний режим річок, особливо малих та середніх, практично у всіх кліматичних зонах [2]. Це стосується і річок, що протікають в межах України [7, 8]. Значний вплив на стан вітчизняних річок має також надмірне зарегулювання стоку. На багатьох з них спостерігаються очевидні ознаки деградації за гідробіологічними, гідрохімічними та гідроморфологічними показниками.
Зокрема, на більшості рівнинних річок України протягом останніх десятиліть має місце тенденція до зменшення максимальних витрат води весняного водопілля та його об’єму [7, 8]. Особливо страждає від надмірного зарегулювання стоку р. Південний Буг, в басейні якої знаходиться понад 8000 штучних водойм (ставків, водосховищ). Значний вплив на незадовільний екологічний стан річок України мають надмірні безповоротні відбори води (до 12% від водозабору [9]) та надмірне забруднення поверхневих вод. Подекуди повне водоспоживання та водовикористання вже перевищує можливості поповнення водних ресурсів річок. За умов ненормованих відборів води (до 12% від водозабору [9]) ряд річок практично весь рік перебувають у середньо- та маловодних умовах. Їх проточність зменшується, формуються ділянки стоячої води, відбувається значне заростання русел вищою водною рослинністю, їх замулення, зневоднення та пересихання.

Загалом стік, який забезпечує існування річкової екосистеми, включає в себе не лише стік води, а й твердий стік – стік наносів (донних і зважених), стік розчинених речовин, зокрема і кисню, і стік теплі, які включає в себе всі перераховані компоненти річкового стоку в прийнятних пропорціях для репродукції і виживання біологічних видів в річковій екосистемі. Слід також зазначити, що вимоги до окремих елементів екологічного стоку можуть з часом змінюватися. І не лише впродовж одного року, а й в розрізі багатьох сезонів. Це може залежати від зумовлених антропогенними факторами гідроморфологічних перетворень русла, що призводять також і до змін хімічного складу води, її температурного режиму, мутності тощо. Ці перетворення можуть мати місце і на водозборі, і на різних ділянках русла вниз за течією ріки. Для виживання видів мають забезпечуватися не лише деякі мінімальні витрати води, а й мінімальні глибини, різні на плесах і перекатах, швидкості течії, відповідні кисневий і температурний режими, а також і мутність води. Поряд з тим існують й інші фактори для підтримки здорового стану річки протягом часу, коли мають здійснюватися екологічні попуски, такі, як зменшення концентрацій забруднень і контроль антропогенної діяльності в руслах (наприклад, рибальство і рекреація, видобуток пісчано-галькового матеріалу тощо). Тому організацію екологічних попусків слід розглядати в контексті інтегрованої частини сучасного управління річковим басейном [2-6]. Їх ефективність повинна оцінюватися на регулярній основі, а з отриманням нової інформації практика екологічних попусків має адаптуватися до нових умов.

Задача моделювання параметрів екологічних попусків є складною задачею, обтяжену невизначеністю даних і знань. Окрім різнопланових знань з гідробіології та гідроекології для її вирішення необхідно володіти знаннями з русової гідравліки (зокрема неусталеного руху води у відкритому природному руслі), гідрології (стік води, її витрати і рівні, особливості стоку наносів та перебігу руслового процесу на різних ділянках річки), а також оперувати даними щодо морфологічної будови русла тощо. В свою чергу математичне моделювання має ґрунтуватися на результатах натурних спостережень, фізичного моделювання водних потоків та теорії подібності. Подібні задачі прийнято називати інтелектуальними. Вони важко формалізуються, характеризуються неповнотою і суперечливістю вихідних даних і знань, що стосуються перебігу досліджуваних процесів і явищ. Особливістю цих задач є велика розмірність простору рішень, нечіткість цілей і критеріїв тощо. Класичні підходи до розв’язання таких задач можуть призводити до створення занадто складних математичних моделей, які важко забезпечити необхідними вхідними даними, точність яких відповідала б можливостям цих моделей [10].

Одним з підходів до розв’язання задачі моделювання параметрів екологічних попусків, як складної інтелектуальної задачі, може бути імітаційне комп’ютерне моделювання. Її розв’язання породило гідробіологічні та гідроекологічними даними, критеріями та умовами
передбачає використання даних гідрологічних досліджень, результатів геопросторового аналізу на основі даних дистанційного зондування Землі [11], локальних натурних гідроморфологічних досліджень та власне чисельне розв’язання системи рівнянь Сен-Венана неусталеного руху води у відкритих руслах при попусках. При цьому на різних етапах розв’язання задачі, як, наприклад в [12], можуть зastosовуватися адаптовані математичні моделі, основне призначення яких є не інтерпретація процесів і явищ, що досліджуються, а встановлення умов, за яких ці явища і процеси можуть відбуватися з високою ймовірністю та нести певну користь або небезпеки.

Визначення параметрів попусків пропонується здійснювати шляхом чисельного розв’язання системи рівнянь Сен-Венана у одновимірному наближенні. При цьому її дискретні аналоги будується на основі методу контрольного об’єму (метод скінчених об’ємів) із використанням нерівномірної розрахункової сітки, де отримана система лінійних алгебраїчних рівнянь розв’язується за допомогою методу прогонки для блочних тридіагональних систем. Верифікацію такого обчислювального алгоритму за допомогою існуючих аналітичних розв’язків та експериментальних даних наведено в [13].

8. Горбачова Л.О. Сучасний внутрішньорічний розподіл водного стоку річок України. Український географічний журнал. 2015. № 3. С.16-23.
ОПТИМАЛЬНІ СТРАТЕГІЇ ПРОДАЖ У СИСТЕМІ ЕЛЕКТРОННОЇ КОМЕРЦІЇ

Шишканова Г.А., Плинокос Д.Д.

Ключові слова: оптимальна стратегія, латеральний маркетинг, нечітка множина розв’язків.
AMS Subject Classification: 62С86

Україна є не тільки найбільшою за природно-географічним потенціалом країною Центральної і Східної Європи, а вона представляє один з найбільших споживчих ринків, кількість потенційних споживачів якого майже 40 млн. осіб, що складає достатньо вагому частку у Європейському просторі навіть за достатньо низької купівельної спроможності населення. Міжнародне агентство "We are social" оприлюднило інформацію, що за 2017 рік кількість регулярних користувачів Інтернету в Україні збільшилася на 17 %, що на 2018 рік складає близько 60% загальної кількості населення [1]. Наявність високоякісного Інтернет-сполучення і вільний доступ до нього забезпечили активний розвиток електронної комерції. Низька купівельна спроможність населення змушує щукати споживача, де купити дешевше, що і приводить їх на торгові Інтернет-майданчики. Саме це два фактори забезпечують стабільне зростання обсягів електронної комерції в розрізі останніх років. Інтернет-магазин це також вдала можливість відкрити власний бізнес, який не вимагає вкладень в оренду і зарплату продавцям і працює 24 години на добу 7 днів на тиждень.

Розвиток інтернет-технологій і електронної комерції формує економіку майбутнього і породжує економічні можливості бізнесу, що призводить до формування глобального середовища електронної комерції. Прагнення нових і традиційних компаній реалізувати можливості інтернет породжує інноваційні моделі бізнесу і принципово нові підходи до конкуренції і позиціонування на ринку. Традиційні компанії, бізнес яких з яких-небудь причин опиняється під загрозою, намагаються за допомогою електронних технологій модифікувати свої бізнес-моделі і стратегії відповідно до вимог сучасного ділового середовища. Прагнення використовувати можливості інтернет-економіки спонукає компанії щукати інноваційні бізнес-моделі і принципово нові конкурентні стратегії. Саме цим зумовлений вибір і актуальність теми дослідження.

Об’єктом даної роботи є стратегія реалізації продаж інтернет-магазині. Предметом дослідження є розробка алгоритмів стратегії, як процесу прийняття рішень в інтернет-маркетингу на основі класичного та латерального підходів та завдяки математичної моделі пошуку місць розміщення реклами. Розв’язання поставлених задач, здійснювалося із застосуванням економетричного аналізу часових рядів, теорії графів, теорії невизначеності та оптимізації [2]. Авторами було зроблено огляд існуючих стратегій маркетингу та інтернет-маркетингу, а також вибір та формулювання цілей та приоритетів при побудові стратегії.

Пропонується взяти за основу класичну маркетингову стратегію по Майклу Портеру. Висунуто можливі цілі і завдання, описаний традиційний процес сегментації цільової аудиторії. Запропоновано варіанти побудування алгоритму інтернет-маркетингу з розбором основних етапів робіт по розробці стратегії, яка дає можливість вибудувати систему збільшення продажів інтернет-магазину в умовах конкурентного середовища. Обґрунтовано необхідність адаптувати стратегічні ініціативи традиційних стратегій під маркетинг електронної торгівлі та запропоновано методологію пошуку стратегічних ініціатив. Приділено увагу розгляду
основних етапів робіт по розробці стратегії інтернет-маркетингу, що включають аналіз конкурентів, аудит сайту, аналіз бізнесу в цілому і розробці тактики просування в інтернеті. Створено алгоритм основних етапів по розробці стратегії електронної торгівлі, який дозволить утворити основний мікс в інтернет-маркетингу. Розроблена стратегія присутності в інтернеті, підібрани канали залучення цільової аудиторії і ресурсна стратегія забезпечать взаємопов'язаність всіх бізнес-процесів, їх прозорість і керованість.

Традиційні методи не завжди спрацьовують у сучасних умовах. Нові технології викликають перекреслити безліч догм та правил. Спроможність відмовитись від стереотипів, поглянути на проблему з іншого боку, прийняти неочевидне рішення – у психології має назву латерального мислення, основна функція якого є зміна і створення нових шаблонів мислення, що дозволяють ідентифікувати об’єкт і відтворити його за наявними фрагментами. Латеральний маркетинг є сучасним та ефективним інструментом побудови конкурентних стратегій. Застосування латерального маркетингу може допомогти при створенні товару, який викликає хайп. Слово «хайп» ще не має чіткого формалізованого означення, його можна визначити як галас, ажіотаж навколо дуже модної річі, картинки, новини, товару або послуги. Хайп характеризується короткочасністю і глобальністю, тобто проходить дуже швидко, але встигає практично миттєво охопити і захопити величезну кількість людей. Авторами відокремлені властивості хайпа та умови його появи. Запропоновано вважати створення хайпа, як сучасної стратегії, хоча і ризикованої, але з можливим гіпермаксимальним прибутком і практичною відсутністю витрат. Розроблено новий алгоритм побудови такої стратегії, на базі застосування методології латерального маркетингу.

Розроблено алгоритм нової задачі оптимізації пошуку інформаційних каналів розміщення реклами для створення хайпа. Витрати на рекламу пропонується проводити лише для товарів, більшіш перспективних за оцінками експертів на даний момент часу [3]. Розширення розміщення реклами на інформаційних каналах (сайтах, соціальних мережах, блогах, відео) необхідно проводити постійно, в зв’язку з тим, що актуальність і відповідно відвідуваність їх динамічно змінюється. Більшість рішень в цій сфері приймаються інтуїтивно, без системного підходу. У зв’язку з тим, що сучасні керівники стикаються з неповною інформацією, недостовірними або невизначенними факторами, в даній роботі пропонується постановка і шлях вирішення задачі умова невизначеності. Задачу сформульовано на нечіткому орграфі, аналогічно задачі пошуку надійних партнерів в умовах невизначеності [4]. Складено програму алгоритму розв’язку на Visual Basic.

За допомогою запропонованого алгоритму підприємство може оптимізовано здійснювати пошук інформаційних каналів розміщення реклами за менший час, ніж при повному переборі, так як створена методика є алгоритмом спрямованого перебору прийняття рішень в умовах невизначеності та враховує експертні оцінки. Результати можуть бути використані для реальних підприємств.

1. Інфографіка [Electronic resource]. – Available at: https://hromadske.ua/posts/u-2018-internet-koristuvachiv-stalo-4-mlrd-z-nih-ponad-3-mlrd-koristuyutsya-socmerezhami-doslidzhennya
5. Logic-mathematical methods of modeling

MODELLING
&
STABILITY
ON-LINE MONITORING OF SWITCHING BETWEEN DYNAMICS IN CYBER-PHYSICAL SYSTEMS

Skobelev V.V.

Key words: hybrid automata, switching, online, monitoring.

AMS Subject Classification: 68M15 93C30 93C83

It is well-known that at present hybrid automata (HA) are used as one of the main mathematical models for analysis of Cyber-Physical Systems (CPS). The last are often used in critical applied domains, and thus, are safety-critical systems. For this reason, faults diagnoses, and fault isolation of components are actual problems for CPS. Applying the model-based approach we can easily reformulate these problems in terms of HA. To avoid complexity which arises in connection with problems of an algorithmic solubility, sufficiently limited classes of HA usually are investigated. This assumption is justified by the fact that in real CPS the used physical processes, as a rule, can be partitioned into rather simple processes presented by not by well studied rather simple equations. We use just this approach for the analysis of HA.

The essential sub-problem for the problem of faults diagnoses and fault isolation of components in CPS is the problem of on-line monitoring of switching between the dynamics of used physical processes. In the given paper this problem is investigated under the assumption that HA $\mathcal{H} = (Q, X, I, D, f, E, G, R)$, associated with the given CPS, is some element of the set \mathcal{J}_0. This set of HA has been defined in [1] as follows.

The set \mathcal{J}_0 [1] consists of 1-dimensional HA, such that for each discrete state $q \in Q$ the following conditions hold. For the continuous state the set of admissible values is some finite interval $X_q \subseteq X$, while the set of initial values consists of pair-wise disjoint closed intervals $[\alpha_{q,h}, A_{q,h}]$ ($h = 1, \ldots, r_q$), where $\alpha_{q,h} \leq A_{q,h}$. The guard condition for the continuous state associated with the set $[\alpha_{q,h}, A_{q,h}]$ ($h = 1, \ldots, r_q$) is some closed interval $[\beta_{q,h}, B_{q,h}]$ ($\beta_{q,h} \leq B_{q,h}$). These intervals are pair-wise disjoint. For each set $[\alpha_{q,h}, A_{q,h}]$ ($h = 1, \ldots, r_q$) the dynamics is presented via differential equation $x = f_{q,h}(x)$ ($Dom(f_{q,h}) \supseteq X_q$). Duration of this dynamics is some number $t_{q,h} \in [\theta_{q,h}, \Theta_{q,h}]$, where either $\theta_{q,h} = \Theta_{q,h} = 0$ or $0 < \theta_{q,h} < \Theta_{q,h}$, and $x(t_{q,h}) \in [\beta_{q,h}, B_{q,h}]$. For each $[\beta_{q,h}, B_{q,h}]$ ($h = 1, \ldots, r_q$) there exists the single arc $(q, q') \in E$ and the single set $[\alpha_{q',m}, A_{q',m}]$ ($m = 1, \ldots, r_{q'}$), such that $R((q, q'))([\beta_{q,h}, B_{q,h}] \subseteq [\alpha_{q',m}, A_{q',m}]$, where $R((q, q'))(\cdot) = R((q, q'), \cdot)$ is the reset map.

It should be noted that it is more correctly to use denotation $((q, h), (q', m))$ for the elements of the set E. This denotation will be used in what follows.

Each HA $\mathcal{H} \in \mathcal{J}_0$ can be reduced to equivalent model [1], such that $S^m_{q,h} = [\alpha_{q,h}, A_{q,h}]$ and $S^f_{q,h} = [\beta_{q,h}, B_{q,h}]$ for all $q \in Q$ and $h = 1, \ldots, r_q$. The sets $S^m_{q,h}$ and $S^f_{q,h}$ are maximal relatively to the inclusion relation sets defined by the following three axioms:

(i) $S^m_{q,h} \subseteq [\alpha_{q,h}, A_{q,h}] \& S^f_{q,h} \subseteq [\beta_{q,h}, B_{q,h}]$;
(ii) $\theta_{q,h} = \Theta_{q,h} = 0 \Rightarrow S^m_{q,h} = S^f_{q,h}$;
(iii) $0 < \theta_{q,h} < \Theta_{q,h} \Rightarrow (\forall x(t))(x(0) \in S^m_{q,h} \Rightarrow
\Rightarrow (\exists t_0 \in [\theta_{q,h}, \Theta_{q,h}])(x(t_0) \in S^f_{q,h}) \& (\forall t \in [0, \Theta_{q,h}])(x(t) \in X_q) \&
\& (\forall b \in S^f_{q,h})(\exists x(t))(x(0) \in S^m_{q,h} \& (\exists t_0 \in [\theta_{q,h}, \Theta_{q,h}])(x(t_0) = b)).$
We propose the following model-based completely distributed system intended for on-line monitoring of switching between dynamics in the given CPS, with which \(H \in \mathcal{S}_0 \) is associated.

It is supposed that with each switching between dynamics its own controller is associated, and different non-interacting controllers are associated with different switching. Therefore, there is a one-to-one correspondence between non-interacting controllers and switching between dynamics. It is also supposed that for the considered CPS the time needed to carry out any switching between dynamics is some sufficiently small positive number \(\tau \). This assumption reflects the fact that in real systems switching are made not instantly, but with some delay.

The controller \(C_{((q,h),(q',m))} \) \((q, q' \in Q; \ h \in \{1, \ldots, r_q\}; \ m \in \{1, \ldots, r_{q'}\}) \) is intended for on-line checking of switching in CPS, defined by the arc \(((q,h),(q',h')) \in E \) in HA \(H \in \mathcal{S}_0 \), and can be characterized as follows.

The controller \(C_{((q,h),(q',m))} \) consists of three input channels \(i_1, i_2, i_3 \) and output channel \(o \).

The input channel \(i_1 \) of the controller \(C_{((q,h),(q',m))} \) is a binary channel, and through some sensor receives the information whether the physical process corresponding to the dynamics \(\dot{x} = f_{q,h}(x) \) is activated or is not activated. Without loss of generality it is possible to suppose that the symbol 1 corresponds to the fact that this process is activated, while the symbol 0 corresponds to the fact that this process isn’t activated, and that the impulse \(1 \to 0 \) activates the controller \(C_{((q,h),(q',m))} \).

The input channel \(i_2 \) of the controller \(C_{((q,h),(q',m))} \) is directly connected with the controller \(C_{q,h} \), which is intended for monitoring the dynamics \(\dot{x} = f_{q,h}(x) \), and receives the sequence \(x_0, x_1, \ldots, x_{t_{q,h}} \) computed by this controller.

The input channel \(i_3 \) of the controller \(C_{((q,h),(q',m))} \) through some sensor receives the values \(y_0, y_1, \ldots, y_{t_{q,h}} \) produced by the physical process corresponding to the dynamics \(\dot{x} = f_{q,h}(x) \). The output channel \(o \) of the controller \(C_{((q,h),(q',m))} \) is a binary channel connected with the physical device \(S_{((q,h),(q',m))} \) that carries out the switching between the physical process corresponding to the dynamics \(\dot{x} = f_{q,h}(x) \) and the physical process corresponding to the dynamics \(\dot{x} = f_{q',m}(x) \). Without loss of generality it is possible to suppose that the symbol 1 corresponds to the fact that the physical device \(S_{((q,h),(q',m))} \) must be activated, while the symbol 0 corresponds to the fact that this physical device must be deactivated.

In the instance of time when the impulse \(1 \to 0 \) is applied to the input channel \(i_1 \), the values of symbols on the input channels \(i_2 \) and \(i_3 \) are equal to \(x_{t_{q,h}} \) and \(y_{t_{q,h}} \) respectively. The controller \(C_{((q,h),(q',m))} \) is activated, and carries out checking of the truth value of the following condition (\(\varepsilon \) is admissible amount of deflection between corresponding to each other model and real values of physical process):

\[
|x_{t_{q,h}} - y_{t_{q,h}}| \leq \varepsilon \& y_{t_{q,h}} \in [\beta_{q,h}, B_{q,h}] \& R(((q,h),(q',m)), y_{t_{q,h}}) \in [\alpha_{q',m}, A_{q',m}].
\]

Let \(T_{|x-y|\leq \varepsilon} \) be the time necessary for checking the condition \(|x - y| \leq \varepsilon \), \(T_{y\in[\beta_{q,h}, B_{q,h}]} \) be the time necessary for checking the condition \(y \in [\beta_{q,h}, B_{q,h}] \), and \(T_R \) be the time necessary to compute the value \(R(((q,h),(q',m)), y) \). The following theorem is true.

Theorem. The controller \(C_{((q,h),(q',m))} \) \((q, q' \in Q; \ h \in \{1, \ldots, r_q\}; \ m \in \{1, \ldots, r_{q'}\}) \) carries out correct on-line checking of switching in CPS, defined by the arc \(((q,h),(q',h')) \in E \) in HA \(H \in \mathcal{S}_0 \), if and only if the inequality \(T_{|x-y|\leq \varepsilon} + T_{y\in[\beta_{q,h}, B_{q,h}]} + T_R \leq \tau \) is true.

ІНФОРМАЦІЙНА МОДЕЛЬ СЕМАНТИЧНОЇ СТРУКТУРИ НАВЧАЛЬНОГО КУРСУ ДЛЯ ГЕНЕРАЦІЇ ТЕСТОВИХ ЗАВДАНЬ

Крак Ю.В., Бармак О.В., Мазу́рь О.В.

Ключові слова: інформаційна модель, тести, тестові завдання, навчальні матеріали, ключові терміни.
AMS Subject Classification: 97R50

Одним із основних способів контролю знань в навчальних інформаційних системах є комп’ютерне тестування. Тест включає в себе набір тестових завдань різних типів та складності, що робить результат тестування більш об’єктивним. При якісному конструюванні тесту можна забезпечити відповідний рівень дискримінативності. В більшості випадків метою тестування є визначення рівня засвоєння відповідних інформаційних навчальних матеріалів. Інформаційні навчальні матеріали у вигляді слабоструктурованих цифрових документів визначеній структури як інструмент навчання й тести як інструмент контролю рівня отриманих знань формують курси навчальних дисциплін.

В умовах вузької спеціалізації курсів навчальних дисциплін, їх чисельності та інтенсивного оновлення, єдиним шляхом забезпечення курсів навчальних дисциплін дискримінативним та репрезентативним тестовим діагностичним матеріалом є автоматизація формування наборів тестових завдань.

Пропонується вирішення проблеми шляхом автоматизованого формування наборів тестових завдань за допомогою системи правил, на основі інформаційної моделі, одержаної в результаті структурного та семантичного аналізу контенту інформаційних навчальних матеріалів. Система правил передбачає використання набору тестових завдань для визначення рівня засвоєння множини ключових термінів інформаційного навчального матеріалу, що є найбільш семантично стиснутим його семантичним змістом [1].

Запропонована інформаційна модель семантичної структури навчального курсу є формальним поданням інформаційного та тестового навчальних матеріалів навчального курсу дисципліни. Її використання надає можливості для автоматизованого формування наборів тестових завдань.

Інформаційний навчальний матеріал (ІНМ) в більшості випадків є основним носієм інформації в навчальному курсі. Він призначенний для набуття знань та частини вмінь суб’єктом, що вивчає навчальний курс. Тестовий навчальний матеріал (ТНМ) є найбільш розповсюдженим різновидом діагностичного навчального матеріалу і призначенний для визначення рівня засвоєння ІНМ шляхом використання комп’ютерного чи паперового тестування суб’єкта, що вивчає навчальний курс [2]. За запропонованої інформаційної моделі семантичної структури навчального курсу, курс навчальної дисципліни (educational course, EC) подається у вигляді:

\[
(M_{Heading} \cup M_{Term} \cup M_{Word} \cup M_{TestEx} \cup M_{Rel}) \subseteq (IEM, TEM) \subseteq EC, \tag{1}
\]
де M_{Heading} – множина заголовків, M_{Term} – множина термінів, M_{Word} – множина слів, M_{Term} – множина ключових термінів, M_{TestEx} – множина тестових завдань, M_{Rel} – множина зв’язків, IEM – інформаційний навчальний матеріал, TEM – тестовий навчальний матеріал.

Зважаючи на існуючі відповідності системи заголовків фрагментів контенту інформаційного навчального матеріалу ієрархічній моделі, кожен елемент множини заголовків M_{Heading} є кортежем наступного вигляду:

$$M_{\text{Heading}} = (ID, Name, Grade),$$

де атрибут ID – унікальний ідентифікатор елементу ($ID \in \mathbb{Z}$), $Name$ – назва заголовку, атрибут $Grade$ – рівень заголовку в ієрархічній структурі.

Ключові терміни є семантично значущими назвами понять [3], розуміння яких є обов’язковим для ефективного засвоєння контенту певного фрагменту ІНМ. Кожен елемент множини термінів M_{Term} є кортежем наступного вигляду:

$$M_{\text{Term}} = (TermName, TermNorm, TermNum, TermLem),$$

де $TermName$ – символна назва терміну, $TermNum$ – кількість слів у терміні ($TermNum \in \mathbb{Z}$), $TermLem$ – булевий показник лематизації ($TermLem \in \{0, 1\}$).

Множина слів M_{Word} формується шляхом включення до неї всіх елементів, що відповідають присутнім в тексті унікальним словам. Кожен елемент множини слів M_{Word} є кортежем наступного вигляду:

$$M_{\text{Word}} = (WordName, WordNorm, WordPart, WordLem),$$

де $WordName$ – символна назва слова, $WordNorm$ – символна назва слова в нормалізованому вигляді; $WordPart$ – частина мови, до якої відноситься слово, $WordLem$ – булевий показник лематизації ($WordLem \in \{0, 1\}$).

До множини тестових завдань M_{TestEx} належать всі тестові завдання визначеного тесту. Кожен елемент множини тестових завдань M_{TestEx} є кортежем наступного вигляду:

$$M_{\text{TestEx}} = (Type, Answers, Points, Model),$$

де $Type$ – тип питання, $Answers$ – кількість правильних відповідей ($Answers \in \mathbb{Z}$); $Points$ – бал за замовчуванням, $Model$ – модель, за якою сформоване тестове завдання.

До множини зв’язків входять елементи семантичної структури ІНМ та ТНМ, що визначають наявність і характер зв’язку між елементами множин M_{Heading}, M_{Term}, M_{Word} та M_{TestEx}. Кожен елемент множини зв’язків M_{Rel} є кортежем наступного вигляду:

$$M_{\text{Rel}} = (TypeRel, Obj1, Obj2, Feature),$$

де $TypeRel$ – ціле число ($TypeRel \in \mathbb{Z}$), що вказує на тип зв’язку; $Obj1$ – перша сутність з співвідношення; $Obj2$ – друга сутність з співвідношення; $Feature$ – атрибут, що вказує на характеристику зв’язку.

Відповідно до типів елементів, які сполучаються за допомогою елементів множини M_{Rel}, її структура може бути подана у вигляді:

$$M_{\text{Rel}} = M_{\text{Rel}:H-H} \cup M_{\text{Rel}:H-T} \cup M_{\text{Rel:T-W}} \cup M_{\text{Rel:T-TE}},$$

де $M_{\text{Rel}:H-H}$ – множина зв’язків між заголовками й заголовками, $M_{\text{Rel}:H-T}$ – множина зв’язків між заголовками й ключовими термінами, $M_{\text{Rel:T-W}}$ – множина зв’язків між ключовими термінами та словами, $M_{\text{Rel:T-TE}}$ – множина зв’язків між ключовими термінами та тестовими завданнями.

Методи наповнення елементів моделі визначені наступні:

− метод побудови семантичної структури ІНМ для визначення елементів моделі: множини заголовків M_{Heading}, множини зв’язків між заголовками $M_{\text{Rel}:H-H}$ [4],

− метод визначення множини ключових термінів для визначення елементів моделі: множини ключових термінів M_{Term}, множини слів M_{Word}, множини зв’язків між заголовками і термінами $M_{\text{Rel}:H-T}$, множини зв’язків між термінами і словами $M_{\text{Rel}:T-W}$ [5].
— метод автоматизованої генерації прототипів тестових завдань для визначення елементів моделі: множини тестових завдань M_{TestEx}, множини зв’язків між тестовими завданнями і термінами $M_{Rel:T-TE}$ [6].

Використання наведених трьох методів дозволяє здійснювати повне визначення елементів моделі, що відкриває можливості для її практичного застосування.

До прикладних задач, які дозволяє вирішувати запропонована модель семантичної структури курсу навчальної дисципліни, в першу чергу належить автоматизоване формування множин тестових завдань [6], причому наведена модель передбачає забезпечення високого рівня дискримінативності та репрезентативності сформованих наборів тестових завдань. Закладені у модель параметри тестових завдань надають можливість навчальним інформаційним системам адаптивно обирати тестові завдання в процесі тестування, що вирішує проблему рівномірного покриття тестом інформаційного навчального матеріалу при забезпеченні необхідної семантичної деталізації тестування [7].

Використання наведених трьох методів дозволяє здійснювати повне визначення елементів моделі, що відкриває можливості для її практичного застосування.

До числа практичних задач, що можуть бути вирішені шляхом застосування запропонованої моделі семантичної структури курсу навчальної дисципліни, також належать: оцінка відповідності інформаційних навчальних матеріалів вимогам, оцінка відповідності наборів тестових завдань інформаційним навчальним матеріалам, реалізація гнучких алгоритмів тестування, автоматизація формування рефератів та анотацій до елементів інформаційних навчальних матеріалів тощо.

2. Снитюк В. Е. Интеллектуальное управление оцениванием знаний / В. Е. Снитюк, К. Н. Юрченко. – Черкассы, 2013. – 262с.

Автоматизирована система формирования наборов великих тестовых данных
Марголин О.Г.

Ключевые слова: автоматизирована система, синтаксический анализ текста, crawler, dataset, обработка текстовой информации.

AMS Subject Classification: 68P10

Для вирешения задач розпознавания текстов является величезна кількість різноманітних методів і підходів [1]. У більшості методів закладено механізм навчання, а в подальшому і тестування по навальній вибірці. Тут виникає проблема пошуку таких наборів даних (dataset) для поставленої задачі.

Основні проблеми:
1. Пошук набору даних для певної «специфічної» тематики, що виникає під час постановки задачі.
2. Пошук набору даних українською мовою.
3. Пошук набору даних в тому форматі виводу і структурі, що є задовільною для використаних методів.

У відкритій мережі є велика кількість різних наборів під певні категорії та певного формату. Більшість з них англійською мовою [2].
Тому виникає необхідність збирати такі набори самостійно не залежачи від існуючих наборів даних.

Стається задача розробки програмного модуля, що може будувати великі набори текстових даних з відкритих ресурсів (або тих до яких мається доступ) і зберігати данні в будь яких запрограмованих формах та структури.

На вході програми маємо базове посилиня (або список посилань) на ресурс, а також набір правил за якими буде проходити збір даних.

Посилання може бути на будь який web ресурс. Це може бути великий тематичний портал, форум, web-версія соціальної мережі, або «мессенжера». Можливо задати права входу для доступу до захищеної сторінки.
На виході маємо структурований набір текстових масивів в єдиному форматі (json [3]), помічений міткою теми та готовий для обробки.

Система складатися з таких модулів:
1. Модуль отримання інформації
2. Модуль виділення інформації по заданим шаблонам
3. Модуль ланцюгового збору інформації
4. Модуль збереження даних
5. Модуль паралельного формування команд в потокових системах та приховання від DDOS [4].
Модуль отримання інформації представляє собою набір запитів до інформаційних ресурсів для подальшого синтаксичного аналізу.

«Парсер» – модуль виділення певної інформації по заданим шаблонам. Даний модуль використовує набір методів синтаксичного аналізу за для виділення необхідної цільової інформації зі вхідного гіпертексту. Наприклад: є набір web-сторінок зі статтями – «парсер» виділяє тільки тексти статей всередині певного блоку без зайвих елементів, що повторюються на всьому сайті.

На цьому етапі ми повинні задати спеціальний шаблон за яким буде проходити синтаксичний аналіз сторінок тих запитів, що будуть оброблятися.

Для парсингу використана бібліотека BeautifulSoup та LXML, що є пакетами для мови програмування Python.

Наприклад для виділення тіла контенту одного з розділів тематичного форуму можна використати таке правило:
```python
req = requests.get(url)
events_dict = {}
i = 0
soup = BeautifulSoup(req.text, 'lxml')
events = soup.find('div', {'class': 'events-box'}).findAll('div', {'class': 'unit span4 event '})
```

«Карулер» – модуль, що дозволяє збирати інформацію по всім посиланням що буде знайдено за ланцюгом. Посилання на наступну сторінку отримується з тієї, на якій перебуває в даний момент (тобто це пошуковий робот: зайшли на сайт і отримали всі посилання, потім перейшли по ним, потім знову отримали інші посилання і перейшли по ним і т.д.). Краулінг використовується для створення великих баз даних.

Саме алгоритм краулінгу дозволяє збирати величезний об’єм інформації. В базовому модулі отримання інформації ми лише вказуємо відправні точки, та налаштування, а даний модуль створює мапу переходів по всім ієрархічним посиланням і передає модулю збереження даних.
Для використання алгоритму краулінгу використано пакет Scrapy на мові програмування Python.

Приклад простого краулінгу:

```python
class AuthorSpider(scrapy.Spider):
    name = 'content'
    start_urls = ['http://site.com/']
    def parse(self, response):
        # follow links to content pages
        for href in response.css('.content + a::attr(href)'):
            yield response.follow(href, self.parse_author)
        # follow pagination links
        for href in response.css('li.next a::attr(href)'):
            yield response.follow(href, self.parse)
```

Модуль збереження даних, отримує від «парсера» шматок коду в якому знаходиться потрібний для збереження текст.

Наступними кроками виконує такі дії:
1. Очищення від зайвого коду
2. Створення з текстової строки нормованого масиву у форматі json.
3. Зберігає масив в .txt файл з підписом тієї мітки, яка була сформована з заголовку цього шматка.
4. За необхідності, є можливість налаштування збереження файлів по окремим категоріям.

В разі збору великих даних, за необхідності, використовується додатковий модуль паралельного формування команд в потокових системах від автомата блокування.

Першим кроком потрібно мати можливість змінювати свою ip адресу при виконанні «мультизапитів». Для цього є відомі платні сервіси.

Якщо мається певна кількість окремо виділених адрес – можна запустити процес збору текстів в стільки потоків, скільки є адрес. Таким чином збільшити швидкість збору даних в рази.

Для процесу паралельного формування команд використовується пакет gunicorn [5].

Створена система збору великих тестових масивів даних для наукової обробки цих даних.
Система має можливість збирати тести з багатьох ресурсів одночасно, зберігати їх в потрібному форматі і структурі даних.
Система дозволяє формувати власні набори текстових даних за тима тематиками, які неможливо знайти в відкритому доступі.

1. Репік С. І., Штогріна О. С. МЕТОДИ РОЗПІЗНАВАННЯ ТЕКСТУ, 2016
3. JSON (JavaScript Object Notation), https://www.json.org/
Розроблено багато різноманітних логічних формалізмів, орієнтованих на специфікацію та верифікацію програм. Популярним різновидом таких формалізмів, які успішно використовуються в системах верифікації, є логіки Флойда [1]. Ці логіки використовують та інші перед- та після-умови (предикати), тому було запропоновано їх розширення на випадок часткових предикатів. Важливим напрямком такого розширення є введення специфічної немонотонної операції (композиції) предикатного доповнення [2]. Тому проблема дослідження логік часткових предикатів з такою композицією набуває першорядного значення.

В цій роботі ми пропонуємо чисті першопорядкові логіки часткових квазіарних предикатів з композицією предикатного доповнення, або QLC. Описано композиційні алгебри та мови QLC, запропоновано та досліджено відношення неспростовність (предикати), тому було запропоновано їх розширення на випадок часткових предикатів.

Множину всіх значень, які тут не визначаються, тлумачимо в сенсі роботи [3].

ЧИСТИ ПЕРШОПОРЯДКОВІ ЛОГІКИ КВАЗІАРНИХ ПРЕДИКАТІВ З КОМПОЗИЦІЄЮ ПРЕДИКАТНОГО ДОПОВНЕННЯ

Нікітченко М.С., Шкільняк О.С., Шкільняк С.С.

Ключові слова: логіка, алгебра, частковий предикат, логічний наслідок.

AMS Subject Classification: 03B70

Теорема

Для

Визначальними для першопорядкових логік є композиції квантифікацій \(\exists x \) та \(\forall x \) для існування або для всіх значень:
Тоді \(\perp (\exists x P) = \overline{\perp (\exists x P)} \cap \overline{F(\exists x P)} = \bigcap \{ d \mid d \forall x \rightarrow a \in F(P) \cup \exists (P) \} \cap \bigcup \{ d \mid d \forall x \rightarrow a \in \perp (P) \} \).

Звідси для \(P \)-предикатів \(\exists x Q(d) \uparrow \Leftrightarrow Q(d \forall x \rightarrow b) \uparrow \) для деякого \(b \in A \) та неможливо \(\exists x Q(d) = T \).

Композицію \(\exists x \) візьмемо за базову. Тоді \(\forall x \) є похідною та подається так: \(\forall x P = \neg \exists x \neg P \).

Композицію предикатного доповнення \(\exists \) задаємо так: \(\perp (P)(d) = \begin{cases} T, & \text{якщо } P(d) \uparrow, \\ \neg \exists x, & \text{якщо } P(d) \downarrow. \end{cases} \)

Твердження 1. \(T(\perp P) = \perp (P) = \overline{\perp (P)} \cap \overline{F(\perp P)} \), \(F(\perp P) = \emptyset \), \(\perp (P) = T(P) \cup \perp (P) \).

Теорема 2. \(\forall \neg Q = \emptyset Q \); \(\forall \emptyset \emptyset Q = \emptyset Q \); \(\forall \emptyset \emptyset Q = \forall \emptyset Q \); для \(P \)-предикатів \(\forall \emptyset Q = P \vee \neg Q \).

Клас \(P \)-предикатів та \(T \)-предикатів замкнені щодо композиції \(\exists \).

Твердження 2. Клас \(T \)-предикатів незамкнений щодо композиції \(\exists \).

Справді, для довільного \(R \)-предиката \(Q \) маємо, що \(\exists Q = P \)-предикатом.

Отже, ми розглядаємо загальну клас \(LC \) – логіки \(R \)-предикатів з композицією \(\exists \), та їх підклас \(LPC \) – логіки \(P \)-предикатів з композицією \(\exists \). Для \(T \)-предикатів \(LC \) не мають смислу.

Семантична основа \(QLC \) – композиційні предикатні системи вигляду \((\forall A, P_r^{P \forall A}, CQLC) \), де \(CQLC = \{ \neg, \lor, R_r^\exists, \exists x, \} \) – множина базових композицій. Алгебру \(AQLC = (P_r^{P \forall A}, CQLC) \)
наземо чистою першоперядкою композиційною \(LC \)-алгеброю \(R \)-предикатів.

Клас \(P \)-предикатів замкнений щодо \(\exists \). Таки чином, в алгебрі \(AQLC \) виділена підалгебра \(AQLPC = (P_r^{P \forall A}, CQLC) \) – чиста першоперядкова композиційна \(LC \)-алгебра \(P \)-предикатів.

Розглянемо основні властивості композиції \(QLC \). Властивості пропозиційних композицій, реномінацій та кванторів, не пов’язані з композицією предикатного доповнення, аналогічні властивостям цих композицій у традиційних логіках квазіарних предикатів.

Зокрема (див [3]), це властивості композиції реномінації \(R, RI, RU, R \rightarrow, R \vee, RR, Ren, Rena, R\exists, R\exists s, R\exists \).

У випадку \(QLC \) до них додаємо властивість \(R \rightarrow \)-дистрибутивності:

\[R \Rightarrow \Rightarrow R_r^\exists \in (P) \Rightarrow \Rightarrow R_r^\exists \in (P) \].

Опишемо мови \(QLC \). Алфавіт мови: множина \(V \) предметних імен (змінних), множина \(Ps \) предикатних символів, множина \(CQLC = \{ \neg, \lor, R_r^\exists, \exists x \} \) символів базових композицій.

Задамо множину \(Fr \) формул мови. Мало \(Ps \subseteq Fr \), це атомарні формули.

Далі визначимо індуктивно: \(\Phi, \Psi \in Fr \Rightarrow \neg \Phi, \lor \Phi \lor \Psi, \oplus \Phi, R_r^\exists \Phi, \exists x \Phi \in Fr \).

Інтерпретуємо мову на композиційних системах вигляду \((\forall A, P_r^{P \forall A}, CQLC) \). Задамо таблично однозначне \(I : \) \(Ps \otimes P_r^{P \forall A} \), яке продовжуємо до відображення інтерпретації \(I : Fr \otimes P_r^{P \forall A} \).

\(I(\neg \Phi) = \neg (I(\Phi)), I(\lor \Phi \lor \Psi) = \lor (I(\Phi), I(\Psi)), I(\oplus \Phi) = \oplus (I(\Phi)), I(R_r^\exists \Phi) = R_r^\exists (I(\Phi)), I(\exists x \Phi) = \exists x (I(\Phi)) \).

Інтерпретації скорочено позначаємо у вигляді \(J = (A, I) \). Пределі \(J(\Phi) \) позначаємо \(J \).

Ім’я \(x \in V \) неістотне для формул \(\Phi \), якщо для кожної \(J \) ім’я \(x \) неістотне для \(\Phi \).

В множині \(V \) видимо підмножину \(V \subseteq V \) вільно неістотних імени: кожне \(x \in V \) неістотне для кожної \(\Phi \in Fr \). Для формул мови \(LC \) традиційним чином [3] задаємо множини гарантовано неістотних імен за допомогою відображення \(v : Fr \rightarrow 2^V \), при цьому \(v(\emptyset \Phi) = v(\Phi) \).

Для \(\Gamma \subseteq Fr \) задамо множину “свіжих” вільно неістотних імен: \(fm(\Gamma) = V \setminus \Gamma m(\Gamma) \).

Виділення класів квазіарних предикатів індукція відповідає класам інтерпретації, їх названо [3] семантиками. Зокрема, це \(R \)-семантика, \(P \)-семантика, \(T \)-семантика.

Клас \(T \)-предикатів незамкнений щодо \(\exists \), тому для \(LC \) \(T \)-семантика малозмістова.

Змістовними для \(LC \) є \(R \)-семантика та \(P \)-семантика, будемо їх позначати \(R_c \) та \(P_c \).

В \(LC \) задамо відношення неспростовісного логічного наслідування за умов невизначеності.

Для \(\Sigma \subseteq Fr \) та \(J \in P_c \) позначаємо \(T \in (\Sigma, \Gamma) \) \(T^\downarrow (\Sigma, \Gamma) \) \(T^\downarrow (\Sigma, \Gamma) \) \(\perp (\Sigma, \Gamma) \) \(\perp (\Sigma, \Gamma) \) \(T^\downarrow (\Sigma, \Gamma) \).

Нехай \(\Gamma, U, \Delta \subseteq Fr \). \(\Delta \) є неспростовісним наслідком \(\Gamma \) за умов невизначеності \(U \) в інтерпретації \(J \), що позначимо \(U / \Gamma_j = \mu \Delta \), якщо \(T^\downarrow (\Gamma_j) \cap \perp (U_j) \cap F^\downarrow (\Delta) = \emptyset \).

372
Δ є неспостерівністю логічним наслідком Γ за умови невизначеності U, що позначимо U / Γ |=_{IR} Δ, якщо U / Γ |=_{IR} Δ для кожної J ∈ PC.

Зокрема, за умови U = ∅ отримуємо відоме [3] відношення Γ |=_{IR} Δ.

Теорема 3. Для |=_{IR} виконуються такі властивості пропозиційного рівня:

М) Нехай Γ ⊆ Δ, U ⊆ W, та Δ ⊆ Σ; тоді U / Γ |=_{IR} Δ ∴ W / Δ |=_{IR} Σ – монотонність |=_{IR};

(ι) U / −Φ, Γ |=_{IR} Δ ∴ U / Γ |=_{IR} Δ, Φ;

(κ) U / Γ |=_{IR} Δ, −Φ ≡ U / Φ, Γ |=_{IR} Δ;

(ιι) U / Φ ∨ Ψ, Γ |=_{IR} Δ ∴ U / Φ, Γ |=_{IR} Δ та U / Ψ, Γ |=_{IR} Δ;

(ιιι) U / Γ |=_{IR} Δ, Φ ∨ Ψ ≡ U / Γ |=_{IR} Δ, Φ, Ψ;

(ιи) U, −Φ, Γ |=_{IR} Δ ≡ U, Φ, Γ |=_{IR} Δ;

(ιε) U, Φ ∨ Ψ, Γ |=_{IR} Δ ∴ U, Γ |=_{IR} Δ та U / Γ |=_{IR} Δ, Φ;

(ιεε) U, Φ/Γ, Γ |=_{IR} Δ ≡ U, Γ |=_{IR} Δ.

Теорема 4. Для відношення |=_{IR} маємо властивості елімації кванторів:

∃(U / ∃Φ, Γ |=_{IR} Δ) ∼ U / R^q(xΦ), Ez, Γ |=_{IR} Δ, де z ∈ fu(U, Γ, Δ, ∃xΦ);

∃(U / R^q(xΦ), Γ |=_{IR} Δ) ∼ U / R^q(xΦ), Ez, Γ |=_{IR} Δ, де z ∈ fu(U, Γ, Δ, ∃xΦ);

∃(U / Γ, Ez, Γ |=_{IR} Δ, R^q(xΦ), Γ |=_{IR} Δ, де z ∈ fu(U, Γ, Δ, ∃xΦ));

∃(U / Γ, Ez, Γ |=_{IR} Δ, R^q(xΦ), R^q(xΦ), Γ |=_{IR} Δ, де z ∈ fu(U, Γ, Δ, ∃xΦ)).

В QLC маємо властивості наявності відношення |=_{IR}, аналогічні традиційним (див. [3]):

Теорема 5. Нехай φ та Ψ – Rs-Un-еквівалентні, тоді для довільних U, Γ, Δ ⊆ Fr:

Cov(ϕ) / ϕ, Ψ |=_{IR} Δ, Φ; зокрема, U / ϕ, Γ |=_{IR} Δ, Φ;

Cov(ϕ/Ψ) / ϕ, Γ |=_{IR} Δ; зокрема, U / ϕ, Γ |=_{IR} Δ;

Cov(ϕ/Ψ) / ϕ, Γ |=_{IR} Δ; Ψ; зокрема, U / ϕ, Γ |=_{IR} Δ.

Теорема 6. Маємо спеціальну властивість гарантованої наявності відношення |=_{IR}:

C_{∃(ϕ)} / U, R^q(xΦ) / R^q(xϕ) , Ez, Γ |=_{IR} Δ; зокрема, U, ∃xϕ / R^q(xϕ), Ez, Γ |=_{IR} Δ.

Теорема 7. В QLC маємо властивості E-розподілу та первісного означення для |=_{IR}:

Ed(U / Γ |=_{IR} Δ) ≡ U / Ez, Γ |=_{IR} Δ та U / Γ |=_{IR} Δ, Ez;

Ev(U / Γ |=_{IR} Δ ∴ U / Ez, Γ |=_{IR} Δ за умови z ∈ fu(U, Γ, Δ).

Властивості відношення |=_{IR} є семантичною основою побудови для QLC P-предикатів першопорядкових чисель сексвіційного типу. Це буде зроблено в наступних роботах.

ЗАДАЧА УПРАВЛІННЯ ДОСТУПОМ В СИСТЕМАХ ОБРОБКИ ІНФОРМАЦІЇ

Сучасні системи обробки інформації та управління базуються на різних технологіях. Одними з тих, що можуть часто використовуватися є технології обробки та аналізу зображень. Вони використовуються в системах обробки інформації, телекомунікаційних системах, охоронних системах, системах контролю і управління доступом, і т.д.

У системах, заснованих на застосуванні технологій обробки і аналізу зображень, в загальному випадку, необхідно забезпечити виконання наступних процедур:

1. Отримання зображень: процедура отримання зображень здійснює введення зображень в систему у вигляді певних структур даних.
2. Перетворення зображень: наступна процедура змінює кольорові або геометричні характеристики зображень для приведення їх до вигляду, який є необхідний для подальшої обробки.
3. Виділення ознак зображень: процедура виділення ознак призначена для формування уявлення зображення у вигляді набору ознак, які є значущими з точки зору вирішення функціональних завдань системи.
4. Аналіз ознак зображень: остання процедура видає інформацію про семантичний зміст зображень, наприклад, про об’єкти, їх параметри і зв’язки на зображениях.

При реалізації зазначених процедур необхідно вибрати моделі представлення зображень на базі деяких описів ознак, які є оптимальними згідно з визначеними критеріями. Найкращими в даному випадку є моделі, що забезпечують інваріантне і компактне представлення зображень. При цьому можна застосовувати для вирішення відразу декількох завдань, наприклад, попередньої обробки, стиснення, сегментації, розпізнавання і ін.

Таким чином, визначення оптимальних ознак для побудови моделей зображень є актуальним і практично важливим завданням.

При проектуванні процедур обробки та аналізу зображень розглядають моделі низького, середнього і високого рівнів представлення зображень.

На низькому рівні для представлення зображень часто використовують функціональні моделі, імовірнісні моделі та ієрархічні моделі. Функціональні моделі представляють зображення у вигляді деяких функцій. Прикладом моделі неявного використання знань є модель, в якій застосовуються шаблонні зображення, тобто знання про об’єкти містяться в зображениях цих об’єктів. У моделях явного використання знань застосовуються описи у вигляді правил інтерпретації інформації, що міститься в зображенні, щільності ймовірностей та статистичні моменти (математичне очікування, дисперсія і т.д.). Ієрархічні моделі представляють зображення у вигляді множин зображень різних масштабів.
На середньому рівні для представлення зображень використовують описи їх характерних особливостей. Тут широко застосовуються контурні моделі, моделі областей інтересу, моделі точок інтересу, моделі структурних елементів.

Більшість підходів, які використовуються на практиці, до аналізу зображень засновано на застосуванні моделей невигиного використання знань. При цьому опис зображення базується на ознаках кольору, текстури, форми і структури [1].

Ознаки кольору призначені для представлення зображення з точки зору їх кольорового відношення. [6], векторної квіткової зв'язаності [3], корелограми кольорів [4], квіткових моментів [5], дескриптора домінантного кольору [6].

Ознаки форми відносяться до областей зображення. До них відносяться, наприклад, округлість області або її прямокутність, периметр, площа, орієнтація головних осей та ін. [1, 8].

Ознаки структури дозволяють уникнути наявності зображення певних об’єктів та їх взаємного розташування [1].

В даний час активно розробляються також моделі, засновані на вейвлет-перетвореннях [9].

У разі вейвлет-аналізу (декомпозиції) процесу (сигналу) у зв'язку зі зміною масштабу вейвлети здатні виявити відмінність в характеристиках процесу на різних шкалах, а за допомогою зсуву можна проаналізувати властивості процесу в різних точках на всій досліджуваній інтервалі. Саме завдяки властивості повноти цієї системи, можна здійснити відновлення (реконструкцію або синтез) процесу за допомогою зворотного вейвлет-перетворення.

ROZROBKA SХЕМИ РОБОТИ СТАТИСТИЧНИХ ТЕСТІВ ДЛЯ ПЕРЕВІРКИ ВИПАДКОВОСТІ ПОСЛІДОВНОСТЕЙ, ВИКОРИСТОВУЮЧИ ОСНОВИ ПРОГРАМНОЇ ІНЖЕНЕРІЇ

Поперешняк С.В.

Ключові слова: випадкова послідовність, життєвий цикл дослідження, схема роботи, етапи аналізу, контекстна діаграма.

AMS Subject Classification: 62L10

На сьогоднішній момент розроблено досить велику кількість різних типів генераторів випадкових (псевдовипадкових) послідовностей ГВП (ГППВ). Однак для демонстрації їх статистичних властивостей використовувалися різні підходи до статистичного тестування. Найчастіше набір і методики тестування пропонує сам розробник генераторів. Таким чином, склалася ситуація, яка характеризується тим, що неможливо об’єктивно порівняти різні генератори в рамках єдиних обранних критеріїв. Виходом з цього положення є використання деякого стандартного набору статистичних тестів, об’єднаних єдиною методикою розрахунку необхідних показників ефективності ГПВ і прийняття рішення про випадковість сформованих послідовностей. Різноманіття критеріїв оцінки псевдовипадкових послідовностей, що використовуються при шифруванні, надзвичайно велике. Якщо користувачів математико-статистичних алгоритмів і їх програмних продуктів цікавить якість досліджень, слід до початку будь-якого дослідження виконати наступні кроки (рис. 1):

1. Вивчити філософські підстави методології наукового дослідження.
2. Сформувати чітке розуміння про шкалах виміру. Саме через шкали вимірювання вихідні дані визначають, які методи можуть бути використані для їх обробки. Щоб визначити, який метод використовувати, допоможуть назви модулів програмного забезпечення та їх описи. Перед застосуванням кожного методу слід ознайомитися з його передумовами і обмеженнями та спланувати необхідний обсяг вибірки виходячи з потужності критеріїв.
3. Приступити до збору даних. Тут вже вибраний метод обробки здає, в якій формі повинні бути представлені експериментальні дані, придатні для адекватного застосування передбачуваного методу.
4. Математико-статистична обробка – це передостанній, технічний, етап, зміст якого має бути повністю зрозумілим після реалізації 2-го етапу, поки ще не було великих витрат на експериментальні дослідження. Даний етап не має ніякого відношення до предметної області.
5. Останній етап – предметні науково обґрунтовані висновки за результатами дослідження, з врахуванням предметної галузі, рекомендації та прогноз.

Рис. 1. Життєвий цикл дослідження

Математико-статистичний аналіз послідовностей, як правило, відбувається в два етапи. Схематично процес аналізу послідовностей зображено на рис. 2.
Опис основних етапів:
1. Перший етап можна назвати підготовчим, він найбільш трудомісткий, тут виконується основна маса обчислень.
 1.1. При допомозі дослідного генератора формуються випадкові послідовності (або вводяться задані послідовності).
 1.2. Для кожної послідовності обчислюється статистика тесту. Якщо працює батарея тестів (проводиться відразу декілька тестів), то статистика за результатами вписується для кожного тесту.
 1.3. Збереження результатів
2. На другому етапі проводиться обробка, отриманих результатів.

Рис. 2. Схема статистичного аналізу послідовностей
2.1. Перевірка статистичної гіпотези
2.1.1. Формулювання нульової та альтернативної гіпотези.
2.1.2. При допомозі критеріїв погодження перевіряють гіпотези на відповідність розподілених статистичних даних і ймовірностей значущих гіпотетичних розподілів.
2.1.3. Визначається кількість послідовностей, які пройшли тест. Будується довірчий інтервал для останньої величини.
2.1.4. Порівняння долі послідовностей які попали в довірчий інтервал з рівнем значущості та прийняття рішення про проходження тестів:
Довірча ймовірність необхідна для обчислення ряду вибіркових статистичних показників, а також відмінності від ряду інших параметрів, які не обчислюються за вибіркою, а задаються користувачем програмою величиною. Вона вибирається з наступної стандартної лінійки:
- Нульовий поріг 0,9 застосовується для роботи зі зниженюю відповідальністю, при першому ознайомленні з явищем.
- Перший поріг 0,95 застосовується в більшості досліджень (наприклад, біологічні дослідження).
- Другий поріг 0,99 застосовується для робіт з підвищеною відповідальністю (наприклад, медичні дослідження).
- Третій поріг 0,999 застосовується для робіт з високою відповідальністю (наприклад, дослідження ефективності ліків).
2.2. Приймається рішення про те, чи можна вважати тест таким, що пройшов.
2.3. Якщо результати задовільні приймається рішення про завершення тесту, в протилежному разі переходимо до кроку 1.2.
2.4. Остаточні висновки.

Використовуючи основи програмної інженерії, зокрема, способи нотації діаграм, побудуємо контекстну діаграму (IDEF0) для системи тестування послідовностей на випадковість (рис.3).

Рис 3. Контекстна діаграма

Тестування генераторів випадкових та псевдовипадкових послідовностей, які використовуються в криптографічних додатках, є актуальним завданням як у практичному, так і в теоретичному плані. Незважаючи на значні напрацювання в цій галузі, розробники проте відчують потребу в зручному «універсальному» програмному засобі, здатному надати прийнятну метрику, яка дозволить досить ясно досліджувати ступінь випадковості послідовностей, що породжуються генераторами випадкових (або псевдовипадкових) чисел, крім того, забезпечити розробників достатнім обсягом інформації для прийняття рішення щодо «якості» генератора.
В роботі запропоновано та досліджено новий клас програмно-орієнтованих логічних формалізмів – пропозиційні п’ятизначні логіки та логіки п’ятизначних квазіарних predicatів. Особливістю цих логік є використання спеціальних істиннісних значень, які вказують на помилки чи невизначеності в різних системах, зокрема, програмних.

Розробка систем, адекватних предметній області, призводить до появи некласичних даних, які подають неповну, невизначену, неоднозначну тощо інформацію. Виникнення задач, пов’язаних з моделюванням та опрацюванням некласичних даних, актуалізує застосування апарату багатозначної математичної логіки, що має потужні можливості роботи з такими даними. Особливо цікавими і важливими логічними системами є ті, що виникають природним чином в процесі розв’язання прикладних задач. Природною основою побудови та дослідження таких логік є спільний для логіки та програмування композиційно-номінативний підхід [1-4].

Розглянуто ситуації, що виникають при обчислення виразу $x/y < z$, де операції / та < стандартно визначені на множині дійсних чисел і множині результатів є істиннісні (логічні) значення.

Даний приклад природним чином індукує п’ятизначну множину істиннісних значень $EU=\{T,F,e,u,eu\}$, де елементи множини трактуємо наступним чином:
- T – “істина”, F – “хиба”,
- $\{e\}$ – “помилка, виняткова ситуація” (error, exception),
- $\{u\}$ – “невизначеність значення змінної, недостатньо інформації” (undefined value),
- $\{eu\}$, – “та/або виняткова ситуація і недостатньо інформації”.

Наведений приклад є належною передумовою побудови п’ятизначних EU-логік [5].

Пропозиційна п’ятизначна EU-логіка. Побудовано EU-логику пропозиційного рівня $LP^{P. EU}$. Означено логічні з’єзи та описано їх семантичні властивості згідно з онтологічними тлумаченнями введенних істиннісних значень. Показано, що множина EU з бінарними операціями \lor та \land є квазиграткою, а множина EU з бінарними операціями \lor та \land i унарною операцією заперечення \neg є квазиграткою де Моргана. Семантичною основою пропозиційної логіки $LP^{P. EU}$ є алгебра $AP=<EU; \lor, \land, \neg>$. Зазначимо, що операції (зв’язки) цієї алгебри є C-розширюючими, тобто при звуженні на істиннісні значення T та F, отримуємо класичні операції [6].

Описано та доведено властивості логіки $LP^{P. EU}$. Описано мову логіки $LP^{P. EU}$. Визначено еквівалентність формул, логічу істинність (тавтологічність) та логічний наслідок. Еквівалентність вводиться звичайним чином. Питання про поняття тавтології та логічного наслідку є більш складним. Логіка $LP^{P. EU}$ не є тавтологічною, тобто множина тавтологій порожня; класичне відношення логічного наслідку також є порожнім. Отже, EU-логіки, щоб бути застосовними, мають використовувати інші відношення логічного наслідку. Серед різних відношень логічного наслідку виокремлено відношення логічного наслідку за істинною

Рівень пропозиційної логіки є експресивно бідним, оскільки не дозволяє адекватно моделювати експліційні системи з нетривіальними частинами. Така можливість виникає на рівні логіки предикатів, в якій з’являються предметні змінні. Якщо арність предикатів не фіксована, то отримуємо логіку квазіарних предикатів [1–2].

EU-логіка п’ятизначних квазіарних предикатів. Побудовано EU-логіку п’ятизначних квазіарних предикатів $L^{Q,EU}$. Семантичною основою логіки $L^{Q,EU}$ є алгебра п’ятизначних квазіарних предикатів $APrEU(V, A)$, де V – множина предметних змінних (імен), A – множина предметних значень (апотомів), $PrEU(V, A)$ – множина всевидівимених п’ятизначних предикатів ($PrEU(V, A)=V$ $→$ EU, V $→$ множина наборів іменованих значень), а $∨$, $∧$, $¬$, $R^{∞=0,∞=0}$, $R^{∞,∞}$, $∃x$, $∀x$ – композиції диз’юнкції, кон’юнкції, заперечення, реномінації, перейменування, існування, універсальної квантифікації відповідно. Описані основні властивості композиції даної алгебри. Множина $PrEU(V, A)$ з введеннями бінарними композиціями $∨$ та $∧$ і унарною композицією заперечення $¬$ є квазіграткою де Моргана.

Визначено нову логіку та інтерпретацію для $L^{Q,EU}$. Сигнатуру є кортеж $Σ=(Ps, V, U)$, де Ps – множина предметних імен, а U – множина неістотних змінних. Множина формул (мова логіки $L^{Q,EU}$) сигнатури $Σ$ визначається індуктивно. Інтерпретація I є це кортеж $I=(APrEU(V, A), I^{Ps}, d)$, де I^{Ps}: $Ps → PrEU(V, A)$ – відображення інтерпретації предметних символів, d $∈$ V – інтерпретації предметних змінних. Формули інтерпретуємо в алгебрах виду $APrEU(V∪U, A)$ традиційним чином, однак предметні змінні з U мають бути неістотними [4]. Визначення еквівалентних формул та логічного наслідку залишаємо такими ж, як і для пропозиційного рівня.

Наведено ознаки двоїстої формули та доведено принципи двойственості. Для довільної формули конструктивно побудовано нормальні форми (пренексну, реномінативно-атомарну та квазікласичну). Мета введення форм полягає у тому, що вони дозволяють спростити перевірку виконуваності та спростованості формул логіки $L^{Q,EU}$, звіти спочатку проблему виконуваності та спростованості до логіки n-арних п’ятизначних предикатів, а далі – до класичної (бівалентної) логіки предикатів.

Отримані результати дозволяють будувати програмні системи для роботи з логікою п’ятизначних предикатів.

Подальші дослідження орієнтовані на побудову алгоритмів перевірки виконуваності/спростованості формул та формулювання різних типів чисел для введених логік.

Гаркуша Василь Ігорович, кандидат фіз.-мат. наук, доцент, Київський національний університет імені Тараса Шевченка, Київ, Україна, e-mail: Kenny3848@gmail.com

Риженко Андрій Іванович, кандидат фіз.-мат. наук, доцент, Київський національний університет імені Тараса Шевченка, Київ, Україна, e-mail: Andrai@ukr.net

Черній Дмитро Іванович, кандидат фіз.-мат. наук, доцент, Київський національний університет імені Тараса Шевченка, Київ, Україна, e-mail: D_Cherniy@ukr.net

ТЕХНОЛОГІЇ ЧИСЕЛЬНОГО МОДЕЛЮВАННЯ СКЛАДНИХ СИСТЕМ
Гаркуша В.І., Риженко А.І., Черній Д.І.

Ключеві слова: чисельне моделювання гідродинаміка, метод дискретних особливостей

В доповіді розглядається технологія створення моделюючої системи та проведення моделювання, для достатньо широкого кола аеро/гідродинамічних процесів із різних предметних галузей [1,2,3,5]. Прикладні дослідження динамічних процесів в цивільному будівництві (Рис.1-Рис.4), в галузі машинобудування (Рис.5-Рис.8), в медицині (Рис.6,а), в гідрології та в екології морських акваторій (Рис.9), та інш., достатньо часто зводиться до задач взаємодії різноманітних рухомих конструкцій в областях зі змінною формою (в областях із непроникними але суто вих рухомими границями.), в яких присутні течії з високими градієнтами полів або еволюційні процеси з динаміки забрудненої течії [5]. Дані задачі можливо поєднати в окремий клас, завдяки обмеженої кількості фізичних припущення, геометричним спрощенням та універсальністі загальної математичної постановки [3].
При этом, множество всех этих процессов может быть посредством математической постановки задач. Так, показано, что загальную аэро/гидродинамическую задачу может быть зведено до системы граничных интегральных дифференциальных уравнений на нумерических границах $L(t) = L_d(t) + L_v(t)$. В этом случае, для загальном задачи рассмотряется модель, которая подставляется в двух математических моделях (для розщепленной задачи), которые потребуют параллельного розв'язвання з обміном даними між моделями:

\[
L_d(t) : \begin{cases}
z = \omega_d(t) \in L_d, \quad t \geq t_0, \\
\text{Re} \left\{ \frac{1}{2\pi i} \int_{L_d} \frac{f(\omega, t)n(\omega_d)}{\omega_d - \omega} d\omega \right\}^+ = W_n - \text{Re} \left\{ \frac{1}{2\pi i} \int_{L_v(t)} \frac{f(\omega, t)n(\omega_d)}{\omega_d - \omega} d\omega \right\}^+, \\
\int_{L_v(t)} f(\omega, t)d\omega = - \int_{L_d} f(\omega_v, t)d\omega_v + C_j, \quad j = 1,2,...
\end{cases} (1)
\]

\[
L_v(t) : \begin{cases}
\omega_v = \omega_d \Rightarrow f(\omega_v, t) = f(\omega_d, t), \\
t = t_0, \\
L_v(t_0) = L_v(0)
\end{cases} (2)
\]

Универсальность постановки задачи позволяет использовать для их решения метод МДО - метод дискретных особенностей (числений метод, побудований на основе синусоидальных/гиперсинусоидальных интегральных уравнений [3]), на основе которого будут использоваться числовые специализированные технологии, комп'ютерная реализация которых обеспечивает моделирование динамических процессов, из вишеназванных прикладных предметных галузей, в реальном масштабе времени.

В доповіді представлено послідовність етапів побудови модельного систем від постановки фізичної задачі до комп'ютерної моделі реальних фізичних процесів. Наведено приклади моделювання складних систем із вищезазначених галузей.

2. Довгий С.А. Математическое моделирование пространственных струйных эффектов./С.А.Довгий , А.Флобойм, Д.И.Черный // Компьютерная математика. 2016, №1,с.27-35.
4. Довгий С.О. Алгоритмы моделирования дискретных особенностей для обчислювальних технологій./ С.О.Довгий, С.І. Ляшко, Д.І.Черний // Кибернетика и системный анализ. 2017, №6, сс.147-159.
ALPHABETIC INDEX

A

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anikushyn Andrii</td>
<td>anik_andrii@univ.kiev.ua</td>
<td>145</td>
</tr>
<tr>
<td>Avetisyan Ara Sergey</td>
<td>ara.serg.avetisyan@gmail.com</td>
<td>203</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bastinec Jaromir</td>
<td>bastinec@feec.vutbr.cz</td>
<td>29</td>
</tr>
<tr>
<td>Batyuk Liliya Vasilivna</td>
<td>liliya-batyuk@ukr.net</td>
<td>31</td>
</tr>
<tr>
<td>Berest Vladimir Petrovich</td>
<td>vberest@hotmail.com</td>
<td>31</td>
</tr>
<tr>
<td>Bivziuk Vladyslav Olegovich</td>
<td>vladfromhere@gmail.com</td>
<td>71</td>
</tr>
<tr>
<td>Bobalova Martina</td>
<td>bobalova@fbm.vutbr.cz</td>
<td>147</td>
</tr>
<tr>
<td>Borysenko Dmytro Oleksandrovych</td>
<td>dima.borisenko.wrk@gmail.com</td>
<td>33</td>
</tr>
<tr>
<td>Borysenko Oleksandr Danylovych</td>
<td>odb@univ.kiev.ua</td>
<td>33</td>
</tr>
<tr>
<td>Borysenko Olga Volodymyrivna</td>
<td>olga_borisenko@ukr.net</td>
<td>35</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chikrii Greta Tholakovna</td>
<td>g.chikrii@gmail.com</td>
<td>303</td>
</tr>
<tr>
<td>Chvalina Jan</td>
<td>chvalina@feec.vutbr.cz</td>
<td>38</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denysenko Viktor Sergeevich</td>
<td>den_vik@ukr.net</td>
<td>71</td>
</tr>
</tbody>
</table>

Denysiuks Volodymyr Petrovych

<table>
<thead>
<tr>
<th>Email</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>kvomden@nau.edu.au</td>
<td>41</td>
</tr>
</tbody>
</table>

Diblik Josef

<table>
<thead>
<tr>
<th>Email</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>diblik@feec.vutbr.cz</td>
<td>29</td>
</tr>
</tbody>
</table>

Dogru Akgol Sibel

<table>
<thead>
<tr>
<th>Email</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sibel.dogruakgol@atilim.edu.tr</td>
<td>44</td>
</tr>
</tbody>
</table>

Dorosh Andrew

<table>
<thead>
<tr>
<th>Email</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>uefa2012@ukr.net</td>
<td>149</td>
</tr>
</tbody>
</table>

Dudyk Mykhailo Volodymyrovych

<table>
<thead>
<tr>
<th>Email</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dudik_m@hotmail.com</td>
<td>46</td>
</tr>
</tbody>
</table>

Dzhalladova Irada

<table>
<thead>
<tr>
<th>Email</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>idzhalladova@gmail.com</td>
<td>48, 126</td>
</tr>
</tbody>
</table>

G

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gichan Olga Ivanovna</td>
<td>gichan@meta.ua</td>
<td>51</td>
</tr>
<tr>
<td>Gorodetskyi Viktor</td>
<td>v.gorodetskyi@ukr.net</td>
<td>151</td>
</tr>
</tbody>
</table>

H

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haiuk Ivan</td>
<td>ivan.gauk777@gmail.com</td>
<td>149</td>
</tr>
<tr>
<td>Hentosh Oksana Yengenivna</td>
<td>ohen@ukr.net</td>
<td>52</td>
</tr>
</tbody>
</table>

Hrytchuk Mykola

<table>
<thead>
<tr>
<th>Email</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.klevchuk@chnu.edu.ua</td>
<td>57</td>
</tr>
</tbody>
</table>

K

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kayar Zeynep</td>
<td>zykayar@gmail.com</td>
<td>55</td>
</tr>
<tr>
<td>Khurshudyan Asatur Zhora</td>
<td>ara.serg.avetisyan@gmail.com</td>
<td>203</td>
</tr>
<tr>
<td>Klevchuk Ivan</td>
<td>i.klevchuk@chnu.edu.ua</td>
<td>57</td>
</tr>
<tr>
<td>Name</td>
<td>Email</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Komleva Tatyana</td>
<td>t-komleva@ukr.net</td>
<td>60</td>
</tr>
<tr>
<td>Aleksandrovna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kondratiuk Serhii</td>
<td>kondratiuk@univ.net.ua</td>
<td>153</td>
</tr>
<tr>
<td>Serhiyovich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kunets Yaroslav</td>
<td>kunets@iapmm.liviu.ua</td>
<td>213</td>
</tr>
<tr>
<td>Ivanovych</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luchko Alina</td>
<td>alina.v.luchko@gmail.com</td>
<td>63</td>
</tr>
<tr>
<td>Valeriivna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maksymiv Yulia</td>
<td>maksymiv.yulya@gmail.com</td>
<td>213</td>
</tr>
<tr>
<td>Ivanivna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malykhina Alyona</td>
<td>alyonamalukhina@gmail.com</td>
<td>221</td>
</tr>
<tr>
<td>Igorevna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manjikashvili Mary</td>
<td>manjikashvilimary@gmail.com</td>
<td>68</td>
</tr>
<tr>
<td>Martsenyuk Vasyl</td>
<td>marceniuk@yahoo.com</td>
<td>65</td>
</tr>
<tr>
<td>Petrovych</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maslov Borys</td>
<td>maslov@inmech.kiev.ua</td>
<td>208</td>
</tr>
<tr>
<td>Petrovych</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merkulov Dmytro</td>
<td>kulmerov@gmail.com</td>
<td>221</td>
</tr>
<tr>
<td>Oleksandrovych</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mikhlin Yuri</td>
<td>muv@kipi.kharkov.ua</td>
<td>83, 211</td>
</tr>
<tr>
<td>Vladimirovich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milyan Nazar</td>
<td>nazar.milyan@gmail.com</td>
<td>65</td>
</tr>
<tr>
<td>Mokhonko Elena</td>
<td>mohon@ccas.ru</td>
<td>305</td>
</tr>
<tr>
<td>Zakharovna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mukhigulashvili Sulkhan</td>
<td>smukhig@gmail.com</td>
<td>68</td>
</tr>
<tr>
<td>Rushchitsky Jeremiah</td>
<td>rushch@inmech.kiev.ua</td>
<td>215, 218</td>
</tr>
<tr>
<td>Novotna Veronika</td>
<td>novotna@fbm.vutbr.cz</td>
<td>147</td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onizhuk Anton</td>
<td>anton.onizhuk@gmail.com</td>
<td>211</td>
</tr>
<tr>
<td>Olehovich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osadchuk Mykola</td>
<td>13717421@ukr.net</td>
<td>151</td>
</tr>
<tr>
<td>Ozbekler Abdullah</td>
<td>abdullah.ozbekler@atilim.edu.tr</td>
<td>44</td>
</tr>
<tr>
<td>Parasyuk Igor</td>
<td>pio@univ.kiev.ua</td>
<td>63</td>
</tr>
<tr>
<td>Ostapovych</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrovskyi Volodymyr</td>
<td>vovapetrovskyi@gmail.com</td>
<td>155</td>
</tr>
<tr>
<td>Petrovskyi Yaroslav</td>
<td>prorectorsgu@ukr.net</td>
<td>155</td>
</tr>
<tr>
<td>Petrovich Valentina</td>
<td>filon_val@ukr.net</td>
<td>157</td>
</tr>
<tr>
<td>Mykolayivna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plotnikov Andrej</td>
<td>a-plotnikov@ukr.net</td>
<td>60</td>
</tr>
<tr>
<td>Viktorovich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plotnikova Liliya</td>
<td>liplotnikova@ukr.net</td>
<td>60</td>
</tr>
<tr>
<td>Ivanovna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porev Gennadiy</td>
<td>vecanoi@gmail.com</td>
<td>160</td>
</tr>
<tr>
<td>Vladimirovich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postnyi Oleksii</td>
<td>alexh.po@gmail.com</td>
<td>222</td>
</tr>
<tr>
<td>Vitaliiovych</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prykarpatsky Yarema</td>
<td>yarpry@gmail.com</td>
<td>52</td>
</tr>
<tr>
<td>Anatolijovych</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabosh Roman</td>
<td>raboshroman@gmail.com</td>
<td>213</td>
</tr>
<tr>
<td>Vasylovsky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rushchitsky</td>
<td>rushch@inmech.kiev.ua</td>
<td>215, 218</td>
</tr>
<tr>
<td>Jeremiah</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruzickova Miroslava</td>
<td>m.ruzickova@math.uwb.edu.pl</td>
<td>48</td>
</tr>
<tr>
<td>Name</td>
<td>Email</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Sinchylo Sergiy</td>
<td>rushch@inmech.kiev.ua</td>
<td>218</td>
</tr>
<tr>
<td>Skobelev Volodymyr Gennadiievich</td>
<td>skobelevvv@gmail.com</td>
<td>308</td>
</tr>
<tr>
<td>Skobelev Volodymyr Volodymyrovich</td>
<td>vvskobelev@incyb.kiev.ua</td>
<td>363</td>
</tr>
<tr>
<td>Skripnik Natalia Viktorovna</td>
<td>natalia.skripnik@gmail.com</td>
<td>60</td>
</tr>
<tr>
<td>Slyn'ko Vitaliy Ivanovich</td>
<td>vitstab@ukr.net</td>
<td>71</td>
</tr>
<tr>
<td>Smetana Bedrich</td>
<td>bedrich.smetana@unob.cz</td>
<td>38</td>
</tr>
<tr>
<td>Smetankina Natalia Volodymyrivna</td>
<td>nsmetankina@ukr.net</td>
<td>222, 222</td>
</tr>
<tr>
<td>Sverstiuk Andriy Stepanovych</td>
<td>sverstuyk@tdmu.edu.ua</td>
<td>65</td>
</tr>
<tr>
<td>Symchuk Yaroslav</td>
<td>rushch@inmech.kiev.ua</td>
<td>218</td>
</tr>
<tr>
<td>Trebina Nataliya Mykolayivna</td>
<td>natasha_treb@ukr.net</td>
<td>157</td>
</tr>
<tr>
<td>Tymchuk Mykhailo</td>
<td>vsirf.17@gmail.com</td>
<td>155</td>
</tr>
<tr>
<td>Tymoshenko Bohdan Vitaliyovych</td>
<td>tbvposhta@gmail.com</td>
<td>73</td>
</tr>
<tr>
<td>Vazanova Gabriela</td>
<td>xvincu00@stud.feec.vutbr.cz</td>
<td>29</td>
</tr>
<tr>
<td>Vergunova Iryna Mykolayivna</td>
<td>vergunova@bigmir.net</td>
<td>75</td>
</tr>
<tr>
<td>Yatsenko Vitaliy</td>
<td>vyatsenko@gmail.com</td>
<td>311</td>
</tr>
<tr>
<td>Yurchuk Vasyl</td>
<td>rushch@inmech.kiev.ua</td>
<td>218</td>
</tr>
<tr>
<td>Zafer Agacik</td>
<td>agacik.zafer@gmail.com</td>
<td>55</td>
</tr>
<tr>
<td>Акуленко Леонид Денисович</td>
<td>gavrikov@ipmnet.ru</td>
<td>244</td>
</tr>
<tr>
<td>Андрейчук Анастасія Віталіївна</td>
<td>anastasiia.andreichuk@gmail.com</td>
<td>164</td>
</tr>
<tr>
<td>Андрушенко Ярослава Валентинівна</td>
<td>yaroslava.an99@gmail.com</td>
<td>312</td>
</tr>
<tr>
<td>Бабинюк Олександра Іванівна</td>
<td>a.babynuk@gmail.com</td>
<td>314</td>
</tr>
<tr>
<td>Барановская Леся Валеріївна</td>
<td>l.baranovskaya@gmail.com</td>
<td>78</td>
</tr>
<tr>
<td>Бармак Олександр Володимирович</td>
<td>alexander.barmak@gmail.com</td>
<td>365</td>
</tr>
<tr>
<td>Баскова Александра Александровна</td>
<td>BaskAleksandra@gmail.com</td>
<td>228</td>
</tr>
<tr>
<td>Батечко Ніна Григорівна</td>
<td>batechko_n_@ukr.net</td>
<td>317</td>
</tr>
<tr>
<td>Бернакевич Ірина Євстахіївна</td>
<td>iryna.bernakевич@gmail.com</td>
<td>223</td>
</tr>
<tr>
<td>Бичков Олексій Сергійович</td>
<td>bos.knu@gmail.com</td>
<td>167</td>
</tr>
<tr>
<td>Богданов Вячеслав Леонідович</td>
<td>a.l.kipnis@gmail.com</td>
<td>225</td>
</tr>
</tbody>
</table>
Боголюбская-Синюкова Екатерина Сергеевна
ytka11199509@mail.ru 92
Борисейко Александр Витальйович
b12313@ukr.net 284
Бородай Наталья Володимирівна
boroday1@ukr.net 164
Буряк Дмитрий Владимирович
dvburyak1960@gmail.com 81
Вагін Петро Петрович
petrov.vahin@lnu.edu.ua 223
Василенко Валерия Юрьевна
v.vasilenko@donnu.edu.ua 240
Васильева Ирина Геннадиевна
irisna.shurko@gmail.com 236
Войтик Татьяна Геннадиевна
beauty5@i.ua 117
Воропаев Геннадий Александрович
voropaiev.gena@gmail.com 228
Гладка Юлія Анатоліївна
yuliyagladkaya@hotmail.com 168
Голоскубова Наталья Сергеевна
nataligoloskubova1992@ukr.net 83
Голубєва Катерина Миколаївна
katrin_g@bigmir.net 164
Гоменюк Сергій Іванович
gserega71@gmail.com 179
Гончар Микола Семенович
mgonchar@bitp.kiev.ua 170
Громик Наталя Вікторівна
natasha152014@ukr.net 320
Гуляницький Андрій Леонідович
andriyhul@gmail.com 173
Дашко Ольга Геннадіївна
olga.dashko@gmail.com 265
Денисова Наталья Федоровна
ndenissova@ektu.kz 196
Дерев’янко Вікторія Миколаївна
vikaderevyanko@gmail.com 337
Дмитришин Ирина Сергеевна
dmitrishin.ira@gmail.com 231
Довжик Михайло Викторович
medved_mik@ukr.net 251
Довжик Олена Петрівна
alenkadov87@gmail.com 170
Доля Елена Викторовна
elena_367@ukr.net 271
Єфремов Микола Сергійович
teamasterln@gmail.com 175
Жоголева Наталья Владимировна
zhogoleva.nadia@gmail.com 233
Жук Петро Федорович
petro_zhuk@ukr.net 176
Загуменний Ярослав Викторович
zagutennyi@gmail.com 228
Захарін Фелікс Михайлович
sol_@ukr.net 189
Зінчук Микола Олександрович
sv.irina0702@gmail.com 323
<table>
<thead>
<tr>
<th>Злосчастьєв Данило Костянтинович</th>
<th>86</th>
</tr>
</thead>
<tbody>
<tr>
<td>dan.zloschastiev@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Зубенко Денис Юрьевич</td>
<td>290</td>
</tr>
<tr>
<td>denis04@ukr.net</td>
<td></td>
</tr>
<tr>
<td>Зуев Александр Леонидович</td>
<td>236</td>
</tr>
<tr>
<td>alexander.zuyev@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Іванов Сергій Миколайович</td>
<td>89</td>
</tr>
<tr>
<td>smivanov87@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Кіосак Володимир Анатолійович</td>
<td>205</td>
</tr>
<tr>
<td>kiosakv@ukr.net</td>
<td></td>
</tr>
<tr>
<td>Калиниченко Ярослав Владимирович</td>
<td>137</td>
</tr>
<tr>
<td>chujko-slav@ukr.net</td>
<td></td>
</tr>
<tr>
<td>Калитин Борис Сергеевич</td>
<td>92</td>
</tr>
<tr>
<td>kalitine@yandex.by</td>
<td></td>
</tr>
<tr>
<td>Карахім Сергій Олександрович</td>
<td>176</td>
</tr>
<tr>
<td>laserlab@biochem.kiev.ua</td>
<td></td>
</tr>
<tr>
<td>Карнаухова Ганна Сергійна</td>
<td>96, 98</td>
</tr>
<tr>
<td>karnauhovaanna@ukr.net</td>
<td></td>
</tr>
<tr>
<td>Кипnis Александр Леонидович</td>
<td>225</td>
</tr>
<tr>
<td>a.l.kipnis@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Клюшин Дмитро Анатолійович</td>
<td>164</td>
</tr>
<tr>
<td>dokmed5@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Кожаметов Абат Турсьмуратович</td>
<td>353</td>
</tr>
<tr>
<td>q_yusup@mail.ru</td>
<td></td>
</tr>
<tr>
<td>Козій Ірина Ярославівна</td>
<td>223</td>
</tr>
<tr>
<td>iryna.koziy@lnu.edu.ua</td>
<td></td>
</tr>
<tr>
<td>Козуб Владислав Юрійович</td>
<td>179</td>
</tr>
<tr>
<td>v.y.kozub@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Козуб Галина Олександрівна</td>
<td>238</td>
</tr>
<tr>
<td>galina14kz@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Козуб Юрій Гордійович</td>
<td>238</td>
</tr>
<tr>
<td>kosub.yg@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Коломійчук Олег Петрович</td>
<td>325</td>
</tr>
<tr>
<td>o.kolomiichuk@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Кондrackья Natalia Александровна</td>
<td>103</td>
</tr>
<tr>
<td>nkondr100@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Кононов Юрій Никитович</td>
<td>94, 240</td>
</tr>
<tr>
<td>kononov.yuriy.nikitovich@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Константинов Олександр Володимирович</td>
<td>328</td>
</tr>
<tr>
<td>akonst.im@ukr.net</td>
<td></td>
</tr>
<tr>
<td>Корбутяк Василь Михайлович</td>
<td>355</td>
</tr>
<tr>
<td>v.m.korbutiak@nuwm.edu.ua</td>
<td></td>
</tr>
<tr>
<td>Коробова Марина Віталійвна</td>
<td>100</td>
</tr>
<tr>
<td>maryna.korobova@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Костерін Сергій Олексійович</td>
<td>176</td>
</tr>
<tr>
<td>kinet@biochem.kiev.ua</td>
<td></td>
</tr>
<tr>
<td>Котов Тарас Александрович</td>
<td>334</td>
</tr>
<tr>
<td>taras.kotov@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Крак Юрій Васильевич</td>
<td>196, 365</td>
</tr>
<tr>
<td>yuri.krak@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Крапива Наталия Владимировна</td>
<td>81</td>
</tr>
<tr>
<td>scherbinskaya@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Крутій Юрій Сергійович</td>
<td>96, 98</td>
</tr>
<tr>
<td>yuriii.krutii@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Кудін Григорій Іванович</td>
<td>181</td>
</tr>
<tr>
<td>gkudin@ukr.net</td>
<td></td>
</tr>
<tr>
<td>Кузнецов Александр Николаевич</td>
<td>290</td>
</tr>
<tr>
<td>alex.kuznetsov2012@yandex.ua</td>
<td></td>
</tr>
<tr>
<td>Кулян Віктор Романович</td>
<td>100</td>
</tr>
<tr>
<td>v.kulyan@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Кусий Ярослав Мирославович</td>
<td>194</td>
</tr>
<tr>
<td>jarkym@ukr.net</td>
<td></td>
</tr>
<tr>
<td>Фітоутривник</td>
<td>Прізвище, ім'я та по батькові</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Кутымуратов Юсуп Кулбаевич</td>
<td>q_yusup@mail.ru</td>
</tr>
<tr>
<td>Куценко Олексій Григорович</td>
<td>alex_kutz@ukr.net</td>
</tr>
<tr>
<td>Ліндер Ярослав Миколайович</td>
<td>yaroslav.linder@gmail.com</td>
</tr>
<tr>
<td>Леонтьева Викторія Владимировна</td>
<td>vleonteva15@gmail.com</td>
</tr>
<tr>
<td>Лесечко Олександр Васильович</td>
<td>alesechko@ukr.net</td>
</tr>
<tr>
<td>Лещенко Дмитрій Давидович</td>
<td>leshchenko_d@ukr.net</td>
</tr>
<tr>
<td>Лимарченко Олег Степанович</td>
<td>oleelim2010@yahoo.com</td>
</tr>
<tr>
<td>Лютій Олександр Іванович</td>
<td>aleksandr.lutyj@gmail.com</td>
</tr>
<tr>
<td>Ляшенко Олена Ігорівна</td>
<td>lyashenko@univ.kiev.ua</td>
</tr>
<tr>
<td>Мазко Алексей Григорьевич</td>
<td>mazko@imath.kiev.ua</td>
</tr>
<tr>
<td>Мазурець Олександр Вікторович</td>
<td>exo.chong@gmail.com</td>
</tr>
<tr>
<td>Майко Наталія Валентинівна</td>
<td>mayko@knu.ua</td>
</tr>
<tr>
<td>Мамонова Ганна Валеріївна</td>
<td>mamonova@kneu.edu.ua</td>
</tr>
<tr>
<td>Марголін Олександр Геннадійович</td>
<td>ag.margolin@gmail.com</td>
</tr>
<tr>
<td>Матвієнко Володимир Тихович</td>
<td>matvienko.vt@gmail.com</td>
</tr>
<tr>
<td>Махорт Андрій Пилипович</td>
<td>map@bitp.kiev.ua</td>
</tr>
<tr>
<td>Назаренко Владислав Михайлівич</td>
<td>nazym1@gmail.com</td>
</tr>
<tr>
<td>Незамай Михайло Сергійович</td>
<td>boris_may@ukr.net</td>
</tr>
<tr>
<td>Неклюдов Валерій Юрійович</td>
<td>Valera_1998@ukr.net</td>
</tr>
<tr>
<td>Несмелова Ольга Владимировна</td>
<td>star-o@ukr.net</td>
</tr>
<tr>
<td>Нефьодов Олександр Олексійович</td>
<td>garonmail@gmail.com</td>
</tr>
<tr>
<td>Нікітин Анатолій Володимирович</td>
<td>nikitin2505@gmail.com</td>
</tr>
<tr>
<td>Нікіченко Микола Степанович</td>
<td>ttp@unicyb.kiev.ua</td>
</tr>
<tr>
<td>Німченко Тетяна Василівна</td>
<td>fiona54@ukr.net</td>
</tr>
<tr>
<td>Новіков Олег Олександрович</td>
<td>rovenskaya.olga.math@gmail.com</td>
</tr>
<tr>
<td>Новицький Віктор Володимирович</td>
<td>v.novytskyy@gmail.com</td>
</tr>
<tr>
<td>Овчаренко Олена Валеріївна</td>
<td>lena_rum@ukr.net</td>
</tr>
<tr>
<td>Олійник Андрій Петрович</td>
<td>andrioliinyk@gmail.com</td>
</tr>
<tr>
<td>Орто Валентина Віталіївна</td>
<td>kiberbeztop@gmail.com</td>
</tr>
<tr>
<td>Осипова Олександр Володимирівна</td>
<td>shurenkacv@gmail.com</td>
</tr>
</tbody>
</table>
Палий Екатерина Сергеевна
eschernyakova@gmail.com
244
Паранькина Ольга Юріївна
parankinaolya@gmail.com
258
Пашко Анатолій Олексійович
aap2011@ukr.net
114
Пічкур Володимир Володимирович
vpichkur@gmail.com
105
Пилипчук Олексій Андрійович
alex_pilipchuk744@ukr.net
342
Плінокос Дмитро Дмитрович
ddplynokos@gmail.com
358
Подчасов Николай Павлович
nikolay.podchasov@ukr.net
261
Полетаев Геннадий Степанович
poletayev_gs@ukr.net
117
Пономаренко Сергій Олексійович
sol_@ukr.net
189
Поперещник Світлана Володимирівна
spopereshnyak@gmail.com
376
Потапенко Ігор Володимирович
igopotapenko@ukr.net
263
Пузьрєв Владимир Евгеньевич
v.puzyryov@donnu.edu.ua
129
Ребот Дарія Петрівна
dariiarebot@gmail.com
194
Ровенська Ольга Геннадіївна
rovenskaya.olga.math@gmail.com
185
Рубаненко Олександр Ігорович
Olehksandr.Rubanenko@kname.edu.ua
293
Рябічев Вячеслав Львович
ryabichev@knu.ua
106
Рябова Любов Володимирівна
fiona54@ukr.net
374
Савельєва Катерина Володимирівна
katerina1971s@gmail.com
265
Савченко Нина Валеріївна
nina_savchenko@hotmail.com
129
Самойленко Ігор Валерійович
isamoil@i.ua
345
Самойленко Марія Євгенівна
fiona54@ukr.net
374
Сапон Микола Миколайович
kolya.sapon@gmail.com
268
Святенко Ярослав Ігорович
filioee@gmail.com
94
Святовець Ірина Федорівна
sv.irina0702@gmail.com
323
Семенов Владимир Вікторович
semenov.volodya@gmail.com
192
Семенович Катерина Олексійвна
kateryna.semenovych@gmail.com
253
Сенченков Ігорь Константинович
term@inmech.kiev.ua
271, 274
Сикираш Юлия Евгенівна
juler@ukr.net
287
Симчук Ярослав Вікторович
yar_simchuk@ukr.net
265
Синявська Ольга Олександрівна
olja_sunjavska@ukr.net
114
Скурихин Владислав Игоревич
vladscu@gmail.com 290
Слюсарчук Юлія Анатоліївна
julija0711@gmail.com 277
Сокіл Богдан Іванович
sokil_b_i@ukr.net 279
Сокіл Марія Богданівна
sokil_b_i@ukr.net 279
Сокульська Наталя Богданівна
natalya.sokulska@gmail.com 279
Стефанишин Дмитро Володимирович
d.v.stefanyshyn@gmail.com 355
Стоцько Зінівій Антонович
stotsko@lp.edu.ua 194
Стоян Володимир Антонович
v_a_a_stoyan@ukr.net 352
Супрун Тетяна Олександрівна
ms.suprun1989@gmail.com 295
Сур’янінов Микола Георгійович
sng@ogasa.org.ua 96, 98
Тимофієва Надія Костянтинівна
TymNad@gmail.com 120
Ткаченко Максим Васильович
tmhunter1111@gmail.com 122
Ткаченко Неоніла Єрмолаївна
tk.ne@ukr.net 282
Токар Костянтин Сергійович
tokar.kostya@gmail.com 173
Топільницький Володимир Григорович
topilinvol@gmail.com 194
Уалханова Айнур Толыбаевна
ainurazamat17@gmail.com 196
Улітко Ігор Андрійович
ulitko@univ.kiev.ua 284
Усов Анатолий Васильевич
usov_a_v@opu.ua 287
Утеулиев Ниетбай Утеулиевич
utewliev@mail.ru 353
Федоренко Руслан Миколайович
r_fedorenko@ukr.net 122
Філімонов Микола Борисович
nbfilimonov@mail.ru 340
Харитонов Олексій Михайлович
kharytonov@univ.kiev.ua 242
Харченко Ігор Іванович
ihar@unicyb.kiev.ua 17
Ходневич Ярослав Васильович
jvhodnevich@ukr.net 355
Хорошун Анатолій Сергійович
khoroshunanatoliy@gmail.com 124
Хусаинов Денис Яхьевич
d.y.khusainov@gmail.com 17, 126
Ченб Akram Haibl
akram_cheaib@hotmail.com 129
Червінко Ольга Петровна
chop497@gmail.com 271, 274
Черниенко Валерий Александрович
center@inmech.kiev.ua 131
<table>
<thead>
<tr>
<th>Фамилия</th>
<th>Имя, отчество</th>
<th>Электронная почта</th>
<th>Номер</th>
</tr>
</thead>
<tbody>
<tr>
<td>Чеченко Влада Олександрівна</td>
<td>chujko-slav@ukr.net</td>
<td></td>
<td>134</td>
</tr>
<tr>
<td>Чечко Андрій Сергійович</td>
<td>Andrey_Checko@ukr.net</td>
<td></td>
<td>342</td>
</tr>
<tr>
<td>Чуйко Елена Викторовна</td>
<td>chujko-slav@ukr.net</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>Чуйко Олексій Сергійович</td>
<td>chujko-slav@ukr.net</td>
<td></td>
<td>134</td>
</tr>
<tr>
<td>Чуйко Сергей Михайлович</td>
<td>chujko-slav@ukr.net</td>
<td></td>
<td>137, 140</td>
</tr>
<tr>
<td>Чупринін Олександр Олексійович</td>
<td>sasha.chupr@gmail.com</td>
<td></td>
<td>290, 295</td>
</tr>
<tr>
<td>Шатирко Андрій Володимирович</td>
<td>shatyrko.a@gmail.com</td>
<td></td>
<td>17, 162</td>
</tr>
<tr>
<td>Шворак Катерина Валеріївна</td>
<td>kiberbeztop@gmail.com</td>
<td></td>
<td>350</td>
</tr>
<tr>
<td>Шевченко Віктор Леонідович</td>
<td>gii2014@ukr.net</td>
<td></td>
<td>187</td>
</tr>
<tr>
<td>Шишкацька Олена Володимирівна</td>
<td>shyshatska@knu.ua</td>
<td></td>
<td>379</td>
</tr>
<tr>
<td>Шишканова Ганна Анатоліївна</td>
<td>shyann@i.ua</td>
<td></td>
<td>358</td>
</tr>
<tr>
<td>Шкільник Оксана Степанівна</td>
<td>me.oksana@gmail.com</td>
<td></td>
<td>371</td>
</tr>
<tr>
<td>Шкільник Степан Степанович</td>
<td>ttp@unicyb.kiev.ua</td>
<td></td>
<td>371</td>
</tr>
<tr>
<td>Шпачук Володимир Петрович</td>
<td>v.p.shpachuk@gmail.com</td>
<td></td>
<td>293, 295</td>
</tr>
<tr>
<td>Юнькова Олена Олександрівна</td>
<td>olenaunkova@gmail.com</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Якименко Сергей Николаевич</td>
<td>yasm@i.ua</td>
<td></td>
<td>274</td>
</tr>
<tr>
<td>Якименко Ніна Дмитрівна</td>
<td>oksenchuk_nd@ukr.net</td>
<td></td>
<td>297</td>
</tr>
<tr>
<td>Яременко Сергій Володимирович</td>
<td>yaserg555@gmail.com</td>
<td></td>
<td>198</td>
</tr>
<tr>
<td>Яценко Віталій Олексійович</td>
<td>vyatsenko@gmail.com</td>
<td></td>
<td>89</td>
</tr>
</tbody>
</table>